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Verifying invariants of fine-grained concurrent data structures is challenging because interference from
other threads may occur at any time. We propose a new way of proving invariants of fine-grained concurrent
data structures: applying rely-guarantee reasoning to references in the concurrent setting. Rely-guarantee
applied to references can verify bounds on thread interference, without requiring a whole program to be
verified.

This paper provides three new results. First, it provides a new approach to preserving invariants and
restricting usage of concurrent data structures. Our approach targets a space between simple type systems
and modern concurrent program logics, offering an intermediate point between unverified code and full ver-
ification. Furthermore, it avoids sealing concurrent data structure implementations, and can interact safely
with unverified imperative code. Second, we demonstrate the approach’s broad applicability through a series
of case studies, using two implementations: an axiomatic COQ DSL and a library for Liquid Haskell. Third,
these two implementations allow us to compare and contrast verifications by interactive proof (COQ) and a
weaker form that can be expressed using SMT-discharged dependent refinement types (Liquid Haskell).
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1. INTRODUCTION
Now that increasing core counts have replaced increasing clock frequencies in new
CPUs, it is increasingly important to exploit parallelism in programs to improve ap-
plication performance. In the general case, this requires introducing synchronization
constructs to prevent threads from simultaneously interfering with each others’ state.
The simplest synchronization construct — the mutual exclusion lock — is effective, but
it can slow down applications if it is used to protect too much data, because threads
spend too much time waiting to acquire locks. Fine-grained locking — guarding dif-
ferent parts of a larger structure with separate locks — helps in many cases, but not
all. In the remaining cases, the only way to achieve acceptable scalability is to switch
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to lock-free data structures [Herlihy 1991; Herlihy and Shavit 2008]: concurrent data
structures where instead of taking turns accessing data by waiting for locks, threads
interact using hardware primitives that are less expensive and non-blocking, but also
significantly less powerful. Implementing these lock-free concurrent data structures is
challenging on its own. In languages without enforced abstraction, ensuring that other
parts of the program do not interfere incorrectly on these structures is an additional
challenge.

The key challenge in proving properties of fine-grained concurrent data structures
(FCDs [Turon et al. 2013]) — whether lock-based or lock-free — is the treatment of
interference from other threads: simultaneous side effects on shared state, whether a
data race or not. An additional challenge is that frequently data structures are verified
in isolation, but then composed with larger, mostly-unverified programs, which may
violate assumptions of the verification.

This paper shows how to prove some safety properties — both traditional (e.g., x > 0)
and two-state invariants [Liskov and Wing 1994] (e.g., xpre ≤ xpost) — of lock-free pro-
grams by building on recent work on rely-guarantee references [Gordon et al. 2013]
(RGREFs). Ordinary reference types simply describe the type of value that may be
read and written through a reference. Rely-guarantee references [Gordon et al. 2013]
additionally restrict how the reference may be used: they summarize the capabilities
granted to aliases, and they state a refinement [Freeman and Pfenning 1991] that is
guaranteed to be preserved by actions through other aliases. For example, the refine-
ment that a counter is positive is preserved by aliases that are restricted to increment-
ing the counter.

Rely-guarantee references target a middle ground between simple but weak basic
type systems, and very powerful but correspondingly complex (for specification and au-
tomation) concurrent program logics. Standard type systems in widespread use offer
virtually no safety guarantees for shared-memory concurrency beyond basic memory-
and type-safety. Full concurrent program logics can verify full functional correctness
and more (e.g., linearizability [Vafeiadis et al. 2006; Liang and Feng 2013]), but re-
quire very high expertise to employ and it is difficult to automate checking for the most
sophisticated variants. Refinement types are amenable to effective inference and auto-
matic checking [Rondon et al. 2008; 2010; Vazou et al. 2013; Vazou et al. 2014b; Vazou
et al. 2015], and there is evidence that some working programmers may be willing to
tolerate the specification burden of refinement types1, but their use with mutable state
and concurrency has barely been explored. Rely-guarantee references [Gordon et al.
2013] were the first system to integrate refinement types with (sequential) aliased
mutable state by combining reference types with a form of reference capability (for
which there is also anecdotal evidence of developer support [Gordon et al. 2012]). This
paper focuses on the abilities of only the core elements of rely-guarantee references
for verifying properties of concurrent data structures. Thus we explore a system that
is less powerful than modern logics (such as CaReSL [Turon et al. 2013], Iris [Jung
et al. 2015], or FCSL [Nanevski et al. 2014; Sergey et al. 2015a]) but as this paper
shows, still very useful, with a lighter specification burden and the possibility of some
inference and automated checking. Further extensions to improve flexibility are briefly
discussed in Section 9, and extensions to derive full functional correctness proofs from
RGREFs have been explored elsewhere [Gordon 2014].

The original RGREF design was unsound for concurrency due to assumptions about
multiple reads being atomic, but more importantly lacked a way to exploit dynamic ob-
servations of data structure properties in verifications: i.e., a way to reflect a dynamic

1Based on the increasing prevalence of presentations on refinement types at developer-focused
venues [Jhala 2015; 2016; Vazou 2016].
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check of a property into the type system to locally strengthen static knowledge of data
structure invariants. We fix the system for sound concurrent (and sequential) reason-
ing, extend its reasoning capabilities, and show via case studies that this is effective
for specifying and verifying one- and two-state invariants of FCDs.

We implemented the type system and refinement approaches in two forms: an ax-
iomatic COQ DSL and a library on top of Liquid Haskell [Vazou et al. 2013; Vazou
et al. 2014b]. We have used these to prove invariants for six lock-free data structures.
Our implementations show feasibility of the approach from both theoretical and prac-
tical perspectives, exploring both expressivity (via COQ) and automation of a slightly
restricted version for a real programming language (Haskell). Among these case stud-
ies are new results: we give the first mechanized proofs of invariants for a lock-free
linearizable union-find implementation [Anderson and Woll 1991].

In summary, our contributions are:

— The first refinement type system [Freeman and Pfenning 1991] for shared-memory
concurrent heap structures.

— The first verification technique for fine-grained concurrent data structures (FCDs)
that can verify invariants in the context of a mostly-unverified program.

— Two implementations of concurrent RGREFs:
— an axiomatic COQ DSL for verifying invariants by interactive proof, and
— a Liquid Haskell library with slightly less power, but whose proofs are discharged

automatically by SMT.
— Evidence of concurrent RGREFs’ utility in the form of mechanized or automatic proofs

of one- and two-state invariants for classic FCDs [Treiber 1986; Michael and Scott
1996; Harris 2001] specified in terms of RGREFs.

— The first mechanized proof of invariants for a lock-free linearizable union-find [An-
derson and Woll 1991].

— A soundness proof for extended sequential and concurrent RGREFs based on the
Views Framework [Dinsdale-Young et al. 2013].

The implementations and example programs are available:
https://github.com/csgordon/rgref-concurrent/

https://github.com/csgordon/rghaskell/
A virtual machine image with all dependencies and compiled versions of both tools and
examples is available at:

http://csgordon.github.io/rgref

2. BACKGROUND: RELY-GUARANTEE AND RGREFS
Rely-guarantee reasoning is a well-established technique for specifying and verifying
(bounds on) thread interference: how multiple threads modify state shared with other
threads. This is an essential step for proving any properties of shared-memory con-
current programs, where without further care one thread may arbitrarily modify data
in a way that violates the assumptions of another thread. Rely-guarantee reasoning
originates in the concurrent program logic literature [Jones 1983]. It enables verifica-
tion of a single thread modularly (in isolation), by characterizing possible interference
between threads and asserting only properties robust to that interference. At points of
parallel composition, the proofs of two threads can be checked for compatibility, ensur-
ing the properties proven of threads in isolation hold when they are run concurrently.

There are four key ingredients in rely-guarantee reasoning, stated here for threads:

(1) A rely — a summary of possible behavior of other threads. Each thread’s verifica-
tion relies upon this interference bound.
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(2) A guarantee — a limit on the behavior of the current thread. This is a guarantee
the current thread makes to other threads about the interference it may cause.

(3) Stable assertions — the only assertions that may be stated are those preserved by
the rely: if an assertion is true in one state, and the state changes in a way allowed
by the rely, then the assertion must also be true in the new state.

(4) A compatibility invariant — for any two threads that execute simultaneously, the
rely of each thread includes at least the behavior in the other threads’ guarantees.

The original exposition of these ideas [Jones 1983] takes place in the context of a
concurrent Hoare logic for partial correctness. The core verification judgment is an
extended Hoare triple R,G ` {P} C {Q}, which is a certification that command C, ex-
ecuted in a state satisfying global precondition P , either diverges or terminates in a
state satisfying global postcondition Q. This conclusion about a command’s behavior
is sound assuming that interference from other threads is at most that described by
the rely relation R, and the command’s own actions do not exceed those described by
the guarantee G. All assertions P,Q are restricted to be stable with respect to the rely.
Compatibility is ensured by the parallel composition rule:

R ∨G2, G1 ` {P1} C1 {Q1} R ∨G1, G2 ` {P2} C2 {Q2}
R,G1 ∨G2 ` {P1 ∧ P2} C1 || C2 {Q1 ∧Q2}

The above rule states that the parallel composition of two threads preserves their
individual behaviors (up to termination) if each child’s actions are included in the
spawning thread’s guarantee, and the child threads each tolerate at least the spawn-
ing thread’s expected interference (rely) plus interference from the other forked thread
(hence the disjunction ∨ of relations). The distinction between rely and guarantee en-
ables verification of asymmetric protocols on state, such as producer-consumer rela-
tionships. In Section 4, we will see how this relationship between threads’ rely and
guarantee relations mirrors the relationship between rely and guarantee relations of
RGREF aliases.

Using global assertions and relations has the same modularity issues as the orig-
inal Hoare logic [Hoare 1969], struggling with pointer-based programs and compo-
nent reuse. But explicitly characterizing interference is valuable, so rely-guarantee
reasoning has continued to be adapted by further work with better modularity prop-
erties [Vafeiadis and Parkinson 2007; Feng 2009; Wickerson et al. 2010; Dodds et al.
2009; Dinsdale-Young et al. 2010; Dinsdale-Young et al. 2013] or is used as a core prin-
ciple in the soundness proofs for other logics [Turon et al. 2013; Nanevski et al. 2014;
Sergey et al. 2015a; Jung et al. 2015] as discussed in Section 8.

2.1. Rely-Guarantee References
Gordon et al. adapted rely-guarantee reasoning to treat interference between aliases
in a sequential setting similarly to interference between threads. The resulting type
system, rely-guarantee references [Gordon et al. 2013], translates the four key ingre-
dients to references, including nested references. The system is expressive enough to
prove interesting refinements and to define a form of reference immutability [Gordon
et al. 2012] (which, in previous work, we used to ensure data race freedom). However,
the system is unsound for concurrent programs, and — more importantly — lacks
constructs for using dynamic observations (such as comparing the value of a sorted
list node to an element being inserted) to locally strengthen static knowledge (types)
with new invariants (that some node’s value is less than the value to insert). Flow of
this information from dynamic checks into static information is critical to validating
invariant preservation (such as that the final insertion operation preserves list
sortedness). This sort of static reflection of dynamic checks is critical for verifying

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 3, Article 11, Publication date: April 2017.



Verifying Invariants of Lock-free Data Structures with Rely-Guarantee and Refinement Types 11:5

type increasing (n : nat) (n2 : nat) (h : heap) (h2 : heap) : Prop = n <= n2;;
type pos (n : nat) (h : heap) : Prop = n >= 0;;
type monotonic_counter = ref{nat|pos}[increasing,increasing];;

let read_counter (c : monotonic_counter) : nat := !c;;
let inc_monotonic (c : monotonic_counter) : IO () = c := !c + 1;;
let mkCounter () : IO monotonic_counter = alloc 1;;

type ro (n : nat) (n2 : nat) (h : heap) (h2 : heap) : Prop = n == n2;;
type readonly_counter = ref{nat|pos}[increasing,ro];
type read_ro_counter (c : readonly_counter) : nat := !c;;

let test_counter () : IO nat = x <- mkCounter ();
inc_monotonic x;
val <- read_ro_counter (convert x);
return val;;

Fig. 1. A positive monotonically-increasing counter, adapted from [Gordon et al. 2013].

concurrent programs, and such constructs would be useful for sequential programs
as well. This section explains the original system, which we subsequently improve to
verify invariants for concurrent programs.

The core concept is a rely-guarantee reference type (RGREF for short):
ref{T | P}[R,G]. This is an extension of the standard ML-family reference type ref T
to incorporate a rely (R), guarantee (G), and stable refinement (P as a mnemonic for
“predicate”). Compatibility is checked whenever new aliases are created. The refine-
ment is defined over the immediate referent and the heap reachable from it. The rely
and guarantee are defined over the immediate referent in pre- and post-states of a heap
access, as well as the heap reachable from it in both states; this is used to reason about
the possible state transitions of the heap reachable from the immediate referent.2

A simple example is the monotonically-increasing counter in Figure 1 [Pilkiewicz
and Pottier 2011; Gordon et al. 2013]. A monotonic counter is a reference to a number
constrained (by both its rely and guarantee — increasing) to only ever increase.
The increasing relation constrains the new value of the counter to be at least as
large as the old value. The reference type is valid if the refinement pos is stable with
respect to the rely increasing. When type-checking the write in inc monotonic, the
type system verifies that the guarantee is preserved. This generates an obligation
increasing !p (!p + 1) h h′ for previous and new heaps h and h′. (Notice that predicates
are defined over a T and heap, while relations are defined over two T s and two heaps
— pre- and post-heaps — though the counter does not use them.)

As in traditional rely-guarantee reasoning, the separate rely and guarantee rela-
tions enable asymmetric protocols, where two aliases may grant distinct permissions
to modify memory. Figure 1 also defines a read-only counter readonly_counter, which
permits aliases to increment, but forbids updates through that alias. This permits
defining a counter read operation that does not have permission to update the counter,
but can still read from it. Because this type is a weakening of the capabilities and as-
sumptions of the monotonic counter type, the convert coercion on the last line of the
example may coerce the reference to the weaker type. Unlike a program logic, RGREFs
cannot statically prove assertions in the traditional sense, though we will see later

2This reachable-heap interpretation leads to subtleties with deep pointer structures, which we recall in
Section 4.
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how they can often enforce sufficient conditions to ensure a dynamic assertion would
succeed.

Because references, unlike threads, are dynamically duplicated when aliases are cre-
ated, a reference’s own guarantee and rely interact directly. If a reference’s guarantee
does not imply its own rely, duplicating the reference naı̈vely violates compatibility —
since the original guarantee doesn’t imply its rely, the guarantee of one new alias won’t
imply the rely of the original reference! Previous work [Gordon et al. 2013] gives the
example:

ref{nat | any}[decreasing, increasing]

As a result, some references (and values that contain them) must be treated substruc-
turally (linearly). This might initially appear inconvenient, but in fact permits useful
idioms: a freshly-allocated location may have a very permissive guarantee, and a rely
that requires immutability from (non-existent) aliases. This permits allocation to re-
turn a reference with a very precise refinement, exactly describing the contents of the
new heap cell. Subsequent coercions from such linear reference types to types with
more permissive rely relations (and correspondingly less precise predicates) can per-
mit sharing, but the precise initial refinement is often useful in proof obligations when
references are first stored into the heap. This was exploited in the original work [Gor-
don et al. 2013], and we exploit it here in both of our implementations.

2.2. Suitability of RGREFs for Concurrent Programming
This section explains the strengths and weaknesses of RGREFs, and why we chose
them as a basis for specifying and verifying concurrent programs. Rely-guarantee ref-
erences are an appealing basis for concurrent programming because they have features
that allow natural integration with code unrelated to concurrency, and their specifica-
tion style is a natural fit for specifying invariants and protocols for fine-grained con-
current data structures. Our work makes the system sound for concurrency, and adds
new primitives to refine verification goals based on dynamic observations. We also use
a series of case studies to explore both the limits of the approach’s expressiveness, and
effective integration with automation and real programming languages.

2.2.1. Strengths for Concurrent Programming. RGREFs offer a number of strengths for con-
current programming: they subsume and interact safely with well-typed but unverified
code, they permit directly expressing protocols rather than embedding them in opera-
tions of a sealed module, and they are well-suited to specifying invariants of FCDs.

Subsuming Unverified Code. RGREFs subsume unverified code: an RGREF whose
rely, guarantee, and predicate impose no constraints is equivalent to a run-of-the-mill
ML-style reference:

refML T
def
= ref{T | λx, h.>}[λx, x′, h, h′.>, λx, x′, h, h′.>]

We call these maximally-permissive predicates and relations any and havoc respec-
tively.

Interacting with Unverified Code. Most verification systems cannot use unverified
code without substantial conversion work. For example, most program logics can only
assign the judgment ` {P} C {True} to unverified code because there is no way to
restrict how state is modified without also giving a precise postcondition, requiring
strong verification to use results. It is possible to set P to the weakest precondition ofC,
making the command invocable: ` {WP(C,True)} C {True}. But composing C with ver-
ified code is challenging. Consider a program composed of verified code ` {P1} v1 {Q1},
C as above, and ` {P2} v2 {Q2}: v1; p; v2. It is quite possible that v1’s postcondition Q1

implies WP(C), so having unverified code consume state and data produce by verified
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code is a non-issue. But C ’s known postcondition is True, which almost certainly does
not imply precondition P2 of v2. In addition to this, computing C ’s weakest precondi-
tion requires reasoning about possible framing and access permissions, which accounts
for a great deal of the work involved in soundly composing unverified code with fully
verified components [Agten et al. 2015].

Meanwhile unverified code already typechecks with our enriched reference types,
using only the naı̈ve translation above. Such code can be modified to refer to our
richer types, but simply “pass them along” without directly interacting with them. The
test counter routine in Figure 1 is an example of this: the routine itself is essentially
unverified, it simply manipulates the monotonic counter as if it were an abstract data
type. Any inappropriate attempts to write through a restricted reference simply fail
to typecheck; passing a restricted reference to an unrestricted context — whose type
assumes an unrestricted reference — produces a type error.

This more flexible interaction with unverified code is a consequence of giving types
to memory locations, rather than reasoning about precise details of the heap between
every heap access (which is what separation logics are designed specifically to do).
We deem this to be a productive trade-off: we sacrifice some verification power, but
retain some benefits of full program logics while regaining some of the invariant-based
flexibility of more traditional type systems.

To make the trade-off more apparent, consider a function using an iterator that
should increment a counter once for each natural number in an immutable list:

let rec forIO {T:?} (l:list T) (C:T->IO ()) : IO () =
match l with
| nil => return ()
| cons t l’ => C t; forIO l’ C
end;;

(* We can use the iterator to implement the spec *)
let doIncrements (c:monotonic_counter) (l:list nat) : IO nat =
forIO l (fun n => incr c n); !c.

