
A Theory of Implementation-Dependent
Low-Level Software

Marius Nita, Dan Grossman, and Craig Chambers

University of Washington

Abstract. We present a theory describing implementation-dependent
assumptions that a C program might make, such as the size and align-
ment of data. We define a static analysis to encode such assumptions
in a constraint that describes language implementations (i.e., compilers
and architectures) on which a program is memory-safe. The constraint
produced by the analysis is a formula in a theory of first-order logic for
which implementations are models. By defining an abstract machine that
is parameterized by an implementation, we can prove the analysis sound.
This foundation explains some common coding practices and the poorly
understood assumptions they are implicitly making.

1 Introduction

In recent years, research has demonstrated many ways to improve the quality
of C code by using programming-language technology. Such work detects safety
violations (e.g., array-bounds errors), enforces temporal protocols, and provides
new languages and compilers for reliable systems programming. The results are
a practical success for programming-language theory. However, there remains a
crucial and complementary set of complications that this paper begins to address:

The memory-safety of a C program often depends on assumptions that hold for
some but not all compilers and machines.

Examples of assumptions include how struct values are layed out in mem-
ory, the size of values, and alignment restrictions on memory accesses. To our
knowledge, existing work on safe low-level code (1) checks or simply assumes full
portability (e.g., that the input program is unaffected by structure padding), or
(2) checks the input program assuming one particular language implementation.

Demanding full portability for all code (e.g., by enforcing informally specified
restrictions on C programs [14]) is too strict because low-level code often has
inherently non-portable parts. It is often impractical to rewrite large legacy
applications in portable languages or to use perfect libraries that abstract all
the issues. Such approaches can also be a poor match for low-level code and
assume that portable languages or libraries are available for an ever-increasing
number of platforms.

Conversely, implicitly relying on some language-implementation assumptions
can lead to pernicious defects that lie dormant until one uses an implementa-
tion violating the assumptions. Defects like dangling-pointer dereferences are

largely independent of the language implementation (so testing or verification
on the “old machine” can find many of them), but defects like assuming two
struct types have similar layouts are not. The results can be severe. Conceptu-
ally simple tasks like porting an application from a 32-bit to a 64-bit machine
become expensive and error-prone. Software tested on widely available platforms
can break when run on novel hardware such as embedded systems. Widely used
compilers cannot change data-representation strategies without breaking legacy
code that implicitly relied on “undocumented behavior.”

Common practice confronts this “somewhat but not completely portable”
dilemma by manually isolating implementation-dependent assumptions. For ex-
ample, the Linux source code has an arch subdirectory; avoiding assumptions
in the rest of the kernel is left to careful coding. As another example, a garbage
collector for a high-level language might assume pointers are four bytes and
aim to be correct for any implementation satisfying this assumption. Similarly,
a run-time system accessing object headers might make assumptions about the
layout of struct values. In all cases, the code is semi-portable, meaning it is—by
design—correct for many but not all compilers and machines.

To help support semi-portable programming, we have begun building a semantics-
based porting tool for C. When finished, it will input a C program and output
a description of a set of implementations on which the program “makes sense.”
Defining the implementation-description language has forced us to give precise
meaning to poorly understood platform-specific issues. The result is a foundation
for any analysis seeking to account for implementation dependencies.

Many language tools have wrestled with semi-portability and implementation
dependencies, but the issues have not been isolated and considered rigorously.
To do so, we have built a novel model for a small-but-relevant C-level language.

1.1 Approach

The key to our formal model is isolating the idea of an implementation. An
implementation has two roles: (1) as a parameter to the operational semantics,
and (2) as something a portability constraint describes. The actual definition
of an implementation includes things like determining the offset of a struct
field and what alignment restrictions memory accesses must obey. This work
fully describes the details, but the main insight is this: by parameterizing the
operational semantics by an implementation, we can take a program P and
state that a property, namely safety, holds for P on implementations satisfying
a constraint S. That is, P is semi-portable assuming S.

To see how an implementation is a parameter to the operational semantics,
consider a pointer dereference *e. The number of bytes accessed depends on the
size of e’s type, and this size depends on the implementation. So the operational
semantics can have the form impl ` P → P ′ where impl is an implementation
and P is a program state. That way, the dereference rule can use impl to get
the size (and become stuck if impl deems the access misaligned).

As for portability constraints, they are formulas in a theory of first-order logic
for which implementations as models. For example, the constraint “access(4, 8)∧

size(long) = 8” is modeled by any implementation in which values of type long
occupy 8 bytes and 8-byte loads of 4-byte aligned data are allowed.1

Now given a program P we can try to find a constraint S such that if impl |=
S, then the abstract machine does not get stuck when running P given impl .
In particular, it will not treat an integer as a pointer, read past the end of a
struct, perform a misaligned memory access, etc. Finding an S that describes
exactly the set of “safe” implementations is trivially undecidable, so a sound
approximation (all models are safe, but not all safe implementations are models)
is warranted. In this work, we take a very conservative approach: A type system
for source programs produces S (which one can view as an effect), using no flow-
sensitivity or alias information. In practice, a code-analysis tool may use a more
sophisticated analysis, but the set-up (produce an S given P) remains the same.