(* ... or increment too many times *)
let tooManyIncrements (c:monotonic_counter) (l:list nat) : IO nat =
forIO l (fun n => incr c n; incr c n; incr c 1); !c.

(* This does not type-check in RGRefs:
let actuallyReset (c:monotonic_counter) (l:list nat) : IO nat =
forIO l (fun n => [c]:=0); !c.

*)

A full specification for such an operation would require that in the final state, the
counter has been incremented by the sum of the elements in the list (modulo inter-
ference from other threads, which would require use of subjective state [Ley-Wild and
Nanevski 2013] to distinguish). Note that the code above contains three purported
implementations of this specification: a satisfactory incrementor (doIncrements, which
increments each counter in the list by n); one that is unsatisfactory (tooManyIncrements
increments too much) but adheres to monotonicity; and a third (commented-out) im-
plementation which flatly violates the expected two-state invariant of the counter
(actuallyReset). The first two feed input to verified code and directly access the
counter’s representation (by reading its final value). Both type-check in the RGREF
type system, because both respect the increasing predicate that enforced monotonicity;
RGREFs cannot distinguish them because neither violates invariants. A full program
logic could validate that doIncrements implements the specification correctly while re-
jecting tooManyIncrements, with some effort. This would require establishing an invari-
ant relating the counter state to the sum of the un-visited portion of the list before
and after each call to forIO’s higher-order parameter. The logic would require subjec-
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tive state [Ley-Wild and Nanevski 2013] to express the specification precisely in a
concurrent setting. The final, commented-out candidate would only be accepted by a
regular type system (e.g., ML or Haskell), which would be unable to express or check
the monotonicity requirements on the counter.

RGREFs never prevent any (ML-style) code from being written; a developer can al-
ways write her code with weaker refinements to make forward progress towards a
running program. Thus a data structure with invariants proven using RGREFs can be
safely used in the context of a larger program without verifying the whole program.

Protocols Independent of Abstraction. Another advantage of RGREFs for concurrency
is that correctly enforcing state change protocols encoded in rely and guarantee rela-
tions does not require abstraction, even though state may be passed through unverified
code. We exploit this in Section 6.1.

The monotonically-increasing counter above was proposed by Pilkiewicz and Pot-
tier [Pilkiewicz and Pottier 2011] as a verification challenge, because it requires prov-
ing temporal properties of how a piece of memory is used, rather than characterizing
the behavior of code on a given section of memory. Some solutions require creating
modules that abstract over the type of the counter [Pilkiewicz and Pottier 2011; Jensen
and Birkedal 2012] to ensure non-interference from other program components or are
limited to a finite number of abstract states [Turon et al. 2013]. RGREFs permit expos-
ing the counter’s internal representation because the rely and guarantee ensure that
all uses of that memory are consistent with a monotonically-increasing counter. So,
for example, a function that operates on read-only references to natural numbers can
be passed an alias of our monotonic counter, with no mediation required. Pilkiewicz
and Pottier’s solution [Pilkiewicz and Pottier 2011] and Jensen and Birkedal’s solu-
tion [Jensen and Birkedal 2012] additionally ensure functional correctness of incre-
ment, relying on a sealed module to constrain interference. A read-only alias could
be mimicked by passing a closure rather than a reference, at the cost of imposing a
function call where a single memory access is sufficient.

The requirement to abstract the representation in these systems also hampers ex-
tensibility, as all operations must be verified within the sealed module. The RGREF
counter in Figure 1 ensures increment is the only permitted modification. But this
is orthogonal to the abstraction required in the other solutions since RGREFs can
directly state and enforce limits on interference through a reference, so new opera-
tions can be added to data structures implemented using RGREFs by third parties. In
Pilkiewicz and Pottier’s system [Pilkiewicz and Pottier 2011] or Jensen and Birkedal’s
system [Jensen and Birkedal 2012], monotonicity is ensured by verifying monotonicity
for each of a fixed, closed set of operations, and then sealing the module by abstract-
ing the representation of the data outside the module. For example, consider adding
an increment-by-n operation on monotonically increasing counters. Given implemen-
tations of the original increment-by-one operation in the various systems at hand, im-
plementing this operation would require either modifying and re-verifying the module
so the new operation has direct access to the representation, or inefficiently calling the
single increment operation n times. These are the only options because the protocol
is enforced inside a module and then hidden, rather than described in the module in-
terface. With RGREFs, a new operation that directly increments by n using a similar
compare-and-swap loop to the implementation shown shortly in Figure 2, without re-
quiring any original code to be modified or re-proven. This is possible because RGREFs
carry the restrictions on modification directly on the heap reference, rather than im-
plicitly coded into the pre- and post-conditions of a fixed set of operations. In fairness,
the Pilkiewicz/Pottier and Jensen/Birkedal systems prove slightly stronger properties
(e.g., that the counter was actually incremented, as opposed to proving it was not
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decremented), but this is a consequence of using a program logic (Jensen-Birkedal)
or a linear capability accessible within a module via an anti-frame rule [Pottier 2008]
(Pilkiewicz/Pottier), not a consequence of the abstraction. Other logics exist that do not
require abstraction [Dinsdale-Young et al. 2010; Svendsen and Birkedal 2014; Sergey
et al. 2015a] but instead specify protocols over a region of memory, and we discuss
them in Section 8.

Suitability for FCD Specifications. Finally, the RGREF specification style is a nat-
ural fit for FCDs. Rely-guarantee reasoning itself has long established its utility for
concurrent programs. RGREFs in particular allow encoding some forms of protocols
similar to recent work [Turon et al. 2013]. For example, O’Hearn et al. found it useful
to describe many one- and two-state invariants of lock-free sets in terms of node-local
properties and changes [O’Hearn et al. 2010] in a manner similar to RGREFs. Another
key aspect of supporting (proofs of) FCD specifications is effective support for an id-
iom that is pervasive in verification of concurrent data structures: validating a heap
write that publishes data (shares previously thread-local data via the heap) that will
later be modified. Many algorithms store a previously thread-local node into a shared
structure (e.g., inserting a list node) where validating the update requires knowing
properties that are true only at the moment of update, and not later. For example, vali-
dating list node insertion requires proving that the inserted node’s successor pointer is
the same as the predecessor’s original successor pointer when the update occurs. This
is true before the inserted node is shared, but because successor pointers are mutable
this can be falsified immediately after sharing the reference. RGREFs accommodate
this idiom naturally, as we exploit throughout this paper.

2.2.2. Disadvantages for Concurrent Programming. The chief limitation of RGREFs for con-
current programming is the original design’s lack of a way to exploit dynamic obser-
vations (e.g., that a value was greater than 5) to induce new stable assertions. We add
this ability to RGREFs in a way that works for sequential programs as well.

The other obvious disadvantage is that RGREFs are weaker than modern concurrent
program logics such as FCSL [Nanevski et al. 2014; Sergey et al. 2015a] or Iris [Jung
et al. 2015] in that RGREFs do not verify full functional correctness. This is a weak-
ness, but again by design: by targeting a weaker set of specifications and building
on ideas known to be automatable and usable by developers (refinement types and
reference capabilities), we aim to produce a system with intermediate expressiveness
requiring intermediate user sophistication.

There are other limitations of RGREFs that we do not address here, but discuss
briefly in Section 8.

3. RGREFS FOR CONCURRENCY
In this section, we describe the key changes necessary to make RGREFs both sound
and useful for concurrent programs (Section 3.1) and give a couple basic examples
to develop intuition (Section 3.2) before proceeding with the formal development and
extended case studies in subsequent sections.

3.1. Concurrency Changes to RGREFs
Granularity of Reasoning. In proving that [x] := e (storing the result of e through

reference x) obeys the guarantee for x’s type, the original design [Gordon et al. 2013]
considered e atomically, treating !x (dereference of x) within e as a (locally) determinis-
tic expression. This simplifies proofs: verifying that [x] :=!x+ 1 performs an increment
requires proving the obligation ∀h. inc (!x) (!x+1) h h[x 7→ . . .], which is straightforward
to prove in a dependent type theory treating dereference as any other expression. The
left dereference in the obligation is produced because it is a write through x, allowing
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let rec atom_inc (c:monotonic_counter) : IO () =
x <- !c;
done <- CAS(c, x, x+1);
if done then return () else atom_inc c;;

Fig. 2. Atomic increment for the monotonic counter of Figure 1.

the proof to treat the update almost as a function from the old value in the heap (!x) to
the new value (!x + 1). But this formulation implicitly assumes sequential semantics,
and is unsound in the presence of thread interleaving.

Recovering soundness is straightforward: we make heap reads fully monadic, explic-
itly sequencing every read and write. This makes the system sound, but also too weak
to prove many interesting properties; it removes the only mechanism the original work
had to associate a read at a location to a subsequent write at that location.

Read/Write Atomicity. Sequential RGREFs also lack any notion of data size, which
is required for reasoning about lock-free data structures, because some data types —
anything larger than a machine word (e.g., pointer or machine-register-width integer)
— cannot be read or written atomically without additional synchronization. We treat
this with an Atomic predicate on types indicating those that are machine-atomic.
Our COQ implementation includes support for fields, including compare-and-swap
on a field. We use this in examples (Sections 3.2, 6), but omit fields from the formal
treatment in Section 4.

Dynamic Refinement. Verifying concurrent programs often relies on reasoning about
logical consequences of runtime checks on thread-shared data. For example, if code
reads the value of a monotonic counter and observes that it is greater than 5, then
a proof may correctly infer that the counter’s value will remain greater than 5. The
original RGREF design had no way to exploit this in proofs. This is critical in verifying
lock-free data structure properties, as many data structures’ correctness proofs rely on
flow sensitive reasoning: an algorithm reads from a shared structure, and takes differ-
ent actions depending on the value observed. We add to RGREFs a refiner construct to
induce new stable assertions based on values read out of shared data structures.

3.2. Basic Examples
We have used our COQ DSL and Liquid Haskell library to verify invariants for a num-
ber of lock free data structures. This section presents simple examples to provide in-
tuition for how RGREFs are used to specify and verify properties of FCDs. We defer
more sophisticated examples to Section 6, after giving a formal account of concurrent
RGREFs. The following examples are taken from our COQ DSL implementation, but
presented as a stylized dependent ML3 for readability.

3.2.1. Atomic Counter. Figure 2 gives an atomic increment operation for a monotonic
counter. In a loop, it reads the old counter value and uses the CAS (compare-and-swap)
primitive to atomically store x+1 only if it would overwrite x, looping again if the CAS
fails. For this program, the type rule for CAS (Section 4.3) generates a proof obligation
from the counter’s guarantee to ensure that if the CAS does modify memory (i.e., if
the value overwritten would be x), then the write will be permitted by the guarantee:

∀(h : heap). h[c] = x→ increasing h[c] (x + 1) h h[c 7→ x + 1]
This obligation checks that if the value stored at c in the initial heap is x, then
overwriting it with x + 1 is permitted by the guarantee (increasing). The CAS will

3Including inductive types for specifying the ways to construct evidence of a proposition.
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type hpred (A : ?) = A -> heap -> Prop;;
type hrel (A : ?) = A -> A -> heap -> heap -> Prop;;
type Node : ? =

mkNode :: val:nat -> nxt:option (ref{Node|any}[local_imm,local_imm]) -> Node;;

type deltaTS : hrel (option (ref{Node|any}[local_imm,local_imm])) =
| ts_nop : ∀ n h h’, deltaTS n n h h’
| ts_push : ∀ n hd hd’ h h’, h’[hd’]=(mkNode n hd) -> deltaTS hd (Some hd’) h h’
| ts_pop : ∀ n hd hd’ h h’, h[hd]=(mkNode n hd’) -> deltaTS (Some hd) hd’ h h’;;

type ts = ref{option (ref{Node|any}[local_imm,local_imm])|any}[deltaTS,deltaTS];;

let rec push_ts (s : ts) (n : nat) : IO () =
tl <- !s;
(* Γ = . . . , tl : option(ref{Node | any}[local imm, local imm]) *)
new_node <- Alloc (mkNode n tl);
(* Γ = . . . , new node : ref{Node | λx, h. x = mkNode n tl}[local imm, local imm] *)
success <- CAS(s,tl,Some (convert new_node));
if success then return () else push_ts s n;;

let rec pop_ts (s : ts) : IO (option nat) =
head <- !s;
match head with
| None -> return None
| Some hd -> (* Γ = . . . , hd : ref{Node | any}[local imm, local imm] *)

observe-field hd --> nxt as tl in (λ a h => (getF nxt a)=tl);
(* Γ = . . . , tl : . . . , hd : ref{Node | λx, h. getF nxt x = tl}[local imm, local imm] *)
observe-field hd --> val as n in (λ a h => (getF val a)=n);
(* Γ = . . . , tl : . . . , n : . . . , hd : ref{Node | λx, h. x = mkNode n tl}[. . . , . . .] *)
success <- CAS(s,Some hd,tl);
if success then return (Some n) else pop_ts s

end;;

Fig. 3. A Treiber Stack [Treiber 1986] using RGREFs. The relation local imm (not shown) constrains the
immediate referent to be immutable; any is the always-true predicate.

only modify memory when c initially points to x (otherwise it fails and leaves the heap
unmodified). So discharging this proof obligation ensures that if the CAS succeeds, it
obeys the guarantee.

3.2.2. Treiber Stack. Figure 3 gives code for Treiber’s lock-free stack [Treiber 1986]
using concurrent RGREFs. The stack (ts) is a reference to an option of a reference to
an immutable Node, updated according to relation deltaTS. deltaTS is used as the rely
and guarantee for the Treiber stack’s base reference (delta for change, TS for Treiber
stack), and restricts writes through that reference to those that effect a single-node
push or pop. This, with the relations for immutable interior nodes (local imm), fully
specifies one- and two-state invariants of the stack using reference types.

The push operation proceeds in a typical manner for this algorithm. It reads the cur-
rent top of the stack (!s), allocates a new node (Alloc), and attempts to use compare-
and-swap (CAS) to replace the old top of the stack with the newly-allocated node. If the
CAS fails, the operation tries again.

In the case that the CAS succeeds, the mutation satisfies the ts push case of deltaTS.
Proving this relies on the strong (very specific) initial refinement when allocating the
new head as an immutable node: λx, h. x = mkNode n tl. The convert operation is a
type coercion on RGREFs that weakens the predicate (and/or rely and guarantee) — in
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this case weakening the predicate from λx, h. x = mkNode n tl to any — while preserv-
ing identity. So the term stored in the heap will have the correct (less precise) type, but
proofs can still exploit the stronger initial refinement. The CAS update satisfies the
guarantee assuming the head of the stack is tl at the time of the write (an assumption
the CAS rule introduces to characterize its conditional behavior; see Section 4.3). The
strong refinement on new node (that its next pointer is tl) proves that the new head’s
next pointer is the old head, validating the CAS. This sort of simultaneous sharing
and weakening of a rely-guarantee reference appears in many lock free algorithms,
including other case studies presented later.

The pop operation is slightly more involved. At a high level it is straightforward
— read the top of the stack (!s), and if it is non-empty, read the current head’s next-
pointer (observe-field, explained momentarily), and attempt to CAS the current head
to its successor. observe-field is a new construct we have added to refine reference
predicates based on dynamic observation. Dynamically, it is a simple field read (here
reading the nxt field). But the operation also takes a new refinement to apply to the
reference accessed, stated in terms of the read result. Here, the refinement is that the
nxt projection of the stack top (getF nxt a) is equal to the read result tl. The type
system verifies that the refinement is stable with respect to local imm (next pointers
are immutable), and rebinds the base reference (hd) with the new refinement.

The CAS in the pop operation satisfies the ts pop case of the deltaTS relation. Prov-
ing this relies on the new refinement on hd introduced by observe-field. This refine-
ment’s information about the next pointer is sufficient to relate the fields of the old
head to the new value stored by the CAS, proving the new top of the stack is the old
second link.

The ABA Problem. In languages without garbage collection, the code from Figure 3
would permit the infamous ABA problem [Herlihy and Shavit 2008]. The ABA problem
occurs when one thread reads the reference to the head node A at the start of a pop and
finds its successor B, then other threads pop two or more nodes (removing A’s original
successor B), and then push a node with the same address as A (whose successor is
no longer B). Then the first thread’s CAS of the head from A to B (the old successor)
succeeds, reinstalling previously-removed node B. This occurs because the memory
ascribed to A is reused after another thread succeeds in popping it, typically because
A’s memory is freed, but then handed out again by the memory allocator to a push
operation. In a language with GC, this reuse can only occur if the code explicitly caches
A for reuse (to reduce interaction with the GC and allocator).

Our specification prevents code from re-introducing the ABA problem, by prohibiting
mutations required for the problematic reuse. As in other languages that assume GC,
this reuse could occur only if the program explicitly reused the node. The local imm
relation on references to stack nodes prohibits the manual reuse except in the case
that the node transitively points to the same stack. So even though our specification
does not prove that pop ts pops, we can enforce restrictions that prevent any code from
causing the ABA problem.

From Treiber Stack to Producer-Consumer. The Treiber stack is a natural build-
ing block for more semantically meaningful primitives, such as a work queue for a
producer-consumer relationship. In this case, we would like the producer to only be
able to push, and the consumer to only be able to pop. To accomplish this, we can
coerce a reference to a Treiber stack as in Figure 3 into references with weaker guar-
antees. We can define relations produce and consume by omitting the undesirable case
from deltaTS (produce omits the pop case, and consume omits the push case).

We can then define producer and consumer references as:
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type producer =
ref{option (ref{Node|any}[local_imm,local_imm])|any}[deltaTS,produce];;

type consumer =
ref{option (ref{Node|any}[local_imm,local_imm])|any}[deltaTS,consume];;

Each relation is reflexive and a subrelation of deltaTS, so these references may be
freely duplicated and a ts as defined above may be coerced to either type. The body
of push ts (resp. pop ts) type checks with the argument switched to a producer (resp.
consumer).

Because code with access to a consumer stack reference can only pop elements, these
weakened references can be used to impose strong correctness properties beyond what
the RGREF type system actually proves. Consider a loop that repeatedly pops elements
of the stack until empty. If all aliases of the stack outside the loop’s scope are consumer
references, then if the loop pushes no elements the loop is guaranteed to terminate —
no part of the program outside the loop may add elements to make the loop run longer.
Our implementation gives an example of this.

4. CONCURRENT RGREFS, FORMALLY
This section offers a formal account of concurrency-safe RGREFs. As in prior work [Gor-
don et al. 2013], the language is structured as a basic imperative language, which can
call into a pure sublanguage (mutation-free, but able to read from the heap) with de-
pendent types. The dynamic semantics (omitted for brevity) are standard call-by-value
reduction with interleaved thread execution.