The key theorem states that the S generated is sound: P cannot get stuck on
any impl modeling S. To prove it, we define a second type system for program
states. This second type system, which exists only for the proof, is parameterized
by an impl like the dynamic semantics. The proof then has two parts:

1. The second type system and operational semantics enjoy the conventional
preservation and progress properties (not including orthogonal issues like
uninitialized memory, which we could prevent via complementary techniques).

2. If the first type system produces S given P , then P type-checks in the second
type system for any impl such that impl |= S.

1.2 Outline

Section 2 presents examples of semi-portable code. Section 3 presents our core
formal model, including the definition of implementations, our first-order theory,
the dynamic and static semantics of our language, and our soundness theorem.
Section 4 briefly discusses extensions to the model we have investigated, most
importantly support for arrays. We then discuss related work and conclude.

2 Examples

Section 2.1 presents tiny code examplese to explain issues of semi-portability
and relevant implementation constraints. Section 2.2 complements this “tutorial”
with actual systems and coping strategies related to these concepts.

2.1 Small Code Fragments

Example 0: Accessing Memory A memory operation such as (*e).f accesses n
bytes at an alignment m. If e has type struct T* and the f field has type τ ,
then n is the τ ’s size and m is the greatest common divisor of the alignment of
struct T* and the offset of f.

Implementations choose sizes, alignments, and offsets such that cast-free pro-
grams do not fail. For example, if a machine prohibits 8-byte accesses on 4-byte
1 This example constraint is slightly simplified; see Section 3.4.

alignments, a compiler might put pad bytes before f fields or break 8-byte ac-
cesses into two 4-byte accesses. In this paper, we describe implementations ab-
stractly with an access function of type Int → Int → Bool, as well as size and
alignment functions mapping types to integers and alignments, respectively.2

The code (*e).f therefore needs the constraint access(n, m) with m and n as
defined above. However, this assumes e will evaluate to a pointer with alignment
m and a τ at the right offset. The constraints for casts must ensure that.

Example 1: Prefix

struct S1 { int* f1; int* f2; int* f3; };
struct D1 { int* g1; int* g2; };

A cast from struct S1* to struct D1* requires that struct D1 has a less
stringent alignment than struct S1, and for each field in struct D1 there is
a field of compatible type in struct S1 at the same offset. In this case, the C
standard requires every implementation to meet these constraints (and for g1
and f1 to have offset 0 and g2 to have the same offset as f2), but our purpose
is to capture these and less portable notions precisely.

Example 2: Flattening and Alignment

struct S2 { int* f1; struct {int* f2; double f3;} f4; };
struct D2 { int* g1; int* g2; };

A cast from struct S2* to struct D2* has similar constraints as in Example
1, but this time the C standard provides no guarantee. In fact, some imple-
mentations put pad bytes before f4 because of alignment constraints and an
assumption that all struct types are defined at top-level. Our system generates
a constraint for this cast preventing such a representation mismatch.

Example 3: Suffix

struct S3 { int* f1; int* f2; double f3; };
struct D3 { int* g1; double g2; };
struct S3* x = ...;
struct D3* y = (struct D3 *)(&(x->f2));

The cast in the initializer for y above is a situation where the source and des-
tination types both point to an int* followed by a double. However, an imple-
mentation with 4-byte pointers, 8-byte doubles, and 8-byte alignment of doubles
cannot support this cast because struct D3 has more padding. Implementations
without padding can allow this cast, even though &x->f2 has type int** in C.

2 As explained later, an alignment is an offset and a modulus.

Example 4: Arrays and Prefixes

struct S1 * x = ...;
struct D1 * y = ((struct D1 *)x)[7];

Prior examples implicitly assumed the cast-target was not used as an array (i.e.,
it was used as a pointer to only one element). This issue is orthogonal to array-
bounds violations; we must reject the cast in Example 4 even if x points to more
than 7 elements. Section 4 discusses extending our model to support arrays.

Example 5: Safe-But-Inequivalent Implementations

struct S5 { long f1; };
struct D5 { short g1; short g2; };

Assuming there is no padding, sizeof(long)==2*sizeof(short), and that
there are no misaligned accesses, a cast from struct S5* to struct D5* is safe.
However, endianness lets different implementations behave differently. We leave
such notions of equivalence to future work, focusing here only on safety, which
is still incredibly useful in writing and porting semi-portable code. In particular,
our approach detects many no-padding assumptions.

2.2 Practical Scenarios

The extent of the portability problem is not precisely known because defects lie
dormant until one changes hardware or compiler.

The LinuxARM project, a port of Linux to the ARM embedded processor,
provides compelling evidence that defects are subtle and widespread. The ARM
compiler uses at least 4-byte alignment for all structs whereas gcc for the x86 uses
less alignment for structs containing only short and char fields. To quote [2]:

At this point, several years of fixing alignment defects in Linux pack-
ages have reduced the problems in the most common packages. Packages
known to have had alignment defects are: Linux kernel; binutils; cpio;
RPM; Orbit (part of Gnome); X Windows. This list is very incomplete.

They also note that defects sometimes lead to alignment traps, but sometimes
lead to silent data corruption. Kernel developers are told to, “be careful” [17].

Ports to 64-bit platforms are also revealing. The state-of-the-art appears
to be lint-like technology, such as gcc’s -Wpadded flag, which reports all uses
of padding. However, aggressive compiler warnings can produce so much infor-
mation for legacy code that some people suggest using multiple independent
compilers and looking only at lines for which they all produce warnings [18].

3 Core Language

This section develops a formal model that can explain examples 0–3 above. We
define a core language, a definition of implementation, a dynamic semantics, a

a logic that constrains implementations, a type-and-effect system to produce
constraints, and a safety theorem. For tractability, we consider just a small ex-
pression language inspired by C and missing orthogonal language features such
as functions. For simplicity, we also assume all pointers have the same size.

3.1 Idealized Syntax

τ ::= short | long | τ∗ | N
t ::= N{τ f}

e ::= s | l | x | e = e | e.f | (τ∗)e | ∗(τ∗)(e) | (τ∗)&e→f
| new τ | e; e | if e e e | τ x; e

Fig. 1. Source-Language Syntax

Our source programs (Figure 1) are a small subset of C with some small,
convenient changes. Most notably, all terms are expressions. A program is a list
of struct definitions (t) and an expression (e). (We write x for a sequence of
elements drawn from x and · for the empty sequence. We write xi for a length-i
sequence.) Struct definitions have global scope to allow mutually recursive types.

Types τ include short and long, pointers (τ∗), and struct types (N rather
than the more verbose struct N). As in C, all pointers are explicit. A struct
definition (t) names the type and gives a sequence of fields. For simplicity, we
assume all field names in a program are disjoint. Several expression forms are
identical to C, including short and long constants (s and l), variables (x), as-
signments (e = e), field access (e.f), and pointer casts ((τ∗)e).

For pointer dereference (∗(τ∗)(e)) and pointing to a field ((τ∗)&e→ f), it
is a technical convenience to require a type annotation in the syntax. After all,
dereference in C is type-directed (if e has type τ∗, then ∗e reads sizeof(τ)
bytes). The cast in (τ∗)&e→f helps with “suffix casts” as in Example 3.

The remaining expression forms are for memory allocation or control flow.
new τ allocates uninitialized space to hold a τ . e; e is sequence. if e e e is a
conditional (branching on whether the first expression is 0). Finally, τ x; e
binds a local variable x of type τ in e. Memory management is not our concern,
so the dynamic semantics uses heap allocation for local variables.

As defined in Section 3.3, program evaluation depends on an implementation
impl and modifies a heap H. We write impl ; t ` H; e → H ′; e′ for one evaluation
step. Rather than define a translation to a lower-level implementation-dependent
language, we extend e with new lower-level forms. This equivalent approach of
consulting the implementation at run-time simplifies the metatheory while fully
exposing the intricacies of implementation dependencies.

Figure 2 defines the syntactic extensions for run-time expressions and heaps.
A value v is a sequence of “small values” w, which can be initialized bytes b,
unininitialized bytes uninit, or pointers `+i. A pointer is a label ` and an offset i
(Pointers to the middle of data have non-zero offsets.) This approach is higher
level than assembly language but low enough for middle pointers, suffix casts,
etc., making it “just right” for modeling semi-portable C.

i, a, o ∈ N
b ::= 0 | 1 | . . . | 255
w ::= b | uninit | `+i
e ::= . . . | w

v ::= w
α ::= [a, o]
H ::= · | H, ` 7→ v, α

Fig. 2. Syntax extensions for run-time behavior

Heaps map labels to values and alignments [a, o]; the latter means address
` is o mod a. (Typically o is zero.) As Section 3.2 shows, an implementation
specifies an alignment for each type; allocating an object of type τ produces a
fresh heap location with this alignment.

3.2 Implementations

σ ::= byte | pad[i] | ptrα(σ) | ptrα(N)

impl .xtype(t, τ) = σ impl .ptrsize = i

impl .align(t, τ) = α impl .xliteral(s) = b

impl .offset(t, f) = i impl .xliteral(l) = b
impl .access(α, i) = {true, false}

Fig. 3. Implementations and low-level types

The components of an implementation (impl) guide the dynamic semantics.
Figure 3 summarizes these components:

– A translation of types into a lower-level representation (σ), described below.
We write impl .xtype(t, τ) for the σ corresponding to the translation of a type
τ (assuming type definitions t).

– An alignment function (impl .align) returns the alignment α used to allocate
space for a τ .

– An offset function (impl .offset) takes a field f and returns the number of
bytes from the beginning of the nearest enclosing struct to the field f .

– An access function takes an alignment and a size and returns true if ac-
cessing size-bytes of memory at the alignment is not an error. We write
impl .access(α, i) if this function returns true.

– The size of pointers (impl .ptrsize) is a constant i. This is a slight simplifica-
tion since a C implementation could use different sizes for different pointers.

– A literal function (impl .xliteral) translates integer literals into byte sequences.