4.1. The Pure Fragment
Figure 4 gives the core (runtime) typing rules for the language. The pure fragment
is an extension to the Calculus of Constructions (CC [Coquand and Huet 1988]) with
additional basic types and eliminations (natural numbers, booleans, and propositional
equality of the form present in COQ’s standard library), plus heap access primitives
for stating specifications.4 The heap primitives include the reference type described
earlier, with its requisite well-formedness restrictions. For brevity, we also assume
non-dependent pairs with standard recursors, and various arithmetic and boolean op-
erations. We also assume knowledge of which types’ representations can be accessed
atomically by an implementation (i.e., which types are suitable size for CAS).

Each pure term that occurs in a program is nested inside an imperative command
(discussed in the next section).

Most of the rules for the pure fragment are simply inherited from CC, so we dis-
cuss only the extensions in Figure 4. T-VAR is the standard variable read, with the
additional condition that the type does not behave linearly (the next section explains
these behaviors and the Γ ` τ ≺ τ > τ judgment). T-LOC is an extension of stan-
dard location typing for the tagged locations in our system, which explicitly represent
the refinement and relations of the reference. T-CONV types the conversion operation
mentioned earlier (convert in Section 3.2.2 and Figure 3), which coerces data struc-
tures containing references according to Γ ` τ ; τ (Figures 4 and 5). Operationally,
convert recursively re-tags each reference in the value with new predicates and rela-
tions (sound because conversion only permits weakening operations, thus preserving
global aliasing invariants). Formal semantics are given in Appendix B. Since the tags
are computationally irrelevant convert corresponds to an identity transformation in
actual implementations. It amounts to relaxing any references contained in the term

4Recall that CC contains only two universes, Prop and Type, not the richer system including Set and a cumu-
lative hierarchy of universes Typei present in the CIC underlying the current COQ implementation [Bertot
and Castéran 2004]. Our COQ DSL places data types in Set and uses Prop for predicates and relations.
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with weaker predicates and relations according to C-REF, the only interesting case of
the conversion relation, which we discuss more momentarily. Note that conversion on
function types is an identity transformation. Finally, T-REF checks the validity condi-
tions on reference types that we have discussed informally thus far: well-sortedness of
the type components, and semantic conditions on the predicates and relations (stabil-
ity, containment, precision) discussed below.

C-REF checks validity of weakening a reference type — a form of subtyping. Note
that the predicate and rely are treated covariantly (relation R′ must contain new rely
relation R), while the guarantee is treated contravariantly (relation G must contain
new guarantee relationG′). This corresponds to standard separations of read and write
effects on references, going back as far as Reynolds’ treatment in Forsythe [Reynolds
1988], separating variable reads as expressions with covariant subtyping from vari-
able acceptors (writers without read capabilities) with contravariant subtyping. Today
this is typically exploited only in the form of safe covariant subtyping in systems with
deep reference immutability [Zibin et al. 2007; Gordon et al. 2012]. In the case of C-
REF, the coercion produces a reference that may perform no more modifications than
the original, assumes at least as much interference from aliases as the original, and
assumes a possibly-weaker predicate on the values stored (stable with respect to the
new rely R′). This preserves compatibility — any reference compatible with the origi-
nal will be compatible with the new reference — but allows references that might have
strong refinements to be weakened to an appropriate type when shared with other
threads.

As mentioned in Section 2.1, because a reference’s predicate, rely, and guarantee are
interpreted as restrictions over the heap reachable from the immediate referent, ad-
ditional checks are required for nested references (references to heap cells containing
references). These are unchanged from the original formulation of RGREFs [Gordon
et al. 2013]. First, the rely is required to admit any interference covered by the rely of
any possibly-reachable reference. This ensures that if a pointer exists into the interior
of a linked data structure, reasoning about “root” pointers suffices5. Second, because a
guarantee may be more restrictive than the guarantees of reachable references (e.g., a
read-only reference to a linked list whose interior pointers permit updates), the result
type of a dereference is transformed to permit only actions permitted by both the origi-
nal reference and the reference stored in the heap. This is called folding, shown by the
fold construct in Figure 4. This ensures that any writes through a reference read out of
the heap satisfy the guarantee of the reference they were read through — a program
may not acquire more permissions by reading a “stronger” reference out of the heap
because they are weakened on the way out. Third, the refinement and relations are
required to be precise — sensitive only to the reference’s immediate referent and the
heap reachable from that. This prevents nonsensical types, such as those asserting the
whole heap is immutable (making all predicates, even incorrect ones, stable).

4.2. The Imperative Fragment
The primary context is an imperative one, judged flow-sensitively via Γ; ∆ ` C a Γ′; ∆′.
Γ and ∆ are standard and linear contexts respectively.

Linear and Reflexively Splittable Values. As prior work explains [Gordon et al. 2013],
and we reviewed briefly in Section 2.1, an RGREF’s guarantee must imply its rely to
allow free duplication without violating the compatibility invariant. Other references
must behave linearly (e.g., ref{N | any}[dec, inc] cannot be duplicated safely). Thus the

5Note that while this is phrased in terms of tree-shaped structures, it is still applicable to richer structures;
the rely of any reference to a graph node would account for any possible interference on reachable nodes.
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Σ;H; Γ `M : N extending `CC
T-VAR

Γ ` τ ≺ τ > τ

Γ, x : τ,Γ
′ ` x : τ

T-LOC
Σ(`) = A

Σ;H; Γ ` `A,P,R,G : ref{A | P}[R,G]

T-CONV
Σ;H; Γ `M : N Γ ` N ; N

′

Σ;H; Γ ` convert M : N
′

T-REF

Σ;H; Γ ` A : Prop
Σ;H; Γ ` P : A→ heap→ Prop Σ;H; Γ ` {R,G} : A→ A→ heap→ heap→ Prop

precisep(P ) preciser(R) preciser(G) stable P R containsA R

Σ;H; Γ ` ref{A | P}[R,G] : Prop

Γ `M ; N

C-REF
G

′ ⇒ G R⇒ R
′

P ⇒ P
′

Γ ` ref{A | P}[R,G] : Prop Γ ` ref{A | P ′}[R′
, G

′
] : Prop

Γ ` ref{A | P}[R,G] ; ref{A | P ′}[R′
, G

′
]

Γ; ∆ ` C a Γ′; ∆
T-ALLOC

Γ ` A : Prop Γ `M : B Γ ` B ; A
Γ ` ref{A | P}[R,G] : Prop ∀h. P M h

Γ; ∆ ` x := allocA,P,R,G M a PlaceSplittable(Γ,∆, x : ref{A | P}[R,G])

T-READ
Γ ` >A Γ `M : ref{A | P}[R,G] atomic A reflexive G

Γ; ∆ ` x := [M ] a Γ, x : (fold G A); ∆

T-LINSTORE

Γ(x) = ref{A | P}[R,G]
y 6= x ∆(y) = B Γ ` B ; A (∀v, b : B, h. P v h⇒ G v (convert b) h h[x 7→ (convert b)])

(∀v, b : B, h. P v h⇒ P (convert b) h[x 7→ (convert b)])

Γ; ∆ ` [x] := y a Γ; ∆/y

T-STORE

Γ,∆ ` x : ref{A | P}[R,G]
Γ ` N : B Γ ` B ; A ∀v, h. P v h⇒ G v (convert N) h h[x 7→ (convert N)]

∀v, h. P v h⇒ P (convert N) h[x 7→ (convert N)]

Γ; ∆ ` [x] := N a Γ; ∆

T-SHIFT
Γ(y) = τ

Γ; ∆ ` x := y a Γ; ∆, x : τ
T-LINPAIR

∆(y) = τ ∆/y(z) = σ

Γ; ∆ ` x := (y, z) a PlaceSplittable(Γ,∆/y/z, x : (τ, σ))

T-CAS

Γ ` y : ref{A | P}[R,G] Γ ` N0 : A
Γ ` N ′

: B Γ ` B ; A (∀h. h[y] = N0 ⇒ G (h[y]) (convert N ′
) h h[y 7→ (convert N ′

)])
∀h. h[y] = N0 ⇒ P N0 h⇒ P (convert N ′

) h[y 7→ (convert N ′
)]

Γ; ∆ ` x := CAS(y,N0, N
′
) a Γ, x : B; ∆

T-WHILE
Γ `M : B Γ; ∆ ` C a Γ; ∆

Γ; ∆ ` while (M) {C} a Γ; ∆
T-COND

Γ ` B : B Γ; ∆ ` C1 a Γ
′
; ∆

′
Γ; ∆ ` C2 a Γ

′
; ∆

′

Γ; ∆ ` if (B) {C1} else {C2} a Γ
′
; ∆

′

T-SEQ
Γ; ∆ ` C1 a Γ

′
; ∆

′
Γ
′
; ∆

′ ` C2 a Γ
′′

; ∆
′′

Γ; ∆ ` C1;C2 a Γ
′′

; ∆
′′ T-PAR

Γ1; ∆1 ` C1 a Γ
′
1; ∆

′
1 Γ2; ∆2 ` C2 a Γ

′
2; ∆

′
2

Γ1,Γ2; ∆1,∆2 ` C1 ‖ C2 a Γ
′
1,Γ

′
2; ∆

′
1,∆

′
2

T-REFINEN

Γ ` x : ref{N | P}[R,G] Γ ` >ref{N | P}[R,G]
(∀h, v. h[x] = v → v = 0→ P0 v h) stable P0 R (∀h, v, n. h[x] = v → v = S n→ PS v h)

Γ, n : N ` stable PS R Γ, x
′

: ref{N | P ∩ P0}[R,G], pf : x ≈ x′
; ∆ ` C1 a Γ

′
; ∆

′

Γ, n : N, x′
: ref{N | P ∩ PS}[R,G], pf : x ≈ x′

; ∆ ` C2 a Γ
′
; ∆

′

Γ; ∆ `!RN(x, Z ⇒ C1, S n⇒ C2) a Γ
′
; ∆

′

T-REFINEREF

Γ ` x : ref{ref{A | P ′}[R′
, G

′
] | P}[R,G]

Γ ` >ref{ref{A | P ′}[R′
, G

′
] | P}[R,G] Γ ` >ref{A | P ′}[R′

, G
′
]

(∀h, v, r. h[x] = v → v = r → P0 v h) Γ, r : ref{A | P ′}[R′
, G

′
] ` stable P0 R

Γ, r : ref{A | P ′}[R′
, G

′
], x

′
: ref{ref{A | P ′}[R′

, G
′
] | P ∩ P0}[R,G], pf : x ≈ x′

; ∆ ` C a Γ
′
; ∆

′

Γ; ∆ `!Rref(x, r ⇒ C) a Γ
′
; ∆

′

Fig. 4. Core typing rules for concurrency-safe RGREFs. Auxiliary definitions are given in Figure 5.

judgment Γ ` τ ≺ τ ′> τ ′′ judges whether a type τ can be split into two possibly-weaker
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containsA R
def
= ∀l : ref{A | Pa}[Ra,Ga]. ∀y : ref{B | Pb}[Rb,Gb] ∈ h[l]. ∀h, h′. Rb h[y] h′[y] h h′ ⇒ R h[l] h′[l] h h′

precisep(P )
def
= ∀x, h, h′. (∀l.ReachableFromIn l x h⇒ h[l] = h′[l])⇒ P x h⇒ P x h′

preciser(R)
def
=
∀x, x2, h, h′, h2, h2′. (∀l.ReachableFromIn l x h⇒ h[l] = h′[l])⇒

(∀l.ReachableFromIn l x2 h2⇒ h2[l] = h2′[l])⇒ R x x2 h h2⇒ R x x2 h′ h2′

stable P R
def
= ∀x, x′, h, h′. P x h ∧ R x x′ h h′ ⇒ P x′ h′

fold G (A ∗ B)
def
= (fold G.1 A ∗ fold G.2 A)

fold G (ref{A | P}[R,G0])
def
= R!G0

fold G A
def
= A otherwise

R.1
def
= λx, x′ : σ. λh, h′ : heap. ∀y : σ′. R (x, y) (x′, y) h h′

R.2
def
= λy, y′ : σ. λh, h′ : heap. ∀x : σ′. R (x, y) (x, y′) h h′

R!G
def
= λa, a′, h, h′. G a a′ h h′ ∧ (∀l, h[l] = a→ h′[l] = a′ → R l l h h)

atomic A
def
= A ∈ {>,⊥,N,B, unit, (Πx : S. T [x]), ref{T | P}[R,G]}

PlaceSplittable(Γ,∆, x : ref{A | P}[R,G])
def
=

{
Γ, x : ref{A | P}[R,G]; ∆ if Γ ` >ref{A | P}[R,G]
Γ; ∆, x : ref{A | P}[R,G] otherwise

Γ ` τ ≺ τ > τ
τ ∈ {N,B, unit,Prop,Type, heap, = ,Πx : τ → τ

′}
Γ ` τ ≺ τ > τ

Γ ` τ ≺ τa > τb Γ ` σ ≺ σa > σb

Γ ` (τ, σ) ≺ (τa, σa) > (τb, σb)

REF->

Γ ` ref{b | φ′}[R′
, G

′
] Γ ` ref{b | φ′′}[R′′

, G
′′

]
∅ ⊂ JG′K ⊆ JR′′K ∅ ⊂ JG′′K ⊆ JR′K JG′K ∪ JG′′K ⊆ JGK JRK ⊆ JR′K JRK ⊆ JR′′K

Γ ` ref{b | φ}[R,G] ≺ ref{b | φ′}[R′
, G

′
] > ref{b | φ′′}[R′′

, G
′′

]

Γ ` τ ; τ cont.
Γ ` τ

Γ ` τ ; τ

Γ ` τ ; τ
′

Γ ` τ ′
; τ

′′

Γ ` τ ; τ
′′

Γ ` τ ′
; τ

Γ ` (τ → σ) ; (τ
′ → σ)

τ =βv τ
′

Γ ` τ ; τ
′

Γ ` τ ; τ
′

Γ ` σ ; σ
′

Γ ` (τ, σ) ; (τ
′
, σ

′
)

Fig. 5. Auxiliary definitions for type rules in Figure 4.

values of type τ ′ and τ ′′ while preserving compatibility. The judgment checks that the
types τ ′ and τ ′′ are mutually compatible, and preserve assumptions about interference
and limitations on modification from the original type τ . This check — particularly the
rule REF-> in Figure 5 — is akin to the “shuffling” of rely and guarantee in the classic
rely-guarantee parallel composition rule — creating a new alias is the RGREF equiv-
alent of forking new threads. In the frequent case where τ = τ ′ = τ ′′, we say values
of type τ are reflexively splittable, and abbreviate the splitting judgment as Γ ` >τ .
Every value (in particular, references) is either treated substructurally (linearly), or is
reflexively splittable and therefore may be arbitrarily duplicated safely. The pure frag-
ment operates only on reflexively splittable data, and thus Γ contains only reflexively
splittable data.

Extensions for Refiners. We extend the formal model compared to the original
RGREF model, making the core calculus more expressive, and allowing us to type the
refiner primitive described below (the formal analogue of observe-field in Section
3.2.2). Γ may be a dependent context, e.g. ` x : N, y : ref{nat | λv, h. v = x}[. . . , . . .]. ∆ is
a non-dependent context that may contain substructural values (with non-reflexively
splitting types), whose types are well-formed under Γ. Γ only grows flow-sensitively
(Γ ⊆ Γ′ in every judgment), whereas ∆ may drop variables. This is sufficient for
allocating references with asymmetric rely and guarantee that support a very
strong refinement, then weakening to a reflexively splittable type upon sharing with
T-LINSTORE (discussed near the end of this section).

Allocation. T-ALLOC allocates a new reference with the specified predicate, rely, and
guarantee, and may produce a linear reference (whose guarantee does not imply its
rely, and therefore cannot be freely duplicated). This is important because it can re-
turn a reference typed to assume no interference from aliases in its rely, which makes
a predicate stating the exact value of the new heap cell stable. Later, when this ref-
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erence is shared with other threads, the reference can be weakens using convert but
obligations can be proven assuming the original very precise refinement (see the dis-
cussion of the heap update rules below).

PlaceSplittable adds the binding to Γ or ∆ as appropriate. T-READ reads the value of
a reference. fold (Figure 5) weakens the result type, to ensure that no embedded refer-
ences grant greater permissions to a structure than the base reference. For example, a
reference whose guarantee restricts a heap structure to be immutable cannot be used
to read a reference with mutation permissions out of a data structure, in the style of
reference immutability [Gordon et al. 2012].

Heap Updates. T-STORE and T-LINSTORE write into the heap, the latter sharing a
possibly-linear value from ∆. Both rules permit simultaneous sharing and weakening
— publication — as used in Section 3.2.2 to verify Treiber stack updates. T-CAS is
similar, though it additionally introduces new information about the referent at the
time of update, modeling the conditional success of the compare-and-swap operation.

Without the simultaneous weakening and sharing behavior in these rules (and the
possibility for T-ALLOC to return a linear reference with a very precise initial refine-
ment), it would be impossible to verify some operations. Notably, verifying the Treiber
stack’s push operation requires proving the updated top of the stack points directly to
the old top of the stack — that only a single node was pushed. Similar proof obligations
arise when inserting into the linked list representing the lock-free set in Section 6.3,
and are discharged similarly.

Structural Rules. T-SHIFT and T-LINPAIR deal with moving reflexive values into ∆,
and constructing a pair of (possibly) linear values. T-WHILE, T-COND, T-SEQ, and T-
PAR are mostly standard structural rules with proper treatment of the linear context.

Refiners. A new feature we add to the imperative fragment of RGREFs is shown by
the !RN and !Rref refiners. Based on the constructors of a type, the construct introduces
an alias refined additionally with a new stable predicate implied by the observed con-
structor. This is the core language equivalent of the observe-field from Figure 3’s
pop operation, where observing the (immutable-by-rely-guarantee) next pointer of the
stack’s head refines knowledge about the head pointer. We assume equivalent refin-
ers for each atomic type (reference, boolean, natural). In the case of natural numbers,
behavior is refined based on whether the number is zero or some successor, while in
the case of references — which have no pure eliminator — we simply bind reference
identity. In each case, equality between the value stored in the heap and a relevant
constructor (or for references, simply a particular reference) must imply a new stable
predicate (over the value and heap, suitable for use as the predicate component of an
RGREF whether the heap is used or not), which is assumed to hold on the appropriate
branch of the refiner.

4.3. Treating Interleaving in Proofs
Because read operations are monadic, pure expressions cannot observe interference
from other threads, so no special reasoning principles are needed to address interleav-
ing.