The access function is typically associated with hardware and the other compo-
nents with compilers. A “sensible” implementation cannot define its components
in isolation (e.g., the type translation must mind the access function); our con-
straint language will let us define such restrictions.

Low-level types (the target of impl .xtype) are σ, a sequence of σ. For example,
if long is four bytes, the translation is byte byte byte byte. The type pad[i]
represents i bytes of padding (data of unknown type but known size). The type

ptrα(σ) describes pointers to data described by σ at alignment α (i.e., α is the
alignment of the pointed-to data). As a technical point, we disallow the type N
for low-level types except for the form ptrα(N). This restriction simplifies type
equalities without restricting implementations or disallowing recursive types.

3.3 Dynamic Semantics

The dynamic semantics is a small-step rewrite system defined using evaluation
contexts and parameterized by an implementation and type definitions. Figure 4
holds the full definition for impl ; t ` H; e → H ′; e′. As in C, the left side of
assignments (“left-expressions”) are evaluated differently from other expressions
(“right-expressions”). Therefore, we have two sorts of contexts (L and R) defined
by mutual induction and a different sort of primitive reduction (l→ and r→) for
each sort of context. In particular, R[e]r is a right-context R containing a right-
hole filled by e and R[e]l is a right-context R containing a left-hole filled by e.
Each context contains one right-hole or one left-hole (not both).

The primitive reductions that do not use impl . (D-Cast, D-Seq, D-IfF,
D-IfT) are straightforward. Note casts have no run-time effect. D-Short and
D-Long use impl , but only to translate literals to byte-sequences.

D-New extends the heap with a new label holding uninitialized data. impl
determines the alignment and size of the new space, with the latter computed by
applying the auxiliary size function to the translation of the allocated type. The
resulting value is the pointer `+0. Note the type system does not prevent getting
stuck due to uninitialized data. D-Let is much like D-New (it has identical
hypotheses) because we heap-allocate local variables. The resulting expression
is the substitution of ∗(τ∗)(`+0) for x.

D-Deref gets data from the heap by extracting a sequence “from the mid-
dle” of H(`). The sequence is from offset j (where the evaluated expression is
∗(τ∗)(` + j)) to j + k (where k is the size of τ ’s translation). If one cannot
“carve up” H(`) in this way, the rule does not apply (so the machine is stuck).
As expected, we use impl .access to enforce alignment on the memory access.

D-Assign has hypotheses identical to D-Deref plus the requirement that
the right-hand side be a value equal in size to the value being replaced in the
heap. The resulting heap differs only from offset j to offset j + k of H(`).

D-Faddr takes a pointer value and increases its offset by the offset of the
field f . D-FetchL, the one primitive reduction in left contexts, is similar, but we
also change a type to reflect that e.f refers to less memory than e. A “left-value”
(i.e., a terminal left-expression) looks like ∗(τ∗)(`+j).

D-Fetch uses offset and size information from impl to get a subsequence of
a value. It does not use the access function because it does not access the heap.3

The functions size(impl , σ) and size(impl , w), used in several rules, return
byte-counts. Their definitions are easy but omitted due to space constraints.

3 On real machines, large values do not fit in registers. We could model this by treating
field access as an address-of-field computation followed by a dereference.

R ::= [·]r | L = e | ∗(τ∗)(`+i) = R | R.f | ∗(τ∗)(R) | (τ∗)R | R; e | (τ∗)&R→f | if R e e
L ::= [·]l | L.f | ∗(τ∗)(R)

D ` H; e
r→ H ′; e′

D ` H; R[e]r → H ′; R[e′]r

D ` H; e
l→ H ′; e′

D ` H; R[e]l → H ′; R[e′]l

D-Cast

D ` H; (τ∗)w r→ H; w

D-Seq

D ` H; (v; e)
r→ H; e

D-IfF

D ` H; if 0i e1 e2
r→ H; e2

D-IfT
b1 . . . bi 6= 0i

D ` H; if (b1 . . . bi) e1 e2
r→ H; e1

D-Short
impl .xliteral(s) = b

impl ; t ` H; s
r→ H; b

D-Long
impl .xliteral(l) = b

impl ; t ` H; l
r→ H; b

D-New
` 6∈ Dom(H) impl .align(t, τ) = α impl .xtype(t, τ) = σ size(impl , σ) = i

impl ; t ` H; new τ
r→ (H, ` 7→ uniniti, α); `+0

D-Let
` 6∈ Dom(H) impl .align(t, τ) = α impl .xtype(t, τ) = σ size(impl , σ) = i

impl ; t ` H; τ x; e
r→ (H, ` 7→ uniniti, α); e{∗(τ∗)(`+0)/x}

D-Deref

H(`) = w1w2w3, [a, o] size(impl , w1) = j impl .access([a, o + j], k)
impl .xtype(t, τ) = σ size(impl , w2) = size(impl , σ) = k

impl ; t ` H; ∗(τ∗)(`+j) r→ H; w2

D-Assign

H(`) = w1w2w3, [a, o] size(impl , w1) = j impl .access([a, o + j], k)
impl .xtype(t, τ) = σ size(impl , w2) = size(impl , σ) = size(impl , w) = k

impl ; t ` H; (∗(τ∗)(`+j)) = w
r→ (H, ` 7→ w1w w3, [a, o]); w

D-Faddr
impl .offset(f) = j′

impl ; t ` H; (τ)&`+j→f
r→ H; `+(j + j′)