When proving that a heap write satisfies the guarantee of the base reference, rela-
tionships to the heap may be derived only from the conditional behavior of the CAS
(T-CAS in Figure 4): proofs that the write respects the guarantee may assume the
value overwritten (h[y]) is equal to the expected old value (N0). This is clearly suffi-
cient for reasoning about very local properties (e.g., the counter increment).

This may seem too weak for proofs about deeper portions of the heap, but values
stored into the heap may initially carry a stronger refinement than their storage loca-
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tion (Γ ` B ; A). This enables reasoning about sharing (publishing) strongly-refined
data, using convert and an axiom that weakening a reference type preserves pointer
equality (informally, ∀h, r. h[r] = h[convert r]). This axiom, in conjunction with the
axiom that a reference’s refinement is always true (a reflection of the type system
preserving invariants — that a reference’s predicate holds in the current heap),
allows guarantee obligations to be proven by storing a precisely refined reference into
the heap in Figure 3. This pattern of simultaneously publishing and weakening a
rely-guarantee reference shows up repeatedly in lock-free algorithms. For example,
see the CAS in the stack push operation in Figure 3 (Section 3.2.2): the initial
refinement for the node being pushed onto the head of the stack states exactly the
value of the next pointer, and this is weakened to a less precise type when shared via
the CAS, but the knowledge of that exact next pointer is used to prove the push case
of the guarantee relation. Enqueuing at the end of a Michael-Scott Queue (proving
that the queue remains null-terminated while appending the previously-thread-local
new node) is another example. In our lock-free union-find implementation (Section
6.1), we exploit this to carry specific information about a node’s rank and parent into
guarantee proofs. In these latter two cases, not only are the refinements weakened,
but the rely and guarantee as well.

4.4. Soundness Sketch
Here we sketch soundness for the core language above. Full details follow in Appendix
A. Soundness for the type system follows from an embedding into the Views Frame-
work of Dinsdale-Young et al. [Dinsdale-Young et al. 2013] — an abstract concurrent
program logic. When the framework’s parameters are instantiated appropriately for
choice of assertion language, state space, and primitive operations, soundness for the
base system follows from a few lemmas about the parameters and an embedding theo-
rem. The proof is essentially decomposed into a soundness proof for the pure fragment,
and a soundness proof for the impure fragment. The inner fragment is a fragment of
CIC (COQ’s core calculus): CC with a few standard data types, plus primitives for con-
structing propositions about heap contents and computing with references (which lack
an eliminator in the pure fragment). Because it is a fragment of CIC, it is strongly
normalizing.

The impure fragment is proven sound by embedding into an instantiation of the
Views Framework. We instantiate the state space to an explicitly typed stack and
heap storing terms of the pure fragment. As assertions, we choose a particular family
of predicates on the syntactic typing of the pure terms stored in the stack and heap.
We instantiate the primitives to the non-structural rules from our system (dereference,
write, etc.), and give valid Hoare triples for those primitives. Finally, we give an em-
bedding function from impure typing derivations to triples in the instantiated Views
logic, and prove that the embedding of any valid typing derivation is a valid deriva-
tion in Views. The embedding includes a desugaring ↓ − ↓ of source statements to the
Views core language, which has only non-deterministic conditionals and loops.

THEOREM 4.1 (RGREF SOUNDNESS). For all Γ, ∆, C, Γ′, and ∆′

Γ; ∆ ` C a Γ′; ∆′ =⇒ {JΓ,∆K} `↓ C ↓a {JΓ′,∆′K}

5. IMPLEMENTATION, TWO WAYS
We have implemented RGREFs twice: once as an axiomatic COQ embedding, and once
as a Liquid Haskell library.
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5.1. Axiomatic COQ DSL Implementation
We implemented concurrent RGREFs as a modification of the original RGREF imple-
mentation [Gordon et al. 2013], itself a shallow axiomatic DSL embedding in COQ. This
means we have given axioms in COQ for various RGREF primitives, whose types en-
sure they are used in a manner consistent with the type rules in Figure 4. This axiom-
atization’s correctness relies on our hand-proven metatheory, while our data structure
verifications are certified by COQ to be correct with respect to our axiomatization. This
is similar to the YNOT axiomatic shallow embedding of Hoare Type Theory [Nanevski
et al. 2008; Chlipala et al. 2009]. Proof obligations arising from RGREF type checking
are by default presented to the user for interactive proof discharge, though as discussed
in prior work [Gordon et al. 2013] we can use COQ’s Program extension and proof search
tactics to automatically discharge some obligations. Type-incorrect programs that fail
to type check due to failure of conditions on the rely, guarantee, etc., present unsolv-
able proof obligations to the user, as with any COQ proof. In our COQ formulation, we
move the contents of the RGREF reference type, and the type itself, into the universe
Set rather than Prop, so the type of the reference constructor becomes:

forall (A:Set), hpred A -> hrel A -> hrel A -> Set

This better supports interaction with existing COQ data types in Set, and avoids pos-
sible abuse of the proof irrelevance axiom.

The implementation also replaces Figure 5’s total formulation of folding by a par-
tial formulation. Rather than defining a total function that computes a result type
restricting use of embedded references, we specify conditions under which it is safe for
reads through a reference to a τ with guarantee G to produce a value in type σ. In
our core calculus this change is not useful (Figure 5 computes σ from τ and G), but in
COQ we use inductive data types for convenience. There is no general way to compute
a new inductive data type that incorporates the restrictions of a guarantee relation.
For example, a reference to a queue Node whose guarantee only permitted addition
of odd numbers to the queue would require a fold to propagate this information into
the tail reference when reading the node value. This result would no longer be an ele-
ment of the Node type! So instead we place trusted safety conditions on when a result
is sound as type classes, and provide a collection of general instances. Thus the type
class instances validate specific result types for reads through references of certain
rely/guarantee pairs. For instance, in the Treiber stack, the interior references use the
relation local imm for both rely and guarantee. Because local imm only constrains the
immediate referent and ignores the heap parameters to the relation, no transforma-
tion is needed (folding is a no-op) when reading through a reference with a local imm
guarantee. This is provided as a generic type class.

We worked around two limitations of COQ 8.4 using axioms. First, in one case we
axiomatized (propositional) eta equivalence for nodes of one structure (which would be
unnecessary in the most recent COQ release). Second, we defined our Michael-Scott
queue [Michael and Scott 1996] by axiomatizing an inductive-inductive [Forsberg and
Setzer 2010] simultaneous definition of queue nodes and predicates on queue nodes.
Inductive-inductive types are more general than mutual inductive types; they permit
mutual definition of a type A alongside a type family B indexed by elements of A.
For our purposes, A is the node of a Michael-Scott queue, and B is a (heap) relation
used as the rely and guarantee on the next-node pointer in the queue (given as an
inductively-defined predicate).
Inductive Node : Set :=
| mkNode : nat -> option (ref{Node|validNode}[deltaNode,deltaNode]) -> Node
with validNode : Node -> heap -> Prop :=
| ... (* ensure acyclicity *)
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with deltaNode : Node -> Node -> heap -> heap -> Prop :=
| ... (* constrain queue to append-only *) .

This is the most natural way to specify the queue. Note that these definitions are not
only mutual (the predicate and relation are used in the tail pointer’s type), but Node

appears as an index in the types of validNode and deltaNode. Sequential RGREFs [Gor-
don et al. 2013] adapted an impredicative encoding of induction-recursion [Capretta
2004] to give a similar definition, by using COQ’s support for impredicative set. Our
embedding of concurrent RGREFs instead axiomatizes the above (idealized) inductive-
inductive definition of the queue nodes and the rely/guarantee used for the tail pointer.
Work on supporting induction-induction (and induction-recursion [Dybjer 2000]) in
COQ is ongoing, but remains experimental.6

5.2. Liquid Haskell Implementation
We have also implemented a restricted form of RGREFs as a library atop Liquid
Haskell [Vazou et al. 2013; Vazou et al. 2014b], an SMT-based refinement type system
for Haskell. Our encoding is concise, complements Liquid Haskell’s existing strengths,
highlighting that RGREFs are amenable to automation, and integrates naturally with
related verification techniques (namely, dependent refinement types).

Liquid Haskell is the latest in the line of work on Liquid Types [Rondon et al. 2008].
Liquid types use abstract interpretation to infer a class of dependent refinement types
(for C, ML, or Haskell) that is efficiently decidable by an SMT solver.

This section gives a brief introduction to Liquid Haskell, and then briefly describes
our encoding of a restricted form of RGREFs.

5.2.1. Refinement Types in Liquid Haskell. Liquid Types [Rondon et al. 2008; Kawaguchi
et al. 2009; 2010; Rondon et al. 2010; Jhala et al. 2011; Kawaguchi et al. 2012; Rondon
et al. 2012; Rondon 2012; Vazou et al. 2013; Vazou et al. 2014a; Vazou et al. 2014b]
is a design for dependent refinement types that support effective inference and au-
tomation. Boolean-valued predicates are mined from the boolean test expressions in a
program (plus a fixed set of basic predicates) to gather a set of candidate refinements.
Abstract interpretation is then used to infer which predicates hold at each program
location, and an SMT solver is invoked to resolve implications between refinements.
The result is a family of type theories over OCaml, C, and Haskell which are useful for
verifying safety properties with modest annotation burden and user expertise.

The latest incarnation of these ideas, Liquid Haskell [Vazou et al. 2013; Vazou et al.
2014a; Vazou et al. 2014b], implements Liquid Types for Haskell, extending the base
theory to tackle issues with type classes, generating verification conditions for lazy
evaluation [Vazou et al. 2014b], and polymorphism over refinements [Vazou et al.
2013], which were absent from previous Liquid Types systems. In short, Liquid Haskell
permits writing refinement types over Haskell values, for example:

{x : Int | x > 0}

or taking advantage of binding argument values in subsequent refinements, one pos-
sible type for addition would be

x : Int→ y : Int→ {v : Int | v = x+ y}

where the + in the result type corresponds to addition in the SMT solver’s logic.
For our purposes, the most useful features are refinement polymorphism, and the

ability to extend the SMT solver’s logic with additional predicates.

6https://github.com/mattam82/coq/tree/IR

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 3, Article 11, Publication date: April 2017.



Verifying Invariants of Lock-free Data Structures with Rely-Guarantee and Refinement Types 11:21

Abstract Refinements. Abstract refinements permit generalizing refinements from
the form

x : {v : τ | φ[v]} → . . .

to the form

∀〈p :: τ → . . .→ Prop, . . .〉. x : {v : τ〈p〉 | φ[v, p]} → . . .

So the dependent refinement types are extended to allow prenex quantification over
n-ary predicates. In addition, data type definitions may be parameterized by such pred-
icates and uses of such data types support explicit (full) application to parameters.

As a simple concrete example, consider the specification of min on integers, due to
Vazou et al. [Vazou et al. 2013]:

{-@ min :: forall <p :: Int -> Prop>. Int<p> -> Int<p> -> Int<p> @-}
min :: Int -> Int -> Int
min x y = if x < y then x else y

The parametric refinement given above reflects the fact that whatever property holds
of both inputs to min will also be true (trivially) of the outputs.

More recently Liquid Haskell has gained bounded refinements [Vazou et al. 2015],
which allow a bound to be stated on abstract refinements. The implicit bounds are
roughly equivalent to a subtyping bound: under the assumptions of the initial argu-
ments, the last argument is a subtype of the “result type.” As an example. given a
unary abstract refinement p and binary abstract refinement r (acting as a predicate
and rely), to ensure that predicate p is stable with respect to r, we can impose the re-
finement bound:

{x : a〈p〉 ` a〈r x〉 <: a〈p〉}
This requires that for any x : a satisfying p, any a related to x by r (a〈r x〉) also satisfies
p (is a subtype of a〈p〉). This encodes the stable predicate check from Figure 4. Other
uses of bounds are similar. One limitation of these abstract refinement bounds is that
they must come before concrete function parameters, and therefore may not mention
concrete parameters or use them to partially-apply other abstract refinements. We re-
quired this for one primitive in our encoding, explained in Section 5.2.27.

Measures, Axioms, and SMT. When verifying a program, it is generally necessary to
give new logical definitions in order to write (and prove) rich specifications. In Liquid
Haskell, these definitions arise in two ways. First, measures8 may be defined which
behave as partial computable predicates over some data.9

Second, axioms may expand the meaning of uninterpreted functions with select com-
putation rules. Figure 6 demonstrates the use of axioms by simplifying an example due
to Liquid Haskell’s authors [Vazou et al. 2013] using an axiomatization of an SMT solu-
tion to producing the ith Fibonacci number to verify a memoized Fibonacci calculation.
We simplify the example to verifying that a Haskell implementation of the Fibonacci
function is equivalent to the SMT version.

An axiom is simply stated as a function producing a boolean asserting the truth of
some refinement. In this case, axiom fib asserts definition of the ith Fibonacci num-
ber. Its body is simply undefined, which in Haskell is a non-value (which causes an

7Our initial implementation predated bounded refinements, and used exclusively these explicit proof terms.
8The name originates from the original use for proving termination (e.g., measuring the size of a data
structure as a termination metric)
9Presently definition via pattern matching may only be given for measures of one parameter (which ad-
mits a clever “compilation” strategy of embedding the result of a measure application as a refinement on a
constructor result type [Vazou et al. 2014b]).
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module Fib where
import Language.Haskell.Liquid.Prelude

{-@ measure fib :: Int -> Int @-}

{-@ assume axiom_fib :: i:Int ->
{v: Bool | (Prop(v) <=> (fib(i) = ((i <= 1) ? 1 : ((fib(i-1)) + (fib(i-2)))))) } @-}

axiom_fib :: Int -> Bool
axiom_fib i = undefined

{-@ fibhs :: i:Int -> {v:Int | (v = (fib i))} @-}
fibhs :: Int -> Int
fibhs i = if i <= 1

then liquidAssume (axiom_fib i) 1
else liquidAssume (axiom_fib i)

((fibhs (i - 1)) + (fibhs (i - 2)))

Fig. 6. Example usage of Liquid Haskell axioms.

exception if evaluated). Since Liquid Haskell only proves refinements of values and
undefined does not evaluate to a value, it has the refinement false, allowing the SMT
solver to prove any obligations in the body of the axiom (in this case none) after its use.

To use an axiom, the proposition the axiom asserts must be injected into a refine-
ment (conjoined with an existing refinement) where the axiom is necessary to prove
an entailment. In this case, the return value of the fibhs10 routine requires the ax-
iom. Without knowledge of the meaning of the measure fib, Liquid Haskell cannot
prove that either branch of the conditional returns the correct value. Simply stating
the axiom is insufficient: Liquid Haskell does not search through the context and try
miscellaneous instantiations of universally quantified types, because doing so would
be extremely expensive. Instead, liquidAssume is used to inject a refinement, in this
case into the return values of fibhs. liquidAssume asserts the truth of the boolean first
argument, and adds the consequences of that boolean’s refinement, assuming true, to
the refinement of the second argument, which is then returned directly with an en-
riched type. This injection of fib’s definition into refinements of fibhs’s return values,
along with the additional refinement of i in each branch of the conditional based on
comparison to 1, allows the SMT solver to fold the definition of fib in the return values’
refinements, producing the correct type in each case.

Because liquidAssume can be used to axiomatize certain refinements, it could be
accidentally abused to prove a falsehood, similar to Coq’s Axiom. We only use it for two
safe cases. The first use is to inject refinements that are axioms of RGREFs (e.g., to
implement refiners by using past observations to justify new stable refinements). The
other use is to inject some predicate’s definition or property in a key location, similar
to the use for axiom fib above. This is sometimes necessary because the way measures
are introduced to the SMT solver does not extend the background theories of the solver
but instead is encoded into constructor refinements [Vazou et al. 2014b], so the type
system requires occasional hints about properties such as that a measure only returns
true for values with a certain constructor.

5.2.2. Embedding RGREFs into Liquid Haskell. To adapt rely-guarantee references to
Haskell, we simplify the design slightly: we omit transitive heap access in predicates

10The hs suffix matches the .hs file suffix for Haskell programs, to distinguish it from the SMT definition of
the ith Fibonacci number.
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and relations. This sacrifices expressiveness (rely and guarantee relations will apply
only to single heap cells), but comes with the additional benefit of eliminating contain-
ment, precision, and folding from the design (and thus, from developers’ minds).11

We also restrict the implementation to only reflexively splittable references — those
whose guarantee relations imply their rely relations, and may therefore be freely du-
plicated (recall the discussion in Section 4.2). This sacrifices strong updates on thread-
local data, but Haskell lacks support for linear values.

Despite these restrictions, our Liquid Haskell embedding is still very useful. As we
demonstrate in Section 6.3, much of the lost expressivity can be recovered by combin-
ing RGREFs with other features of Liquid Haskell’s dependent refinements, such as
indexing a data type by a predicate.

Figure 7 gives slightly simplified type signatures, collapsing rely and guarantee for
brevity. Our implementation tracks rely and guarantee separately, and checks the re-
quired additional properties — as mentioned earlier, our Liquid Haskell implementa-
tion supports arbitrary reflexively splittable (Section 4.2) references, including asym-
metric examples like read-only aliases. The remainder of this section describes the
key components, but further details on some parts of the encoding (such as downcast
or rgCASpublish) are explained only later in Sections 6.2 and 6.3 where they are used.

Figure 7 includes the RGRef primitive itself, a wrapper around IORef with a rely-
guarantee protocol. The figure also gives types for the primitives for allocating,
updating, and reading RGRefs, each wrapping the corresponding IORef operation
and imposing stability and other checks using bounded refinements. In the case of
axiom pastIsTerminal, we encounter the limitation of refinement bounds mentioned
in Section 5.2.1 — that the bounds may not refer to concrete function parameters —
and work around this by taking a function argument that acts as an explicit proof term.
This serves a similar role to the implicit bounds, but because it is a proper parameter,
its refinements can refer to earlier concrete arguments. This specific proof term acts as
a proof that for a particular previously-observed value v, any value related to v by the
rely r must also be v — evidence that the predicate λx. x = v is stable with respect to
r. This is a specialized refiner, for the case where a reference may not be updated after
it holds a specific value. We call this the terminal value of the reference, and we will
later use it in conjunction with liquidAssume to refine based on dynamic observations.
It is always sound to use liquidAssume with axiom pastIsTerminal because the latter’s
proof term checks validity of introducing the new refinement.

Figure 7 also includes three measures — uninterpreted functions in the SMT solver
— for indicating that a value is a past, final, or initial value of a given RGRef, and
an axiom axiom_pastIsTerminal for coercing a past value to a terminal value when
the rely would not permit further change. This is a Liquid Haskell specialization of a
refiner (observe-field) from the metatheory and COQ embedding, simplified to only
the family of predicates that identify an exact value.

The more general refiner equivalent that introduces any new stable predicate based
on a previously observed value is injectStable. injectStable takes an RGREF and a
new predicate q constrained to be stable with respect to the rely r, along with evidence
that some previous value stored in the cell satisfied q (enforced by requiring that the
past value is refined by q, not the reference’s predicate p). Because q is true of some
value previously stored in ref, and it is stable, any current (or future) value stored
in ref must also satisfy q, so the implementation casts ref to an RGREF indexed by

11This is also partly forced by Liquid Haskell’s design. Liquid types in general are designed to infer fully-
applied refinements, which assumes every variable used is in scope during inference. Inference with heap
parameters to predicates and rely/guarantee relations is complicated by the fact that heaps do not exist as
explicit bindings in the program.
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{-@ data RGRef a <p :: a -> Prop, r :: a -> a -> Prop > =
Wrap (rgref_ref :: IORef a<p>) @-}

data RGRef a = Wrap (IORef a) deriving Eq
{-@ newRGRef :: forall <p :: a -> Prop, r :: a -> a -> Prop >.

{x:a<p> |- a<r x> <: a<p>}
{x:a<p> |- {v:a | v = x} <: a<r x> }
e:a<p> -> IO (RGRef <p, r> a) @-}

{-@ modifyRGRef :: forall <p :: a -> Prop, r :: a -> a -> Prop >.
{x:a<p> |- a<r x> <: a<p>}
rf:(RGRef<p, r> a) -> f:(x:a<p> -> a<r x>) -> IO () @-}

{-@ measure pastValue :: RGRef a -> a -> Prop @-}
{-@ measure terminalValue :: RGRef a -> a @-}
{-@ measure shareValue :: RGRef a -> a @-}
{-@ assume axiom_pastIsTerminal ::

forall <p :: a -> Prop, r :: a -> a -> Prop>.
ref:RGRef<p,r> a ->
v:{v:a | (pastValue ref v)} ->
(x:{x:a | x = v} -> y:a<r x> -> {z:a | ((z = y) && (z = x))}) ->
{ b : Bool | (((terminalValue ref) = v) <=> (pastValue ref v))} @-}

{-@ assume readRGRef :: forall <p :: a -> Prop, r :: a -> a -> Prop>.
x:RGRef<p, r> a -> IO ({res:a<p> | (pastValue x res)}) @-}

{-@ assume injectStable :: forall <p :: a -> Prop, q :: a -> Prop,
r :: a -> a -> Prop>.

{x::a<q> |- a<r x> <: a<q>}
ref:RGRef<p,r> a ->
{v:a<q> | (pastValue ref v)} ->
{r : (RGRef<q,r> a) | (ref = r)} @-}

{-@ assume downcast :: forall <p :: a -> Prop, r :: a -> a -> Prop>.
{ x::b |- b<r x> <: b<p> }
ref:RGRef<p,r> a ->
{v:b | pastValue ref v } ->
{r : RGRef<p,r> b | ref = r } @-}

{-@ rgCAS :: forall <p :: a -> Prop, r :: a -> a -> Prop>.
{x::a<p> |- a<r x> <: a<p>}
Eq a =>

RGRef<p,r> a -> old:a<p> -> new:a<r old> ->
IO Bool

@-}
{-@ rgCASpublish :: forall <p :: a -> Prop, r :: a -> a -> Prop

pb :: b -> Prop, rb :: b -> b -> Prop>.
{x::a<p> |- a<r x> <: a<p>}
{x::b<pb> |- b<rb x> <: b<pb>}
{x::b<pb> |- {v:b | v = x} <: b<rb x>}
Eq a =>

e:b<pb> ->
RGRef<p,r> a ->
old:a<p> ->
new:(({r:(RGRef<pb,rb> b) | shareValue r = e}) -> a<r old>) ->
IO Bool

@-}
{-@ atomicModifyRGRef :: forall <p :: a -> Prop, r :: a -> a -> Prop>.

{x::a<p> |- a<r x> <: a<p>}
rf:(RGRef<p, r> a) ->
f:(x:a<p> -> a<r x>) ->
IO () @-}

Fig. 7. Core RGREFs in Liquid Haskell
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Program Lines of Code Lines of Proof
Atomic Increment 10 2
Treiber Stack 42 63
Michael-Scott Queue 78 162
Union-Find 119 1433

Fig. 8. Lines of code and proof.

q rather than p, with the constraint that the two references point to the same cell in
memory. downcast is a stronger related primitive discussed in Section 6.3.2.

For a familiar example, consider a lock free monotonic counter implemented
in Liquid Haskell using RGREFs and an RGREF wrapper around Haskell’s
atomicModifyIORef:

{-@ alloc_counter :: () -> IO (RGRef<{\x -> x > 0}, {\x y -> x <= y}> Int) @-}
alloc_counter :: () -> IO (RGRef Int)
alloc_counter _ = newRGRef 1
{-@ atomic_inc :: RGRef<{\x -> x > 0}, {\x y -> x <= y}> Int -> IO () @-}
atomic_inc :: RGRef Int -> IO ()
atomic_inc r = atomicModifyRGRef r (\x -> x + 1)

6. PUSHING EXPRESSIVITY AND AUTOMATION
This section gives an overview of the case studies we have performed, and presents the
details of two substantial verification case studies using concurrent RGREFs. We have
used our implementations to verify invariants for

— an atomic counter (Section 3.2.1),
— a Treiber stack [Treiber 1986] (COQ; Section 3.2.2),
— a lock-free linearizable union-find implementation due to Anderson and Woll [An-

derson and Woll 1991] (COQ; Section 6.1),
— a tail-less Michael-Scott queue [Michael and Scott 1996] (COQ; see our implementa-

tion),
— a lock-free linked list with lazy deletion [Harris 2001] (Liquid Haskell; Section 6.2),

and
— a lock-free set implemented as a sorted linked list with lazy deletion (Liquid Haskell;

Section 6.3).

Figure 8 gives the lines of code12 and proof13 our examples proven via our COQ DSL,
which gives a rough estimate of the proof burden relative to code size14. For smaller
examples, the code and proof size are comparable, while the proofs for union-find, with
significantly richer invariants, are more substantial. No special effort was made to
minimize or aggressively automate proofs.
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(** * Lock-Free Linearizable Union-Find *)
type cell (n:nat) : ? := mkCell :: rank:nat -> parent:(Fin.t n) -> cell n;;
type uf (n:nat) : ? := Array n (ref{cell n|any}[local_imm,local_imm]);;
type chase (n:nat) (x:uf n) (h:heap) (i : Fin.t n) : Fin.t n -> Prop :=
(* chase n x h i j is provable when there is a chain of parent links

reaching from i to j in array x *) ... ;;
type φ (n:nat) : hpred (uf n) := ...
(* require child ranks less than parent ranks (1) with ties

broken by index order (2), all parent chains acyclic (3) *) ;;
type δ (n:nat) : hrel (uf n) := ...
| path_compression : forall x f c h h’, φ n x h ->
(* install new cell c at index f, preserving rank, no path from new

cell parent back to f (don’t create cycle), f and f’s new parent
are in the same set, f rank-sorted below f’s new parent *) ->

δ n x (array_write x f c) h h’.
let rec Find {n:nat} (r:ref{uf (S n)|φ}[δ,δ]) (f:Fin.t (S n))

: IO (Fin.t (S n)) :=
observe-field r → f as c in (λ x h, sameset f ((h[c]).parent) x h /\

rankSorted (h[c]) (h[x<|((h[c]).parent)|>]));
observe-field c → parent as p in (λ x h, x.parent = p);
if (p == f) then (return f) (* found root --- f’s parent = f *)
else (observe-field c → rank as rnk in (λ x h, x.rank = rnk);

observe-field r → p as p_ptr in
(*A*) (λ x h, sameset p ((h[p_ptr]).parent) x h
(*B*) /\ (rankSorted (h[p_ptr]) (h[x<|((h[p_ptr]).parent)|>]))
(*C*) /\ (rankSorted (h[c]) (h[p_ptr]))
(*D*) /\ ((h[p_ptr]).parent 6= p ->

nonroot_rank p ((h[p_ptr]).rank) x h)
(*E*) /\ ((h[p_ptr]).parent 6= p ->

( rankSorted_strict (h[p_ptr]) (h[x<|((h[p_ptr]).parent)|>])
\/ fin_lt p ((h[p_ptr]).parent))));

observe-field p_ptr → parent as gp in (λ x h, x.parent = gp);
gp_cell <- Alloc! (mkCell _ rnk gp ) ;
_ <- fCAS( r → f, c, convert gp_cell);
Find p);;

Fig. 9. A lock-free union find implementation [Anderson and Woll 1991] using RGREFs, omitting interactive
proofs. a<|i|> accesses the ith entry of array a. The type Fin.t n is (isomorphic to) a natural number less
than n — a safe index into the array.

6.1. Lock-Free Union Find
Anderson and Woll give a lock-free linearizable union-find implementation [Anderson
and Woll 1991] using ranks and path compression to improve performance [Cormen
et al. 2009]. We have used RGREFs to verify the structural invariants for this data
structure as well as that the only modifications are union, rank update, and path com-
pression operations.

12Data structure, relation, and invariant definitions, as well as algorithms and type class instances for field
access.
13Lemmas for stability, precision, folding, containment, reachability, and discharge of type checking obliga-
tions.
14COQ includes the coqwc tool to count lines of specification and proof, but it interprets new Ltac definitions
as specification and the body of a Program Definition as we use for our algorithms as part of a proof, making
it unsuitable for our needs. We derived these numbers by removing all blank, comment-only, or import lines
from the working COQ files, and partitioning the remaining lines.
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Recall that a union-find data structure supports unioning sets and looking up set
membership, represented by a representative element of the set. The structure is a
forest of inverted trees (children point to parents), where each tree represents one set,
and the root element represents the set. Lookup proceeds by following parent links
to and returning the root. Unioning two elements’ sets occurs by looking up the re-
spective sets’ roots, and if they are different, reparenting one (which previously had no
parent) to the other. To improve asymptotic complexity, two optimizations are typically
applied [Cormen et al. 2009]. First, each node is equipped with a rank, which overap-
proximates the longest path length from a child to that node. Unions then reparent
the lower-ranked root to the other, to avoid extending long child-to-root paths. Second,
path compression updates the parent of each node traversed during lookup to be closer
to the root of the set, amortizing the cost of earlier lookups with faster future lookups.

Anderson and Woll use a fixed-size array with a cell for each element in the union-
find instance, where each cell points to a two-field record with the rank and parent in-
dex for that element. To simulate a 2CAS in the original paper, they make each record
immutable, and perform CAS operations on the pointer-sized cells of the array. A root
is represented by an element that is its own parent. The key invariants are: (1) each
node has a rank no greater than its parent, (2) when a cell and its parent have equal
ranks, the child has the lesser index in the array, and (3) all parent chains terminate.

We used concurrent RGREFs to verify that the key invariants hold. To our knowl-
edge, this is the first machine-checked proof of invariants for this algorithm. This
verification is a contribution by itself, but also demonstrates the generality of rely-
guarantee references and their natural applicability to concurrent data structures: we
were unaware of this algorithm when designing concurrent RGREFs, but found ex-
pressing the union-find structure in our system to be quite natural.

We briefly outline the verification, and present verification of path compression in
more detail. Our proofs are available with our DSL implementation (Section 5.1).

The key invariants 1–3 are embodied in the refinement on the reference to the array,
φ in Figure 9. The rely/guarantee δ (for change) relation permit reparenting a root to a
node with a greater rank (or equal rank and greater index) for unions, increases to root
ranks (used occasionally in union), and the reparenting required for path compression
(which has subtleties detailed below). The refinement φ is stable with respect to the
relation δ, and each heap modification in the implementation respects the relation’s
restrictions. Proving the guarantee is respected in each case relies on the same prin-
ciples used for the Treiber stack (Section 3.2.2): refining references based on observa-
tions, and combining CAS operations with weakening strongly-refined references (e.g.,
those exactly describing the contents of an immutable cell). So the same basic princi-
ples used to verify the relatively simple Treiber stack scale up to a substantially more
complex structure.

RGREFs’ decoupling of abstraction and interference (Section 2.2) supports modular
verification, allowing Anderson and Woll’s same-set operation (typically absent from
union-find implementations) to be verified separately from other operations. In some
other work [Pilkiewicz and Pottier 2011; Jensen and Birkedal 2012], adding a same-set
operation to an existing implementation requires re-verifying all operations because
the two-state invariants are tied to abstraction. In our case, the same-set operation is
simply verified after the other operations as in modern concurrent program logics.

Verifying Path Compression. Figure 9 gives the code for set lookup, which performs
path compressions as it looks up nodes. This is the most challenging union-find ver-
ification obligation. To support path compression, δ permits any reparenting among
elements of the same set that preserves the invariants φ, because requiring a path
from the node being updated to the new parent (that the path gets shorter) is too
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strong (false). At the exact moment a node’s parent pointer is bumped, it is possible
that other threads may have already advanced the current parent to be closer to the
root than the soon-to-be-set parent. This not only means that there may be no path
from the updated node to its new parent at the time of update, but the write may in
fact make the path to the root longer momentarily.

Thus, to verify that the lookup operation’s path compression operation (the fCAS15

at the end of the procedure) respects the compression case of δ, we must accumulate
enough stable predicates as we traverse the structure to prove that f and its new
parent are in the same set and that their ranks and indices are appropriately sorted.
To do so, we make heavy use of the observe-field construct. Note that rewriting uses
of observe-field to simple field accesses yields just a few lines of straightforward
code, almost the same as in Anderson and Woll’s paper. We take advantage of the fact
that the cell for each element is immutable; reading a field of the array is effectively
equivalent to reading both fields of the cell. Stepping through the Find routine, we
first read the array field of the element being sought, observing that future values
of the array field will preserve the current set membership, and at most increase its
rank. If the node is its own parent, then the search is complete. Otherwise, we find
element f ’s grandparent and attempt to update f ’s parent to the grandparent.

Most of the interesting stable assertions arise when reading the parent out of the
array (observe-field r --> f. . .). There we make the same observations made for f
(markers A, B), as well as relating the current parent rank to f ’s recent rank (C); noting
that if the parent is not the root, its rank is fixed permanently (D); and if the parent
is not the root, its rank and identity order all of its future parents (f ’s grandparents)
later than it (E).16 With these array refinements relating the grandparent to f , plus the
sharing idiom for the replacement node for f , the compression case of the δ relation is
provable: preserving rank, set membership, and proper parent-chain ordering by rank
and identity.

6.2. Lock-free Linked List
One of the test cases for the Glasgow Haskell Compiler17 is a lock free linked list
along the lines of that originally proposed by Harris [Harris 2001; Herlihy and Shavit
2008]. To ground our discussion, we first cover some background on lock-free linked list
algorithms and how Haskell’s design affects their implementation. Then we discuss
the verification of two-state invariants for the linked list using Liquid Haskell with
RGREFs.

Lock-free Linked Lists. A lock-free linked list has a basic singly-linked list structure
as its basis — nodes with elements and tail pointers.

Manipulating the head or tail of the list is relatively straightforward. Adding a node
to the head of the list is exactly the push operation on the Treiber stack [Treiber 1986]
(Section 3.2.2), while appending a node is precisely the enqueue operation from a (tail-
less) Michael-Scott queue [Michael and Scott 1996]. The algorithms get more sophisti-
cated once modification of interior links of the list is required, as for deletion, or sorted
insertion [Harris 2001; Heller et al. 2006].

Deletion occurs in two phases: logical deletion and physical deletion. Logical deletion
logically removes a node from the data structure — lookups should not return that
node — but leaves the node physically linked into the list. Physical deletion is the

15fCAS is CAS on a field. Its typing resembles CAS, but the guarantee is proven assuming update to the
specified field only.
16This helps establish a total rank+identity ordering on f and its ancestors.
17testsuite/tests/concurrent/prog003/CASList.hs in the compiler source tree.
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actual physical unlinking — setting the previous node’s next pointer to the deleted
node’s next pointer — and is performed by subsequent operations. This separation of
physical and logical deletion is typically referred to as a lazy deletion due to the delayed
physical removal, and forms the basis for a number of other lock free data structures,
including sets [Heller et al. 2006; O’Hearn et al. 2010] which we revisit in Section 6.3.

This phase separation is required because without the logical deletion step mark-
ing a node for deletion, it is impossible to tell if a node has been physically removed
from the data structure. A naı̈ve CAS on the predecessor’s next pointer to remove a
node would succeed even if another thread had already removed the predecessor from
the list. The logical deletion flag adds enough information to make the CAS on a pre-
decessor fail if the predecessor has been deleted. This requires that the same atomic
operation that would update the next pointer also checks the deletion flag.

Mechanisms for this vary, from using a 2CAS,18 to indicating deletion by setting the
low-order bit in the next pointer (since the node should be at least word-aligned in
memory), to the technique used here which relies on the standard memory layout of
algebraic data types in functional programming languages.

Compare-and-Swap in Haskell. In this GHC test case, CAS is performed not on a
field of the node, but on the whole node, because the nodes themselves are actually
immutable in Haskell; a CAS on the whole object amounts to a CAS on a pointer to
an immutable record. This is due to a subtlety in Haskell’s runtime system: the GC
makes aggressive use of immutability assumptions and may occasionally duplicate
immutable data.19 This can cause uses of a raw hardware CAS to fail more often if the
GC duplicates the expected-value reference. Our verification uses a slightly stronger
primitive from the GHC test suite, but could also trivially be changed to use GHC’s
more unstable casMutVar#, though the CAS would then fail more often at runtime.

The GHC test case we are interested in implements its own CAS on top of
atomicModifyIORef:

atomCAS :: Eq a => IORef a -> a -> a -> IO Bool
atomCAS ptr old new = atomicModifyIORef ptr (\ cur -> if cur == old

then (new, True)
else (cur, False))

This CAS implementation matches the semantics for regular CAS, except it uses the
equality comparison from the Eq type class (the == above) to compare the old and new
values instead of a hardware pointer comparison. Technically this overcompensates
for the unstable pointer equality in the naı̈ve CAS case by making the CAS succeed for
objects that are equal in the sense of referential transparency, which includes compar-
ing values against freshly computed equivalents. The code for the linked list we verify
would be correct under the proper CAS semantics (the CAS arguments it provides for
the expected old values are the variables bound to the results of previous reads), so we
proceed with our verification.

A List. This section walks through the types involved in the lock-free linked list with
a focus on the rely relation used, as well as the verification of the delete procedure,
which covers most cases of the rely.