D-FetchL
impl .offset(f) = j′ N{. . . τ2 f . . .} ∈ t

impl ; t ` H; (∗(τ1∗)(`+j)).f
l→ H; ∗(τ2∗)(`+(j + j′))

D-Fetch

N{. . . τ f . . .} ∈ t impl .offset(t, f) = size(impl , w1)
impl .xtype(t, τ) = σ size(impl , σ) = size(impl , w2)

impl ; t ` H; w1w2w3.f
r→ H; w2

Fig. 4. Dynamic Semantics (letting D ::= impl ; t)

3.4 First-Order Formulas

To define a sound type system for our language, we need to limit what implemen-
tations we consider. That is, “P does not get stuck” makes no sense, but “P run
on implementation impl does not get stuck” does. We choose to use first-order
logic to give a syntactic representation to a set of implementations; a formula S
represents the implementations that model it, i.e., the set {impl | impl |= S}.

The syntax for formulas S is first-order logic with (1) sorts for aspects of our
language (fields f , types τ , low-level types σ, alignments α, etc.), (2) arithmetic,

syntax interpretation under impl defined in

xtype(t, τ) impl .xtype(t, τ) Figure 3
align(t, τ) impl .align(t, τ)
offset(t, f) impl .offset(t, f)
access(α, i) impl .access(α, i)
xliteral(s), xliteral(l) impl .xliteral(s), impl .xliteral(l)

size(σ), size(w) size(impl , σ), size(impl , w) omitted (straightforward)

subtype(t, σ1, σ2) impl ; t ` σ1 ≤ σ2 Figure 6
subalign(α1, α2) ` α1 ≤ α2

Fig. 5. Function Symbols for the First-Order Theory

and (3) function symbols relevant to implementation-dependencies. Figure 5
defines these function symbols and their interpretation. These interpretations
induce the full definition of impl |= S as usual (e.g., impl |= S1∧S2 if impl |= S1

and impl |= S2). Consider two example formulas:

– ∀τ, t. access(align(t, τ), size(xtype(t, τ)))
– Let t0 abbreviate: N1{short f1 short f2 short f3} N2{short g1 short g2}

in the formula: subtype(t0, xtype(t0, N1∗), xtype(t0, N2∗)).

The first formula says that every type must have a size and alignment that
allows memory to be accessed. Without this constraint, a program like τx;x = e
could get stuck because D-Let uses the alignment impl .align(t, τ) for the space
allocated for x. The second formula requires a low-level subtyping relationship
between two pointer types (see Section 3.5). This is the constraint our static
semantics generates for a cast like in Example 1 from Section 2.

These examples also demonstrate the two flavors of formulas that arise in
practice. First, there are constraints every “sensible” implementation would sat-
isfy. We are uninterested in other implementations, but stating the requirements
syntactically is simpler than revisiting our definition of implementations. Second,
there are constraints describing semi-portable assumptions, i.e., we do not expect
every implementation to satisfy them. Our static semantics produces a formula
describing the assumptions of this form that a particular program makes.

The “sensible” constraints we assume are easy to enumerate and justify:

1. Size and alignment allows access of all types:
∀τ, t. access(align(t, τ), size(xtype(t, τ)))

2. Translation of literals respects the translation of their types:
∀s, l, t. size(xliteral(s)) = size(xtype(t, short))
∧ size(xliteral(l)) = size(xtype(t, long))

3. Greater alignment does not restrict access:
∀α1, α2, i. (access(α1, i) ∧ subalign(α2, α1)) ⇒ access(α2, i)

4. Translation of τ∗ respects the alignment and translation of τ :
∀τ, t.subtype(t, ptralign(t,τ)(xtype(t, τ)), xtype(t, τ∗))

5. Struct translation respects the offset and alignment of each field:
∀t, τ, f, σ. (N{. . . τ f . . . } ∈ t ∧ (xtype(t, τ) = σ) ⇒
(∃σ1, σ2, a, o, o′. xtype(t, N) = σ1σσ2 ∧ size(σ1) = offset(t, f)) = o′

∧ align(t, N) = [a, o] ∧ subalign([a, o + o′], align(t, τ))

These constraints are necessary for portable code; without them certain cast-
free programs could get stuck. The C standard allows other assumptions that we
can write in our logic but that our safety theorem need not assume. For example:

– long is at least as big as short: ∀t. xtype(t, long) ≥ xtype(t, short)
– First fields always have offset 0: ∀f, t, τ. (N{τf . . . } ∈ t) ⇒ offset(t, f) = 0