Figure 10 gives the essential definitions from the lock-free linked list. First, the type
List a is defined, the type of list nodes. Here an algebraic datatype is used to disam-
biguate different node roles — head (sentinel node), valid node, logically deleted node,

18Compare-and-swap on two adjacent (typically aligned) machine words of memory. Most architectures, e.g.
x86/amd64, include a double-width CAS.
19See http://www.haskell.org/haskellwiki/AtomicMemoryOps
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1 {-@ data List a = Null
2 | DelNode (RGRef<{\x -> (1 > 0)},{\x y -> (ListRG x y)}> (List a))
3 | Node a ((RGRef<{\x -> (1 > 0)},{\x y -> (ListRG x y)}> (List a)))
4 | Head (RGRef<{\x -> (1 > 0)},{\x y -> (ListRG x y)}> (List a))
5 @-}
6 data List a = Node a (RGRef (List a)) | DelNode (RGRef (List a))
7 | Null | Head (RGRef (List a)) deriving Eq
8 {-@ predicate ListRG X Y = (((isNull X) && (isNode Y)) ||
9 ((isNode X) && (isDel Y) && ((nxt X) = (nxt Y))) ||

10 ((isNode X) && (isNode Y) && (isDel (terminalValue (nxt X)))
11 && ((val X) = (val Y)) && ((nxt (terminalValue (nxt X))) = (nxt Y))) ||
12 ((isHead X) && (isHead Y) && (isDel (terminalValue (nxt X)))
13 && ((nxt (terminalValue (nxt X))) = (nxt Y))) ||
14 (X = Y)) @-}
15 {-@ assume isDelOnly :: x:List a ->
16 {v:Bool | ((isDel x) <=> ((not (isHead x)) &&
17 (not (isNull x)) && (not (isNode x))))} @-}
18 isDelOnly :: List a -> Bool
19 isDelOnly x = undefined

Fig. 10. Core definition of linked list.

and a terminal node. The Liquid Haskell declaration of the List a type simply instan-
tiates the p and r parameters of the RGRef type. (Recall that this is a simplification
for presentation, and the actual implementation separates rely and guarantee.) Not
shown are a set of Liquid Haskell measures (predicates), isNull, isNode, isDel, and
isHead — each true only for the corresponding constructor. isDelOnly is an axiom stat-
ing that satisfying isDel is mutually exclusive with the other node types — required
due to the way Liquid Haskell encodes measures [Vazou et al. 2014b] (see discussion of
liquidAssume in Section 5.2.1). Also omitted are myNext, a partial function returning
the next-link reference from a node, and nxt, a measure to access the same information
in refinements.

The ListRG predicate itself (Line 8) serves as the rely and guarantee relation for
interior pointers inside the linked list. The predicate is a disjunction of five possible
transitions, listed here in the order they appear in Figure 10:

(1) Appending a node: replacing a Null node with a Node.20

(2) Logical deletion: marking a node for deletion without removing it from the spine of
the linked list.

(3) Physical deletion: physically removing a previously logically deleted node. In this
case, the old and new node must carry the same value (preserve the value), and
the new next pointer must point to the removed node’s next node, thus removing
only one node. The phrasing for this in terms of terminalValue requires updates in
this case to also prove that the removed node has a terminal value, which in this
case means it is a logically deleted node.

(4) Physical deletion at the head: as in the previous case, but when deleting the first
node of the list.

(5) Reflexivity: permit no-ops.

20Because our LH encoding lacks transitive heap access, we cannot directly encode the acyclicity require-
ment as we do for our Michael-Scott Queue implementation in COQ— there is no predicate which explicitly
states that the list is acyclic.
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1 {-@ terminal_listrg ::
2 rf:RGRef<{\x -> (1 > 0)},{\x y -> (ListRG x y)}> (List a) ->
3 v:{v:List a | (isDel v)} ->
4 x:{x:List a | (x = v)} -> y:{y:List a | (ListRG x y)} ->
5 {z:List a | ((x = z) && (z = y))} @-}
6 terminal_listrg :: RGRef (List a) -> List a -> List a -> List a -> List a
7 terminal_listrg rf v x y = liquidAssume (isDelOnly x) y
8
9 delete :: Eq a => ListHandle a -> a -> IO Bool

10 delete (ListHandle head _) x =
11 do startPtr <- readIORef head
12 go startPtr
13 where
14 {-@ go :: RGRef<{\x -> (1 > 0)},{\x y -> (ListRG x y)}> (List a) ->
15 IO Bool @-}
16 go prevPtr =
17 do prevNode <- (readRGRef prevPtr)
18 let curPtr = myNext prevNode -- head/node/delnode all have next
19 curNode <- (readRGRef curPtr)
20 case curNode of
21 Node y nextNode ->
22 if (x == y)
23 then -- node found and alive
24 do b <- rgCAS curPtr curNode (DelNode nextNode)
25 if b then return True else {- spin -} go prevPtr
26 else go curPtr -- continue
27 Null -> return False -- reached end of list
28 DelNode nextNode -> {- try physical deletion; ignore failure -}
29 case prevNode of
30 Node v _ ->
31 do b <- rgCAS prevPtr prevNode
32 (Node v (liquidAssume
33 (axiom_pastIsTerminal curPtr curNode
34 (terminal_listrg curPtr curNode))
35 nextNode))
36 if b then go prevPtr else go curPtr
37 Head _ ->
38 do b <- rgCAS prevPtr prevNode
39 (Head (liquidAssume
40 (axiom_pastIsTerminal curPtr curNode
41 (terminal_listrg curPtr curNode))
42 nextNode))
43 if b then go prevPtr else go curPtr
44 DelNode {} -> go curPtr -- parent deleted; ignore

Fig. 11. Excerpt from a lock-free linked list implemented using Liquid RGREFs: definitions and deletion.

Figure 11 gives the code for deleting a node with a given value from the list. Traver-
sal to locate a node proceeds naturally. In the case the node is found and not yet
deleted, the code attempts to CAS the curPtr from the node curNode just read21 to

21Recall that although this appears semantically to be an atomic value comparison, and is due to the over-
compensation for the CAS approximation used, a proper CAS would see this as a compare-and-swap of a
pointer to an immutable record.
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a newly allocated DelNode preserving curNode’s next pointer (Line 24). The SMT solver
naturally dispatches the guarantee proof using the logical deletion clause of ListRG.

The most interesting case is mid-traversal, when the code crosses a logically deleted,
but physically present node (Line 28). In this case, the code uses a CAS to swap a
pointer to the logically deleted node — the previous-node pointer prevPtr — with
a pointer to a copy of curNode with an updated next pointer. The code is duplicated
slightly for performing a CAS on a Head (Line 31) or Node (Line 38) variant (if the pre-
vious node has been logically deleted, there is no point in updating its next pointer),
but each requires proving a physical deletion case of ListRG. Recall from earlier that
each of these cases requires preserving the node’s main structure (node type, and value
if present) and proving that the new next pointer is the same as the next pointer in the
old next-node’s referent. This is phrased in terms of terminalValue. Recall from Figure
7 that reading from an RGRef produces a value refined with a pastValue predicate wit-
nessing that the value was once stored in the cell it was read out of. To take advantage
of this, we use Liquid Haskell’s liquidAssume to inject properties into the refinement of
a relevant value. liquidAssume causes the SMT solver to assume the truth of some re-
finement — an axiom — and inject it into some value’s refinement. In this case, we use
liquidAssume to inject an instantiation of the axiom pastIsTerminal axiom into the
refinement of nextNode. The use of this axiom bounds its instantiation to cases where
the observed value, according to the rely and guarantee, must be the final value of
the reference cell. Our proof of this uses the terminal listrg “lemma” (Line 6) which
proves that a deleted node remains deleted.22 Note that we use terminal listrg as
a proof of an implication — axiom pastIsTerminal takes a function argument as an
explicit stability proof. This hint in nextNode’s refinement allows the SMT solver to
conclude that the terminal value of the node being skipped had nextNode as its next
field.

Because physical deletion is shared across all operations, these physical deletion
CAS proofs arise in type-checking most of the operations.

6.3. Lock Free Set by Recovering Transitive Heap Access
At first sight, the loss of transitive heap access in predicates, rely, and guarantee rela-
tions may seem severe, even if examples like a lock-free linked list can be implemented
this way. But in our experience with the COQ prototype, we rarely used the transi-
tive heap access to reach more than one level into a recursive data structure, and in
the presence of data types indexed by predicates, there are other ways to constrain
deeper parts of the heap. Furthermore, lock-free data structures typically rely heavily
on immutability and reasoning about very local changes, and even global invariants
on recursive structures can be enforced using only local reasoning.

This section presents a case study showing that much of the lost expressivity can be
recovered through careful use of other dependent typing features already implemented
in Liquid Haskell.

The presence of a restricted form of dependent inductive data types in Liquid
Haskell provides a path to recovering the fragment of transitive heap access expres-
sivity that we have actually found useful. This section uses this feature to extend the
lock-free linked list just discussed to a lock-free set implemented as a sorted linked
list [Heller et al. 2006]. Note that throughout this section, Set refers to a Liquid
Haskell implementation of a set abstraction, rather than COQ’s predicative universe
of small types.

The key technique to imposing sorting is to index a data type by a predicate on the
value, and instantiate the predicate in the successor link with a different predicate. In

22terminal listrg itself gives the SMT solver the hint that node types are mutually exclusive.
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particular, we will index nodes of the set representation by a lower bound on the value,
and successor pointers will use the current element to impose a stronger lower bound
on the rest of the list. Intuitively, this means roughly:
{-@ data Set a <p :: a -> Prop> =

Node (val :: a<p>) (nxt :: RGRef<...> (Set <{\v -> v > val}> a) | ... @-}
data Set a = Node a (RGRef (Set a)) | ...

This is sufficient to ensure the list is sorted, but insufficient to support insertion
and deletion. The reason is that with the successor refinement above, insertion and
deletion require taking a cell reference with a given lower bound on the value, and
using it as if it had a different (still true) lower bound. For insertion, in a list with
elements 3 and 5, consider inserting 4. The 3-node’s successor pointer will have type
Set<{\v -> v > 3}> Int, but the successor node for the newly-allocated 4-node re-
quires type Set<{\v -> v > 4}> Int. The dynamic checks required to find the inser-
tion point ensure that the successor (the 5-node) semantically satisfies the latter type,
but this must be reflected back into the type system. This is what refiners were meant
for, but here we must refine the parameter to the base type referenced by the RGRef,
rather than the refinement carried by the reference itself. Subsequent deletion of 4
poses a similar problem, reversing the given and needed type when updating the 3-
node’s successor. In the pure functional case, deletion would be handled by covariant
subtyping, but the base referent type for RGRefs, as for IORefs, is invariant for subtyp-
ing.

We require different solutions for insertion and deletion. Once we have solutions for
these cases, the types for the set implementation ensure sortedness, and even if we
hand a set to “unverified” code, that code may not violate sortedness, so the insertion,
deletion, and lookup routines we define below will continue to operate correctly; see
our implementation for an example client that exploits this.

6.3.1. Deletion via Slack Variables. Consider deleting the node holding the value 4 from
the list containing 3, 4, and 5. This requires updating the 3-node’s successor pointer to
refer to the 5-node, by copying the 4-node’s successor pointer.

The trouble is that with the intuitive sketch given above, this requires replacing the
3-node’s successor pointer of type Set<{\v -> v > 3}> Int with the 4-node successor
pointer next of type Set<{\v -> v > 4}> Int. An equivalent of the refiner from the
COQ DSL does not solve this problem, because this would require reading the value
of the new successor (the node after the deleted node) and dynamically inspecting it to
refine its properties. Neither of these are required for sorted insertion.

The key to permitting this replacement is recognizing that there exists a value x
such that 3 ≤ x and next :: Set<{\v -> v > x}> Int. That is, we can use a slack
variable23 to relax the relationship between a node’s value and the type-based lower
bound on the successor’s value.

Because we cannot existentially quantify the slack variable24 we must modify the
node structure to explicitly record the slack variable. Extending our earlier intuitive
sketch:
{-@ data Set a <p :: a -> Prop> =

Node (val :: a<p>)
(slack :: {v:a | val <= v})
(nxt :: RGRef<...> (Set <{\v -> v > slack}> a)) | ... @-}

23The term slack variable comes from integer linear programming, where inequalities such as Ax ≤ B are
converted to equality constraints Ax + s = B by introducing an extra non-negative variable s — a slack
variable — that quantifies the difference of the original inequality [Chvatal 1983].
24Liquid Haskell allows existential quantification in predicates, but not in types.
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data Set a = Node a a (RGRef (Set a)) | ...

When physically deleting a node, we update the predecessor of the removed node by
updating both the successor pointer and the slack variable.25

Safe Covariant Reference Subtyping. Readers familiar with other systems contain-
ing references with restricted mutation may wonder if a similar form of safe covariant
subtyping is available on references. For example, reference immutability type sys-
tems [Tschantz and Ernst 2005; Zibin et al. 2007; Zibin et al. 2010; Gordon et al. 2012]
admit covariant subtyping on read-only references. Such a construct in Liquid Haskell
would permit us to address physical deletion without adding a slack variable, because
a node with a given lower bound lb also has any value less than lb as a lower bound.

We can also write a similar construct here for safe covariant subtyping on the main
reference type here (A in ref{A | P}[R,G]), and restrict its use to the case where the
rely and guarantee ensure updates through the upcast reference preserve membership
in the original type:

{-@ assume safe_covar :: forall <p :: a -> Prop, r :: a -> a -> Prop>.
{ x::a |- a <: b }
{ x::a<p> |- a<r x> <: b }
ref:RGRef<p,r> a ->
{r : RGRef<p,r> b | ref = r } @-}

safe_covar :: RGRef a -> RGRef b
safe_covar r = unsafeCoerce r

Liquid Haskell accepts this trusted specification, and can check its use. In our imple-
mentation, we use both this primitive (holding the slack variable constant in updates)
for find and delete because of its convenience, and also the slack variable approach
in insert because this technically lies outside the theory we have proven consistent
(recall that the formal system in Section 4 does not include subtyping).

6.3.2. Insertion via Statically-Checked Downcasts. Insertion faces the opposite problem of
deletion. Insertion requires strengthening the lower bound on a node to prove that it
belongs after the node being inserted. This is almost what refiners were designed for,
but rather than changing the predicate portion of an RGREF, we are instead changing
the index of the Set data type — from the perspective of RGREFs, this is a change of the
base type component of the reference to a subtype of the original base type. Concretely,
this is where we use the downcast primitive given in Figure 7:

{-@ assume downcast :: forall <p :: a -> Prop, r :: a -> a -> Prop>.
{ x::b |- b <: a }
{ x::b |- b<r x> <: b<p> }
ref:RGRef<p,r> a ->
{v:b | pastValue ref v } ->
{r : RGRef<p,r> b | ref = r } @-}

This axiom coerces an RGREF pointing to some a to an RGREF pointing to
some subtype b. Concretely, this will permit us to coerce a reference to a
Set<{\v -> v > 3}> Int into a reference to a Set<{\v -> v > 4}> Int (note that this
latter type, by the covariant use of the index predicate in Set, is a subtype of the for-
mer). The key is the use of pastValue to observe that the value stored in the reference
is also in the subtype, and that the subtype itself is stable under the original rely (and
guarantee). We give no formal account of this primitive’s soundness, but intuitively
this is justified by interpreting subtypes as predicates on the original types. downcast

25In principle this could be simplified by the addition of ghost state to Liquid Haskell.
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plays essentially the same role as refiners, but for predicates that are tracked as in-
dices of the reference’s base type, rather than through the predicate component of an
RGREF. In both bases, observing that the reference has at some point held a value in
a particular subset of the original base type, where that subset is closed under transi-
tions according to the rely (i.e., the subset satisfying the predicate, or more precisely
the new stable predicate introduced by refiners), justifies refining the reference to in-
dicate the more precise subset.

The standard pattern for insertion of a value X is to traverse the list until a node
with a larger element than X is found, tracking the predecessor of the “current” node,
and then insert a node between the predecessor and current nodes. It is the predeces-
sor’s pointer to the current node (whose value is larger than X) that will be coerced
with downcast, to reflect that the program dynamically checks that the node’s value is
larger than the element being inserted. The result will carry X as the lower bound in
the Set parameter, making it suitable for use in the new node.

6.3.3. On the Naturality of Our Encoding. This use of lower-bounding predicates in an in-
ductive data type may initially appear to be a non-obvious contortion, but is actually
not far from idioms used in existing Liquid Haskell code. Our use of the indexing
predicate could be seen as a natural extension of a technique espoused by the Liquid
Haskell developers, who used a similar idiom to impose sortedness on pure lists26. In
their case the natural covariance of pure lists with lower bounds and the internal rep-
resentation of index predicates applied to constructor arguments allow insertion and
deletion to “just work.” Our use of slack variables, safe reference covariance, and (stat-
ically checked) downcasts are necessary because our structure is build from mutable
references instead of being a pure structure.

6.3.4. Rely-Guarantee for Set References. The rely/guarantee relation used here, SetRG,
is an extension to ListRG from Section 6.2. It adds two cases for insertion: insertion
after a node, and insertion at the head of a list. In each case, we use the measure
shareValue to refer to the value of a heap cell at the time a node was shared. Rather
than moving to a full-blown Hoare triple as the Liquid Haskell authors have recently
explored [Vazou et al. 2015], we instead rely on the rgCASpublish primitive from Fig-
ure 7. This primitive accepts a value to allocate in an RGRef, an old value (as in any
CAS), and a (pure) function that computes a new value from the allocated reference.
Crucially, the refinement type for the function may assume that the value at the time
of updating the heap is exactly the value provided for allocation.

In the core language this corresponds to a heap write where the value carried in is
substructural (T-LINSTORE in Figure 4), and can therefore carry strong refinements
into the heap write that shares the previously linear data. This primitive combines
the separate allocation and write steps into one primitive that internally ensures the
allocated reference is not duplicated (and modified) before sharing.
SetRG (Figure 12) uses shareValue to constrain the successor of an inserted node to

be the node it is being inserted in front of. Naı̈vely this might seem to allow allocating a
reference with an appropriate initial value, mutating it, and then inserting a node. But
rgCASpublish only exposes the shareValue in the scope of the allocation and sharing.

6.3.5. Set Insertion. Figure 13 gives the Liquid Haskell code for insertion into the set,
as a sorted linked list. Other operations — search, deletion — are similar to the lock-
free linked list from Section 6.2, and we omit the case that performs physical deletion
(which is also very similar to the linked list case).