3.5 Physical Subtyping

ptr
` α1 ≤ α2

D ` ptrα1
(σ1σ2) ≤ ptrα2

(σ1)

pad
size(impl , σ) = i

impl ; t ` σ ≤ pad[i]

seq
D ` σ1 ≤ σ2 D ` σ3 ≤ σ4

D ` σ1σ3 ≤ σ2σ4

refl
D ` σ ≤ σ

trans
D ` σ1 ≤ σ2 D ` σ2 ≤ σ3

D ` σ1 ≤ σ3

unroll
impl .xtype(t, N) = σ

impl ; t ` ptrα(N) ≤ ptrα(σ)
roll

impl .xtype(t, N) = σ

impl ; t ` ptrα(σ) ≤ ptrα(N)

align-base
a1 = a2 × i

` [a1, o] ≤ [a2, o]

align-offset
o1 ≡ o2 mod a

` [a, o1] ≤ [a, o2]

align-trans
` α1 ≤ α2 ` α2 ≤ α3

` α1 ≤ α3

Fig. 6. Physical Subtyping (and Subtyping on Alignments)

We use subtyping on low-level types to formalize that data described by σ can
be treated as a σ′. This has been called physical subtyping [5, 27, 22] because it
uses actual memory layouts. Figure 6 defines D ` σ1 ≤ σ2 (recall D ::= impl ; t).

As expected in an imperative language, pointer types have invariant subtyp-
ing (rule ptr). However, we allow forgetting fields under a pointer type as this
only restricts access to a prefix of the data. This encodes the core concept be-
hind casts like Example 1 in Section 2. We also allow assuming a less restrictive
alignment (via ` α1 ≤ α2), which also only restricts how a pointer can be used.

We allow sequence-shortening under pointer types, but it is not correct to
allow shortening as a subtyping rule. A supertype should have the same size as
a subtype, which may seem odd to readers not used to subtyping in a language
with explicit pointers. It is why C correctly disallows casts between struct types
(as opposed to pointers to structs).

Rule pad lets us forget about the form of data (not under a pointer) without
forgetting its size. Rule seq lifts subtyping to sequences. As usual, subtyping is
reflexive and transitive. Rules unroll and roll witness the equivalence between

a struct name and its definition. Recall we restrict a type N to occur under
pointers, which is sufficient for translating recursive types.

As usual, subsumption (explicit or implicit) is sound for right-expressions
but unsound for left-expressions. (For example, in Java, given e1=e2, one may
use subsumption on e2 but not on e1.) Therefore, casts are not left-expressions.

3.6 Static Semantics and Constraint Generation

S-Var
Γ (x) = τ

t; Γ r̀ x : τ ; true
S-Assn

t; Γ l̀ e1 : τ ; S1 t; Γ r̀ e2 : τ ; S2

t; Γ r̀ e1 = e2 : τ ; S1 ∧ S2

S-Cast
t; Γ r̀ e : τ1∗; S1

t; Γ r̀ (τ∗)e : τ∗; S1 ∧ subtype(t, xtype(t, τ1∗), xtype(t, τ∗))
S-Faddr

t; Γ r̀ e : N∗; S1 N{. . . τ1 f . . .} ∈ t

t; Γ r̀ (τ∗)(&e → f) : τ∗; S1 ∧ ∃σ1, σ2, a, o. xtype(t, N∗) = ptr[a,o](σ1σ2)

∧ offset(f) = size(σ1)
∧ subtype(ptr[a,o+offset(f)](σ2), xtype(t, τ∗))

Fig. 7. Static Semantics (letting Γ ::= · | Γ, x:τ and omitting most of the rules)

The preceding definitions of constraints and subtyping provide what we need
to define a static semantics for source programs (Figure 7). The judgments t;Γ r̀

e : τ ;S and t;Γ l̀ e : τ ;S (for right- and left-expressions respectively) produce
types as usual, but also formulas S. This formula is just a conjunction of the
semi-portable assumptions the program may be making.

The only interesting rules are S-Cast and S-Faddr because the “sensible”
constraints in Section 3.4 suffice to ensure other expression forms (such as deref-
erences and assignments) cannot fail due to an implementation dependency. Due
to space constraints, we show only two examples of other typing rules; see [23]
for the complete type system. The constraints directly describe the implicit as-
sumptions made in Examples 1–3 in Section 2. The S-Faddr constraint is much
more complicated because we do not generally require every subsequence of fields
to have an alignment appropriate for treating it as a type.

This type system does not support downcasts, which are important in prac-
tice. To support them safely, we could invert the direction of the subtyping con-
straint in S-Cast and employ existing techniques to ensure the casted value ac-
tually has the result of the cast. Techniques used in existing safe-C approaches [22,
15] include type tags, discriminated unions, and parametric polymorphism.

3.7 Metatheory

Safety: Ideally, we would claim that running a well-typed program on a “sen-
sible” implementation that models the program’s constraint would never get
stuck. That is, given t; · r̀ e : τ ;S, impl |= S and the “sensible” constraints, and

impl ; t ` ·; e →∗ H; e′ (where →∗ is the reflexive, transitive closure of →), either
e′ is a value or there exists H ′, e′′ such that impl ; t ` H; e′ →∗ H ′; e′′.