26http://goto.ucsd.edu/∼rjhala/liquid/haskell/blog/blog/2013/07/29/putting-things-in-order.lhs/
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{-@ predicate SetRG X Y =
(((IsNull X) && (IsNode Y)) ||
((IsNode X) && (IsDel Y) && ((val X) = (val Y)) && ((nxt X) = (nxt Y))) ||
((IsNode X) && (IsNode Y) && (IsDel (terminalValue (nxt X))) && ((val X) = (val Y))

&& ((nxt (terminalValue (nxt X))) = (nxt Y))) ||
((IsHead X) && (IsHead Y) && (IsDel (terminalValue (nxt X)))

&& ((nxt (terminalValue (nxt X))) = (nxt Y))) ||
((IsNode X) && (IsNode Y) && ((val X) = (val Y))

&& (nxt X = nxt (shareValue (nxt Y)))) ||
((IsHead X) && (IsHead Y) && (nxt X = nxt (shareValue (nxt Y)))) ||
(X = Y)
)

@-}

Fig. 12. Relation used as rely and guarantee for Set references.

At a high level, the code walks through the list, tracking a previous node (via
prevPtr) and a current node (curPtr), using a refinement on the tail-recursive go to en-
sure the value of the previous node (if any) is smaller than the element being inserted.
This is not only a good partial correctness property to have, but is in fact necessary
when type checking the CAS through prevPtr. In order to update the previous node’s
successor to a node with value x, the inserted node’s refinement index — the lower
bound on its value — must use the previous node’s value as the lower bound.

Figure 13 depends on three cast operations: two for refining the lower bound of the
Set type (as explained in Section 6.3.2), and one for incorporating the results of a
comparsion between the value being inserted and another node’s value, to satisfy the
refinement of a recursive call to go that the previous pointer’s referent has a smaller
value than the value being inserted.
{-@ downcast_set :: forall <p :: a -> Prop>.

ref:RGRef<{\x -> (1 > 0)},{\x y -> (SetRG x y)}> (Set <p> a) ->
x:a ->
{v:(Set <p> a) | pastValue ref v && x < val v } ->
{r:RGRef<{\x -> (1 > 0)},{\x y -> (SetRG x y)}> (Set <{\v -> x < v}> a) | r = ref } @-}

downcast_set :: RGRef (Set a) -> a -> Set a -> RGRef (Set a)
downcast_set r x v = downcast r v

{-@ downcast_set_null :: forall <p :: a -> Prop>.
ref:RGRef<{\x -> (1 > 0)},{\x y -> (SetRG x y)}> (Set <p> a) ->
x:a ->
{v:(Set <p> a) | pastValue ref v && IsNull v } ->
{r:RGRef<{\x -> (1 > 0)},{\x y -> (SetRG x y)}> (Set <{\v -> x < v}> a) | r = ref } @-}

downcast_set_null :: RGRef (Set a) -> a -> Set a -> RGRef (Set a)
downcast_set_null r x v = downcast r v

{-@ prove_lb :: forall <z :: a -> Prop>.
ref:RGRef<{\x -> (1 > 0)},{\x y -> (SetRG x y)}> (Set <z> a) ->
x:a ->
{n:(Set <z> a)<{\s -> val s < x}> | (IsNode n || IsDel n) && (pastValue ref n) } ->
{r:RGRef<{\n -> (IsNode n || IsDel n) && val n < x},{\x y -> (SetRG x y)}> (Set <z> a)
| r = ref } @-}

prove_lb :: RGRef (Set a) -> a -> Set a -> RGRef (Set a)
prove_lb ref x v = (injectStable ref (v))

Liquid Haskell currently does not verify the bodies of these casts because they en-
counter an incompleteness of Liquid Haskell’s inference: Liquid Haskell fails to instan-
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insert :: Ord a => SetHandle a -> a -> IO Bool
insert (SetHandle head _) x =
do startPtr <- readIORef head

go startPtr
where

-- Note that the RGRef predicate ensures that either
-- (A) we’re at the start of the list, or
-- (B) inserting x just after prevPtr will preserve sortedness
-- up to that insertion.
{-@ go :: forall <p :: a -> Prop >.

RGRef<{\nd -> IsHead nd || val nd < x},{\x y -> (SetRG x y)}> (Set <p> a)
-> IO Bool @-}

go !prevPtr =
do prevNode <- readRGRef2 prevPtr

-- note this next line skips over the head
let curPtr = myNext prevNode
curNode <- (readRGRef curPtr)
case curNode of
Node y lb nextNode ->

if x == y
then return False --- already present, not added
else if y < x

then go (prove_lb curPtr x curNode)
else --- insertion! add between previous and current

case prevNode of
Node prevVal vlb q ->
do let newNode = (Node x x (downcast_set curPtr x curNode))

b <- rgCASpublish newNode prevPtr prevNode
(\ptr -> Node prevVal prevVal ptr)

if b then return True else go prevPtr
Head _ ->
do let newNode = (Node x x (downcast_set curPtr x curNode))

b <- rgCASpublish newNode prevPtr prevNode (\ptr -> Head ptr)
if b then return True else go prevPtr

DelNode _ _ _ ->
do newhd <- readIORef head

go newhd -- predecessor deleted, restart
Null -> case prevNode of

Node prevVal vlb q ->
do let curPtrC = downcast_set_null curPtr x curNode

let newNode = (Node x x curPtrC)
b <- rgCASpublish newNode prevPtr prevNode

(\ptr -> Node prevVal prevVal ptr)
if b then return True else go prevPtr

Head _ ->
do let newNode = (Node x x (downcast_set_null curPtr x curNode))

b <- rgCASpublish newNode prevPtr prevNode
(\ptr -> Head ptr)

if b then return True else go prevPtr
DelNode _ _ _ ->
do newhd <- readIORef head

go newhd -- predecessor deleted, restart
DelNode v lb nextNode -> ... {- physical deletion as in list -}

Fig. 13. Insertion into a lock-free set, represented as a sorted linked list.
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tiate the axioms downcast and injectStable correctly, but if we duplicate the axioms
and manually instantiate the type parameter a with Set a in the duplicates, then the
lemmas are verified. We take this as a necessary, but clearly safe trusted cast.

7. MANUAL VS. AUTOMATED RGREF PROOFS
Our two implementations of concurrent RGREFs allow us to compare the experience
of verifying invariants with RGREFs in an interactive theorem prover against an au-
tomated setting. Here we describe some qualitative differences.

Proofs in the COQ DSL. Verifying these structures inside COQ exposes information
that makes sophisticated proofs possible. In our union-find case study (Section 6.1),
we found the ability to inspect intermediate states in a proof to be indispensable. The
properties captured with observe-field in Figure 9 are complex and non-obvious.
They would not have been discovered by Liquid Haskell’s refinement inference
without hints from the developer. We identified these important correctness properties
because they helped prove intermediate goals of the COQ path compression proof, but
they are important in any verification of this structure. Proving stability for some of
these properties requires nontrivial inductions. We suspect that had we attempted
this proof using an SMT-based implementation, we would have gotten stuck: SMT
solvers give limited intermediate feedback that would have helped us realize these
properties were necessary, and Liquid Haskell reports only that it failed to prove one
refinement implies another. Without this we would have had to resort to axiomatizing
specific data structure properties. This is dangerous: it was not obvious initially that
path compression sometimes extends a path (this is not mentioned by Anderson and
Woll), and it was only in trying to manually prove that the compression operations
always shortened paths that we realized they sometimes did not. However, with the
benefit of the COQ proof, we believe we could probably port it to Liquid Haskell.

Proofs in Liquid Haskell. Verification with Liquid Haskell was generally more pleas-
ant than using the COQ DSL. Our Liquid Haskell axiomatization allows programs
that are typically only a few lines longer than totally unverified versions: after giv-
ing a small number of definitions for stating specifications, verifying the linked list
in Section 6.2 required only one small (one-line) proof witness, and a few calls to
liquidAssume to give hints to apply definitions. Once we specified the lock-free linked
list in Section 6.2 and gave the general axiom for terminal values, we required only a
few runs of the verifier to determine the correct use of liquidAssume to guide the proof.
We later strengthened the specification for two-state invariants on the list, and simply
re-ran Liquid Haskell to check the new specification; no further work was required.
This trend continued in work on the lock-free set in Section 6.3. Once we recognized
the need for slack variables and formulated a suitable downcast primitive, the verifi-
cation was fairly straightforward.

It remains to be seen if this ease of use persists on larger examples — the spec-
ification of the rely/guarantee of the union find structure is longer than the delete
implementation in Figure 11. Currently when a Liquid Haskell verification fails, the
resulting error message is a dump of the variables generated by inference as exported
to the underlying SMT solver. Liquid Haskell also generates an HTML rendering of
the source code with the results of type inference presented when hovering over source
elements, but this exposes the type variables introduced by liquid type inference, and
understanding an error often requires reconstructing the reasoning of the inference
engine and manually relating liquid type variables with predicates. This may become
much more difficult for specifications as complex as the union-find data structure.

The loss of transitive heap access in the Liquid Haskell formulation was not as se-
vere as we originally feared. As we show in Section 6.3, the presence of a rich form
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of inductive data type makes recovery of some “deeper” specifications possible. Using
idioms like terminalValue, we could give the specification for the lock-free union find
implementation in Liquid Haskell. When the Ord type class used in the set implemen-
tation enforces a partial order (which is possible to enforce by extending the specifica-
tion of the Ord type class in Liquid Haskell), the Set specification enforces acyclicity by
inducing a total order on nodes of the data structure. However, in the absence of ghost
/ auxiliary state (logical state that is not represented at runtime), some transitive
specifications are more difficult to enforce. For example, acyclicity for a Michael-Scott
queue’s enqueue operation could be enforced by requiring links enqueued to the tail to
initially have null (None) successor pointers. But that this implies an acyclic structure
is less direct than the local ordering in our set implementation. But in exchange for a
mostly automated discharge of proof obligations, this seems a reasonable trade-off.

8. RELATED WORK
RGREFs target a very different part of the verification design space than most prior
work, because we aim to prove rich logical invariants over data structures, but can-
not (without further extension [Gordon 2014]) prove full correctness. The majority of
prior work falls into either simpler type systems for generic properties (such as data
race freedom) or much more powerful concurrent program logics, with correspondingly
greater complexity in exchange for proving stronger properties than RGREFs. Here
we focus on two major streams of related work: concurrent program logics due to the
similarities in reasoning principles (namely, rely-guarantee style reasoning), and the
use of dependent types in imperative languages due to similarities in specific technical
machinery. We also briefly discuss the relative proof burden of RGREFs compared to
other approaches.

Verifying Concurrent Programs. A wide range of techniques for reasoning about con-
current programs exist, but we focus on logics: program logics and type systems. The
fundamental issue in proving an assertion in a shared-memory concurrent program
is tolerating or preventing possible interference from other threads. Since Owicki and
Gries’ original approach based on checking if actions of one thread invalidated any
step in other threads’ proofs [Owicki and Gries 1976] the major developments have
been rely-guarantee reasoning [Jones 1983] and concurrent separation logic [Brookes
2004], the latter extending separation logic [O’Hearn et al. 2001] to verify threads
with memory exchange using locks. Because these two approaches have complemen-
tary modularity benefits, the past few years have seen a flurry of work on combining
them, starting with RGSep [Vafeiadis and Parkinson 2007], which uses concurrent
separation logic with a shared region whose rely and guarantee relations are given
using separation logic assertions to describe pre- and post-states. Subsequent work
extended the notion of separation to relations, allowing the rely and guarantee to be
split and joined [Feng 2009] or used with unstructured parallelism [Dodds et al. 2009].
All rely-guarantee-based approaches permit some form of asymmetric protocol (includ-
ing RGREFs).

Most recently state transition systems (STSs) have emerged as a popular means
of verifying safety properties (single-state invariants and functional correctness) of
FCDs [Dinsdale-Young et al. 2010; Svendsen et al. 2013; Svendsen and Birkedal 2014;
Turon et al. 2013; Nanevski et al. 2014; Sergey et al. 2015a; Jung et al. 2015]. Concur-
rent abstract predicates (CAP) introduced the use of capabilities (sometimes referred
to as tokens) in conjunction with abstract predicates to specify the protocols for updat-
ing concurrent data structures. Later work refined these ideas to support higher-order
and impredicative protocols [Svendsen et al. 2013; Svendsen and Birkedal 2014], ex-
press a subset of protocols succinctly based on state transition systems [Turon et al.
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2013], build and exploit rich notions of STS composition [Nanevski et al. 2014; Sergey
et al. 2015a] (further enhanced by exploiting explicit notions of subjective auxiliary
state [Ley-Wild and Nanevski 2013]), or build up to STSes from more primitive no-
tions [Jung et al. 2015]. VeriFast [Smans et al. 2014; Jacobs and Piessens 2011] in-
corporates many of the ideas from CAP and related systems in an automated prover
which we discuss below (Section 8.1). Each of systems enumerate a set of capabilities
for moving nodes of a data structure through a finite state machine protocol, where
each state specifies an invariant for the structure. The capabilities may be stored (in
ghost state) and therefore transferred via shared-memory communication. In each of
these systems, soundness is proven in part by using the set of capabilities held by
a thread to induce a guarantee (to use the capabilities) and a rely (assuming other
threads may use the complement of the thread’s capabilities), which together induce
some notion of stability.

All of the work above can verify full pre- and postconditions for concurrent data
structures. We have previously demonstrated a way to prove triples for RGREF pro-
grams [Gordon 2014] by synthesizing an abstract trace and simplifying it through a
series of rewrite rules reminiscent of Elmas et al.’s refinement for atomicity [Elmas
et al. 2009; Elmas et al. 2010]. So RGREFs form an adequate basis for proving func-
tional correctness, but our focus in this paper is on the expressivity of the stabilized
reference refinements on their own — many extensions are possible (and discussed
below) to improve expressive power.

In the STS-based program logics above, there is an interesting modularity limita-
tion. While the logics are all equipped with means to compose STSes and/or frame
away STSes that are not locally relevant, the granularity of composition or framing
is limited to whole STSes. There is no way to extend a given STS with additional
states and tokens, and no way to restrict an STS to a subset of its states or tokens.
At most they permit exchanging resources between STSes. Relation-based approaches
(including concurrent RGREFs, but also systems with explicit rely and guarantee rela-
tions [Jones 1983; Vafeiadis and Parkinson 2007; Feng 2009]) specify protocols and in-
terference semantically rather than structurally, and therefore do not suffer from this
limitation. Understanding the precise relationship between relational (as in RGREFs
or VCC [Cohen et al. 2009; Cohen et al. 2010]) and STS approaches is a known open
research problem [Jung et al. 2015].

Another challenge for modern separation logic approaches is allowing flexibility in
overlapping views of shared state. Most modern logics for concurrency interpret (STS)
protocols over named regions, and each heap fragment belongs to exactly one region
(which may be strictly nested within another region). Logics in this space permit trans-
fer among regions, but overlapping region specifications (without nesting) are not per-
mitted. The sole exception is CoLoSL [Raad et al. 2015], which allows a thread to
reason about a subregion of a shared region in isolation soundly, and different subre-
gions may overlap arbitrarily. This can simplify the specification of algorithms such
as graph algorithms. FCSL [Sergey et al. 2015a] also permits a form of this, with a
structured mechanism to construct larger transition systems out of smaller transition
systems and a framing rule on those transition systems without explicitly naming re-
gions. RGREFs by contrast, permit arbitrary overlap of specification regions, ensured
sound by the combination of the global aliasing agreement invariant (a reference’s
guarantee implies all aliases’ relies) and containment (a reference’s rely includes the
rely of any reachable reference) — so one reference’s guarantee permits only opera-
tions that are assumed possible by any aliases and references into the heap reachable
from that reference. With the exception of Raad et al.’s work on CoLoSL, there is no fo-
cused exploration of the improvements this approach offers; further exploration seems
worthwhile.
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Some recent work has also focused on proving, within a program logic, that one
program contextually refines another (e.g., a FCD is an observational refinement of a
coarse-grained one) [Turon et al. 2013], is linearizable [Herlihy 1991] (roughly, that the
operation’s effects appear instantaneously to other clients of a data structure, though
the definition is actually a more subtle condition on reorganizing interleaved traces),
or satisfies related forms abstraction over interleaved thread histories [da Rocha Pinto
et al. 2014; Sergey et al. 2015b]. We expect that future work can adapt ideas from
proving linearizability in a traditional rely-guarantee system [Vafeiadis et al. 2006;
Liang and Feng 2013] and work proving functional correctness atop RGREFs [Gordon
2014] to prove linearizability using RGREFs.

RGREFs currently cannot relate reference-centric specifications to other granulari-
ties of reasoning (e.g., region-based rely-guarantee [Feng 2009]), or represent asymme-
try of knowledge (e.g., that a lock is held by one thread but not by others). This makes it
difficult to relate structures that have no references between them, such as connecting
the auxiliary structures used in lock-free algorithms with helping (e.g., an elimina-
tion stack [Hendler et al. 2004], where one thread may help complete the operation of
some other thread’s concurrent operation). These are not fundamental limitations, but
are out of scope for our focused exploration of the capabilities of minimal concurrent
RGREF systems. Support for helping should be possible through the addition of lin-
ear capabilities and regions to RGREFs, as exist in some concurrent separation logics
— particularly the STS logics — for exactly this purpose [Dinsdale-Young et al. 2010;
Svendsen et al. 2013; Svendsen and Birkedal 2014]. The rely and guarantee specifi-
cations would need to be extended to interact with the capabilities, in a style similar
to CAP [Dinsdale-Young et al. 2010] or its many descendants. Structuring a full pro-
gram logic with explicit regions over a base language with RGREFs would then permit
expressing heap properties of other granularities, where the presence of RGREFs may
specify some region transition specifications. RGREFs cannot reason about the combi-
nation of multiple writes satisfying a guarantee; this could be addressed by using re-
sults from a program logic over RGREFs to prove a non-atomic guarantee satisfaction
(e.g., on thread-local state guarded by a lock). Also important, as references are du-
plicated, the guarantees possessed by the whole program for a given heap cell become
weaker (permit fewer actions); thus it is not possible to temporarily share a unique
reference to parallelize some work, and later recover a reference with the original,
stronger guarantee. Some form of fractional permissions [Boyland 2003] and/or the re-
covery [Gordon et al. 2012] variant of borrowing could enable this. We plan to explore
these extensions in future work.