However, this claim is false due to uninit. We must relax our claim to admit
e′ might also be “legally stuck,” which we define as expressions of the form
R[stuck]r or R[stuck]l where:

stuck ::= if (w1 uninit w2) e e | ∗(τ∗)(uniniti) | (τ∗)&uniniti→f

The proof [23] uses a “low-level, run-time type system” to capture relevant
invariants that evaluation preserves. The main judgment is impl ; t;Ψ ;Γ r̀ e : σ
where Ψ describes the heap (Ψ ::= · | Ψ, ` 7→ σ, α). This type system has implicit
subsumption and, like the dynamic semantics, many rules refer to impl .

This key lemma connects the static semantics and the low-level type system:

If t;Γ r̀ e : τ ;S, impl |= S and impl is sensible, and impl .xtype(t, τ) = σ,
then impl ; t; ·;Γ r̀ e : σ.

Given this lemma, preservation and progress (modulo legal stuck states) for
the dynamic semantics and the low-level type system suffices to show type safety.

Cast-Free Portability: Having safety rely on a portability constraint (the S in
t; · r̀ e : τ ;S) can be viewed as weak, since S could be difficult to establish, even
unsatisfiable. However, we can formalize the intuitive notion that only casts can
threaten portability. That is, for the right definition of “cast-free,” if e is cast-free
and t;Γ r̀ e : τ ;S, then every sensible impl models S. It then follows from safety
that e is portable (i.e., it will not get stuck on any sensible implementation). This
intuition is supported by a formal statement and proof [23].

To be precise, a program t; e is cast-free if (1) All expressions of the form
(τ∗)e′ actually have the form ∗((τ∗)e′′) or (τ∗)&e′′→f , and (2) For every expres-
sion of the form (τ∗)&e′→f , the type τ is the type of f (i.e., N{. . . τ f . . . } ∈ t).

4 Extensions

The model in the previous section is purposely tiny, but we have extended it in
important directions [23]. Space constraints allow only sketching the basic ideas.

The most important addition is arrays because Example 4 showed that they
must restrict subtyping. As is common in safe C-like languages [22, 15], we use
a separate type τ∗ω (and its low-level counterpart ptrω

α(σ)) for pointers usable
as arrays so that non-array pointers (τ∗) have the subtyping already described.
Given an array-pointer x, the expression &x[e] returns a non-array pointer to one
element, assuming e is in bounds (which we do not enforce statically). The key
physical subtyping rule then allows array-pointer subtyping only if one element
type is i adjacent copies of the other (cf. the more lenient Ptr rule):

σ1 = σ i
2 ` α1 ≤ α2

impl ; t ` ptrω
α1

(σ1) ≤ ptrω
α2

(σ2)

However, this rule is sound only given a new sensibility constraint that is un-
necessary without arrays, that a type’s size is a multiple of its alignment:

∀τ, t.∃i, a, o. size(t, xtype(t, τ)) = i× a ∧ align(t, τ) = [a, o]

Other extensions to our model can allow more subtyping. Read-only types
(like C’s const but enforced) can allow deep subtyping. A proper treatment of
recursive subtyping [3] is appropriate and synergistic with const.

5 Previous Work

To our knowledge, previous work considering implementation-dependent data-
layout or low-level type-safety has done one of (1) assume a particular implemen-
tation, (2) assume the source program is fully portable, or (3) ignore features
such as structs or dynamic memory allocation. The last approach relegates issues
to our work, much as we relegate issues like array-bounds errors to others [8, 10].

5.1 Assuming an Implementation

Most closely related is the “physical type-checking” work of Chandra et al. [5, 27],
which motivated our work considerably. Their tool classifies C casts as “upcasts”,
“downcasts”, or “neither”, reporting a warning for the last possibility. They take
a byte-for-byte view of memory for a low-level type system, but they neither
parameterize their system by an implementation nor produce descriptions of
sets of implementations. Checking code for a new implementation would require
reverification and changing their tool. They do not present a soundness theorem.

CCured [22], a memory-safe C implementation, uses physical type-checking
to eliminate casts that otherwise need run-time checks. That is, CCured permits
casts that work in practice (assuming a padding strategy typical when targeting
the x86), but that are not allowed by the C standard or other architectures. The
formal model establishing CCured’s soundness has some similarities with our
work, but it lacks a distinct notion of implementation, alignment constraints,
memory allocation, recursive types, etc.

Work on typed assembly language and proof-carrying code [20, 19, 6, 13] also
takes a low-level view of memory. In particular, work on allocation semantics [25,
1] exposes that addresses are integers, allowing pointer arithmetic to cross ob-
ject boundaries. Type-checking binary code might be indirectly useful for semi-
portable code, but it requires an assembly-level verifier for each architecture.

C-- [26] makes data representation and alignment explicit, but C-- is not
a platform for writing semi-portable code. Rather, it is a low-level language
designed as a target for compiling high-level languages. All padding decisions
and alignment assumptions are explicit.4 Incorrect alignment is an unchecked
run-time error. C-- is intended to handle back-end code-generation issues; it is
expected that the front-end compiler will generate different (but similar) code
for each platform and provide a run-time system written in C.
4 Syntactically, an omitted alignment is taken to be n for an n-byte access.

5.2 Safe C

Memory-safe dialects or implementations of C, such as Cyclone [15, 12, 11], CCured [22,
21, 7], and SAFECode [9], do not solve the semi-portability problem. Rather,
they may reject (at compile-time) or terminate (at run-time) programs attempt-
ing implementation-dependent operations, or they may support only certain im-
plementations (e.g., certain C compilers as back-ends). Furthermore, these sys-
tems all include run-time systems (e.g., memory managers) that are themselves
semi-portable! For example, the Cyclone run-time system assumes 32-bit integers
and pointers, and support for 64-bit platforms is a top request from users.

5.3 Formalizing C

Recent work by Leroy et al. [16, 4] uses Coq to prove a C compiler correct. Their
(large-step) operational semantics for C distinguishes left and right expressions
much as we do. However, the language omits structs (avoiding many alignment
and padding issues), and the metatheory proves correctness only for correct
source programs (hence saying nothing about implementation-dependent code).

Norrish’s formalization of C in HOL includes structs [24]. Like our work, a
global namespace maps struct names to sequences of typed fields. However, he
purposely omits padding and alignment from the model. Without a separable no-
tion of implementation, he models implementation choices as non-determinism.

6 Conclusions

We have developed a sound, formal description of implementation-dependencies
in low-level software. The key insight is a semantic definition of “implemen-
tation” that directs a low-level operational semantics and models a syntactic
constraint that is produced via static analysis on a source program. Giving im-
plementations a clear identity and identifying “sensibility constraints” clarifies
a number of poorly understood issues. We believe we are the first to consider
describing a set of implementations on which a low-level program can run safely.

Our next step is to complete a practical tool to determine implementation
assumptions of real C code, which may require a more precise static analysis
while still using our basic approach. Another area for future work is a stronger
guarantee, such as establishing program equivalence on a set of implementations.

References

1. A. Ahmed and D. Walker. The logical approach to stack typing. In ACM Inter-
national Workshop on Types in Language Design and Implementation, 2003.

2. The ARMLinux Book Online. 2005. http://www.aleph1.co.uk/armlinux/book.
3. R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. on Pro-

gramming Languages and Systems, 15(4), Sept. 1993.
4. S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C compiler front-end.

In 14th International Symposium on Formal Methods, Aug. 2006.

5. S. Chandra and T. Reps. Physical type checking for C. In ACM Workshop on
Program Analysis for Software Tools and Engineering, 1999.

6. J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL for back-end
optimization. In ACM PLDI, 2003.

7. J. Condit, M. Harren, S. McPeak, G. Necula, and W. Weimer. CCured in the real
world. In ACM PLDI, 2003.

8. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE Analyser. In European Symposium on Programming, 2005.

9. D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforcing alias analysis for
weakly typed languages. In ACM PLDI, 2006.

10. N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically
detecting all buffer overflows in C. In ACM PLDI, 2003.

11. D. Grossman. Quantified types in imperative languages. ACM Trans. on Program-
ming Languages and Systems, 28(3), 2006.

12. D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in Cyclone. In ACM PLDI, 2002.

13. N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to
foundational proof-carrying code. Journal of Automated Reasoning, 31(3–4), 2003.

14. ISO/IEC 9899:1999, International Standard—Programming Languages—C. Inter-
national Standards Organization, 1999.

15. T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone:
A safe dialect of C. In USENIX Annual Technical Conference, 2002.

16. X. Leroy. Formal certification of a compiler back-end or: Programming a compiler
with a proof assistant. In ACM POPL, 2006.

17. R. Love. Linux Kernel Development, 2nd Edition. Novell Press, 2005. Page 328.
18. B. Martin, A. Rettinger, and J. Singh. Multiplatform porting to 64 bits. Dr.

Dobb’s Journal, Dec. 2005. http://www.ddj.com/184406427.
19. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly

language. ACM Trans. on Programming Languages and Systems, 21(3), 1999.
20. G. Necula. Proof-carrying code. In ACM POPL, 1997.
21. G. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of legacy

code. In ACM POPL, 2002.
22. G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: Type-

safe retrofitting of legacy software. ACM Trans. on Programming Languages and
Systems, 27(3), 2005.

23. M. Nita, D. Grossman, and C. Chambers. A theory of implementation-
dependent low-level software. Technical Report 2006-10-01, Univ. of Wash.
Dept. of Computer Science & Engineering, Oct. 2006. Available at
http://www.cs.washington.edu/homes/marius/papers/tid/.

24. M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.
25. L. Petersen, R. Harper, K. Crary, and F. Pfenning. A type theory for memory

allocation and data layout. In ACM POPL, 2003.
26. N. Ramsey, S. P. Jones, and C. Lindig. The C-- language specification version 2.0,

Feb. 2005. http://www.cminusminus.org/extern/man2.pdf.
27. M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping with

type casts in C. In 7th European Software Engineering Conference and 7th ACM
Symposium on the Foundations of Software Engineering, 1999.