Another piece of recent work done in parallel with ours is Kloos et al.’s asynchronous
liquid separation (ALS) types [Kloos et al. 2015]. They extend the OCaml implementa-
tion of Liquid Types [Rondon et al. 2008] to reason about concurrency in a cooperative
task-based threading model. Specifically, they add linear analogues of points-to facts
from separation logic, where the assertions give a subset — a refinement — of the type
a reference points to, and permit strong updates to the choice of refinement. They use
this for a series of case studies, culminating in finding a bug in the MirageOS [Mad-
havapeddy et al. 2013] filesystem implementation (written in OCaml). Their design
is well-suited to the form of cooperative concurrency in MirageOS, but is restricted
to linear ownership transfer through task creation. RGREFs permit flexible aliasing,
but our Liquid Haskell embedding lacks proper substructural reasoning, making the
two incomparable. ALS also permits linear transfer of refinements without data flow,
which RGREFs do not support. Both systems build on Liquid Types, which is both
strong evidence of the generality of Liquid Types, and that both ALS and RGREFs
support effective automation.
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In parallel with our earlier work on RGREFs, Militão et al. developed rely-guarantee
protocols [Militão et al. 2014] — transition systems built on linear capabilities, where
a protocol may be split into two compatible protocols. Each transition of the protocol is
associated with an update to a single heap cell, but the protocol may exchange capabil-
ities to other heap cells, permitting protocols over flexible portions of the heap. More
recently, in parallel with our concurrent extension of RGREFs, they also extended rely-
guarantee protocols for lock-based concurrency [Militão et al. 2016] and abstract pro-
tocols. In both variants, compatibility between protocols over the same state is checked
by exhaustive search of possible interleavings (essentially exhaustive model checking)
rather than by logical implication. The protocols only express the identity of a tag on
tagged values in the heap, so the expressive power is limited to reasoning about a
(statically) fixed set of tags.

Dependent Types for Imperative Programming. Integrating dependent types and
state is a long-standing challenge for program verification. One approach is allowing
types to depend on immutable data [Freeman and Pfenning 1991], often using a decid-
able theory of refinements [Rondon et al. 2008]. More recent and powerful approaches
include Hoare Type Theory (HTT) [Nanevski et al. 2008; Nanevski et al. 2010] as im-
plemented in several COQ embeddings (both axiomatic like ours [Nanevski et al. 2008;
Chlipala et al. 2009], and foundational [Nanevski et al. 2010; Chlipala 2011]) and the
Dijkstra Monad as implemented in F? [Swamy et al. 2013].

HTT is essentially a monadic embedding of Hoare logic and separation logic in
CIC (though this understates its elegance). FCSL [Nanevski et al. 2014; Sergey et al.
2015a], discussed earlier, is a program logic similar in flavor to HTT, also implemented
foundationally in COQ, giving the specification language access to all of COQ’s depen-
dently typed term language for specification. Unlike HTT, it lacks the ability to store
higher order procedures in the heap. For its foundational soundness proof, FCSL terms
are given a denotation in the style of Brookes’ trace semantics [Brookes 2004], repre-
sented as an inductive type of partial traces in COQ.

The Dijkstra Monad has a similar flavor, but focuses on Dijkstra’s predicate trans-
formers [Dijkstra 1975]. HTT has considered concurrency in the form of transactional
memory [Nanevski et al. 2009], but does not handle fine-grained concurrency, and
restricts itself to single-state invariants over transactionally-accessed data. F? has
not yet explored concurrency. Older variants of F? (which was recently rebuilt from
scratch [Swamy et al. 2016]) included a variant of the Dijkstra monad which enforces
that all heap updates must satisfy a two-state invariant on heaps (as a binary rela-
tion), and included axioms for relating the current heap via the heap relation to a
previous heap. This mechanism is similar in flavor to (sequential) rely-guarantee ref-
erences, but coarser in both relation granularity and the inability to separate multiple
roles in a protocol.

RGREFs integrate dependent refinement types into an imperative language by al-
lowing refinement types to apply to heap fragments, subject to a semantic check (sta-
bility) that the type is sensible and no operations will arbitrarily change the mean-
ing of the type. This notion of stability is based on traditional rely-guarantee reason-
ing [Jones 1983], so support for concurrency carries over naturally. RGREFs can spec-
ify fine-grained asymmetric protocols (as can FCSL, but not F?), and (by weakening
references) support enforcing progressively stronger invariants over time, particularly
when sharing previously thread-local data for the first time. As with the program logics
discussed above, HTT, F?, and FCSL prove full Hoare triples — functional correctness
— while RGREFs require some extension to prove full correctness [Gordon 2014].
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8.1. Verification Burden
Throughout we have claimed RGREFs target an intermediate point in the verifica-
tion space, between generic concurrency type systems for properties like race free-
dom [Flanagan and Freund 2000; Gordon et al. 2012] or deadlock freedom [Flanagan
and Abadi 1999] and the concurrent program logics discussed above. It should be clear
that the expressiveness is clearly an intermediate between the two groups. But we
have thus far left implicit that the specification and verification burden is similarly
intermediate, beyond implying that basing RGREFs on refinement types (which have
been shown to be effectively inferable and automatable [Rondon et al. 2008; 2010;
Vazou et al. 2013; Vazou et al. 2014b; Vazou et al. 2015]) and reference capabilities
for mutability control [Tschantz and Ernst 2005; Zibin et al. 2007; Zibin et al. 2010]
(which have shown evidence of developer preference and usability at scale [Gordon
et al. 2012] as well as suitability for inference [Huang et al. 2012]) should produce an
intermediate burden on developers. Strong evidence for this requires more experience,
but we offer preliminary evidence here based on comparing specification and (manual)
proof burden for implementation of analogous structures.

8.1.1. FCSL. Sergey et al. [Sergey et al. 2015a] give specification burden for FCSL
versions of several lock-free data structures we also verified here. FCSL is a full pro-
gram logic for functional correctness, and also used to verify a form of abstract atom-
icity [Sergey et al. 2015b] of these structures, so we would expect a larger specification
and verification burden for FCSL than RGREFs.

The FCSL version of the Treiber stack requires 980 lines of COQ to specify on top
of the FCSL implementation [Sergey et al. 2015a], while we require only 105 lines to
specify an RGREF version and discharge the resulting proof obligations. Their proofs
ensure abstract atomicity, and actual completion of operations (i.e., if push returns, the
element was actually pushed onto the stack). As described in Section 3.2.2, the RGREF
implementation proves only that the stack’s invariants are respected (both one- and
two-state invariants ensuring only pops and pushes occur). A significant portion of the
FCSL proof and specification work is devoted to setting up concurroids [Nanevski et al.
2014], the core specification primitive of FCSL. These primitives are very expressive,
but also significantly more structured than simple binary relations.

They also build a producer-consumer example on top of their Treiber stack, similar
to the extension we give in Section 3.2.2 to highlight asymmetric protocols. This re-
quired an additional 608 lines of COQ to specify the extension in FCSL [Sergey et al.
2015a], 243 of which (according to Sergey et al. [Sergey et al. 2015a]) are client code
and client-side proofs. The remainder of their code — 365 lines — specifies auxiliary
state and proves assertion stability for that state (mostly lemmas relating stack states
and histories).

We required only 38 additional lines of code (with no client code) and 66 additional
lines of proof, though this includes duplicating the push and pop operations to verify
that they satisfy more restricted types (Section 3.2.2), and proving that these more re-
stricted forms could be used anywhere the originals were. We could have instead used
the restricted versions (e.g., with push prohibited from popping) for the base Treiber
stack, in which case the overall Treiber stack would have required 38+18=56 (adding
the original Node and deltaTS definitions to the producer-consumer implementation)
lines of code and 66+20=86 lines of proof (adding stability for deltaTS, etc.).

The FCSL client code sets up exactly two threads (one producer and one consumer),
with each thread keeping track of the set of items it has successfully pushed (or
popped) using a thread-local array, ensuring these assertions are stable and that after
termination each thread has pushed (popped) all elements of a predetermined set. This
relies on the use of the explicit history monoid used by the stack specification, which
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permits ensures that any element popped from the stack was previously pushed. We
could write RGREF client code to perform the same actions as the FCSL client code,
and would be able to prove the producer at most removed elements from its local queue
and pushed elements on the stack (similarly for the consumer). RGREFs could not
prove that either thread actually performed its work, or that the final set of elements
in the consumer’s local structure matched the original set of elements in the producer’s
local structure. This is partly due to lack of ghost state (notably, histories) in RGREFs,
and partly due to the fact that we lack a way to share any refinements to argument
predicates that occur inside an operation (such as push) with the operation’s caller. We
describe this issue in more detail in relation to VeriFast, below.

Both FCSL and RGREFs are aimed at shallow embedding into COQ, so our COQ
implementation seems to satisfy our goals of an intermediate proof burden for proving
properties of intermediate strength, at least with respect to FCSL.

8.1.2. VeriFast. VeriFast is a more mature system for automated (SMT-based) verifi-
cation of concurrent programs using separation logic, applicable to C and Java [Jacobs
and Piessens 2011]. VeriFast includes a shared boxes extension [Smans et al. 2014]
to separation logic, which are roughly named regions with a fixed two-state invariant
over the region contents, with permissible actions on the region explicitly enumerated
(in a way, similar to the role individual constructors of rely and guarantee relations
provide, though reflexivity is implicit). Shared boxes have been used to implement a
lock-free monotonic counter and a sequential stack. As with FCSL, these verifications
prove full functional correctness (i.e., that each operation actually does work, the cor-
rect number of times), but unlike FCSL no form of atomicity (abstract or otherwise) is
proven (indeed, the stack is sequential, and would not satisfy such a specification).

The C implementation of the monotonic counter27 using shared boxes requires (ig-
noring the main function) 27 lines of specification to declare the shared box governing
the counter, annotate the increment operation, and coerce an integer pointer into the
appropriate shared box. For roughly the same functionality, our COQ implementation
requires 12 lines total (for specification, proof hints, and implementation), and our Liq-
uid Haskell implementation requires only the 2 lines of specification given in Section
5.2.2: the types for the allocation and increment functions.

VeriFast’s numbers include the use of handle predicates, which play a somewhat
similar role to refiners in RGREFs and F?’s older primitive for witnessing relations
between successive heaps — the read code makes two reads, and handle predicates
are used to statically prove the result of the second read is greater than or equal to
the result of the first. This is not explicitly proven in the RGREF code of Figure 2. The
analogous result in our system would be to read an atomic counter twice using refiners
to embed the relationship in the counter’s type:

x <- mkCounter ();
observe x as v1 in (λ n h => n >= v1);
observe x as v2 in (λ n h => v1 <= v2 <= n);
(* Γ = . . . , x : ref{N | λn h. v1 <= v2 <= n}[increasing, increasing] *)
assert (v1 <= v2)

RGREFs cannot statically verify the final assertion, only accumulate equivalent in-
variants in the counter’s type. Because the concurrent RGREFs presented here are a
minimalist system, the lower bound on the counter’s value does not escape the refer-

27Here we manually count the lines in the economically typeset version [Smans et al. 2014], but a more
readily accessible version exists: https://people.cs.kuleuven.be/∼bart.jacobs/verifast/examples/incr box/incr
box.c.html.
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ence itself — the current system lacks a supporting program logic, and the only form
of refinement is attached to references.

The sequential stack implementation28 requires 174 lines of annotation (it does not
use shared boxes, as it is sequential). This is single-threaded C, and some portion of
the overhead is due to handling memory deallocation as well as size and empty-check
operations that we do not implement. The implementation also contains a (memory
leaking) Treiber stack29, which requires 308 lines of code.30 The VeriFast distribution
also includes a Treiber stack using hazard pointers [Michael 2004] to reclaim memory,
with a correspondingly higher proof burden for the more complex structure.

Our lock-free Treiber stack implemented in the COQ DSL requires only 63 lines of
proof, for proofs that are predominantly manual, about 42 lines of specification and
code. The producer-consumer extension to use more precise specifications for pushing
and popping adds another 104 lines of code and proof, but this includes proving that
complete reimplementation of the push and pop operations on more restricted rely-
and guarantee-relations are type-correct for more precise specifications — so much of
that is actually performing more precise versions of proofs from the first definition,
making the actual specification and proof burden for the producer-consumer lower:
142 lines of code and proof for a self-contained version.

The VeriFast implementations prove that the push and pop operations actually per-
form the appropriate action, as opposed to only ensuring the operations preserve cer-
tain one- and two-state invariants. The VeriFast implementations are parameterized
by ghost code to update auxiliary state on behalf of clients [Jacobs and Piessens 2011],
which permits clients to choose and manage their own auxiliary state, such as par-
tial views of data structure contents and moving permissions between the client and
data structure. RGREFs lack auxiliary state, but have refiners, which can be used for
some (not all) of the same use cases (notably, to relate previous and current values).
However, RGREFs do not have a way to reflect use of a refiner inside a routine back
to callers. In our COQ implementation, we could leverage the ambient logic to param-
eterize over any rely strong enough to prove local operations (i.e., a rely that implies
deltaTS), and in principle could modify the language to indicate how refinements on
the stack may have been updated inside the operations. Then using a form of explicit
stabilization [Wickerson et al. 2010] (i.e., refine the references by adding predicates
that are the strongest property implied by actions internal to the operation, that are
also preserved by the rely), the choice of a stronger rely and the ways this strengthens
post-operation knowledge of the stack state could be “exported” to callers.

∀R.R ⊆ deltaTS.∀G. deltaTS ⊆ G. {s : ref{nodeopt | P}[R, deltaTS], n : nat}
push ts s n

{s : ref{nodeopt | P ∩ dheadIs neR}[R, deltaTS], n : nat}
The theory to permit such a specification remains future work, but the expressiveness
gap does not appear insurmountable. The relative trade-offs in expressiveness com-
pared to VeriFast’s approach are not immediately obvious, though VeriFast’s technique
appears more general.

The difference in language abstraction level, operations provided, and strength of
properties proven makes this comparison a bit unfair (in RGREFs’ favor), but this still

28Taken from https://people.cs.kuleuven.be/∼bart.jacobs/verifast/examples/stack.c.html, but our counts omit
the usage examples and cover only the definitions and proofs for the structure and operations themselves.
29examples/shared boxes/stack hp/stack leaking.c, which despite the directory name is a hazard-
pointer-free implementation in the same directory as the hazard pointer version described in a paper [Smans
et al. 2014].
30We manually extracted annotation lines for the structure’s specification, and the annotations/lemmas for
allocation, concurrent push, and concurrent pop.
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suggests RGREFs are imposing specification and proof burden in line with the desired
intermediate goal.

9. CONCLUSIONS & FUTURE WORK
We have shown how to soundly enable refinement types constraining mutable data in
a shared-memory concurrent setting, and shown the efficacy of the approach with case
studies verifying state-based and change-based (two-state) invariants for a number
of lock-free data structures, using two implementations. RGREFs’ expressiveness
lies at an intermediate point between classic type systems for safe concurrency and
modern concurrent program logics, proving useful invariants with correspondingly
intermediate specification (and proof) burden. This is also the first approach to
verifying invariants of concurrent data structures that can prove these invariants
in the context of an otherwise-unverified program. Our COQ implementation demon-
strates the technique’s expressiveness, while our Liquid Haskell implementation
shows that very slight restrictions allow effective integration with existing automated
refinement type implementations; the technique is usable now. In addition to these,
we have performed the first formal machine-checked proof of invariants for a lock free
union-find implementation.

Looking forward, there are some natural extensions to this work worth exploring.
One example is the addition of linear capabilities to the system to reason about certain
types of interference being enabled or disabled over time; related systems have used
this idiom to great effect [Dinsdale-Young et al. 2010; Svendsen et al. 2013; Turon et al.
2013; Jung et al. 2015], and it could be further combined with logical transfer of re-
finements separate from dataflow [Kloos et al. 2015] for additional flexibility. Another
example is the integration with explicit stabilization [Wickerson et al. 2010] outlined
in Section 8’s comparison with VeriFast. A more substantial extension is building a full
program logic atop concurrent RGREFs as a way to verify functional correctness and
linearizability. We have early results on the former [Gordon 2014], but proving pre-
and post-conditions without reasoning about the granularity of thread interference is
only part of the full correctness criteria for FCDs. Rely-guarantee reasoning has al-
ready been exploited for proving linearizability [Vafeiadis et al. 2006; Liang and Feng
2013], and integrating these ideas with RGREFs seems a natural next step.
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A. SOUNDNESS FOR CONCURRENT RGREFS
We have proven soundness for our type system. At a high level, the proof is decomposed
into two steps. First, we rely on a repetition of sequential soundness [Gordon et al.
2013] of the pure fragment (for the simpler pure fragment here) to ensure soundness
within a given thread. Second, we prove soundness for our richer imperative fragment.
This is a non-trivial extension because it binds variables from the imperative context
in each others’ types, which was not supported in the original system; observe-field
could not be given a proper type in the previous core language. Third, we compose
soundness proofs of threads by synthesizing classic rely-guarantee reasoning among
threads [Jones 1983] from the rely relations embedded in types in the typing context
for each thread. The latter steps are handled by our embedding into the Views Frame-
work [Dinsdale-Young et al. 2013], detailed in the remainder of this section.

The Views Framework abstracts core concepts of concurrent type systems and pro-
gram logics into an abstract program logic framework, with the goal of providing a
reusable core for proving soundness of proof systems for concurrent programs. Instan-
tiating a handful of parameters for atomic actions and axioms about instrumented
and concrete program state spaces yields a sound semantic basis for reasoning about
safety properties of concurrent programs in the Views Framework’s semantic logic —
using subsets of the state space as assertions. Proving that a given source language
judgment (e.g., a typing derivation [Gordon et al. 2012] or program logic judgment) can
always be embedded to a valid Views derivation then implies soundness for the orig-
inal source judgment (up to the embedding preserving the intended meaning of the
source judgment — that not all assertions embed to True). In our case, type environ-
ments serve as assertions, and flow-sensitive type judgments embed to Hoare triples
in the Views logic. Our embedding of type environments requires that the predicates
of any reference hold for the referenced heap segment.

In the richest instantiation, a view represents a thread-local assumption about the
global program state, and is stable with respect to an interference relation.31 Compat-
ibility is ensured by making the view a partial commutative monoid, so for example if
one thread’s view contains capabilities that are not modeled by the interference rela-
tion on another view, the composition of those views is undefined.

While designed for first-order languages and subsequently extended for higher-order
specifications [Svendsen et al. 2013] (but not higher-order store), we side-step some
higher-order issues by extending the Views Framework with commands to interpret

31The terminology is drawn directly from rely-guarantee reasoning [Jones 1983], and the latter can be
proved sound by embedding into the Views framework.
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Locations L̂oc ::= `A,P,R,G Terms M̂, N̂ ∈ source terms | L̂oc
Heaps Ĥ ∈ Loc ⇀ M̂ Store Ŝ ∈ Var ⇀ M̂

Lb`A,P,R,Gc
def
= ` and lifted to terms, heaps, etc.

M def
= {m ∈ Heap× Heap Type× Env× Env Type× Env Type | ValidM(m)}

` Σ ` H : Σ ` Γ ∀x ∈ ∆.Γ ` ∆(x) ` S : Γ,∆ ∀`A,P,R,G ∈ cod(H + S). P H(`) H ∧ stable P R
∀`A,P,R,G ∈ cod(H + S)∀`′A,P ′,R′,G′ ∈ cod(H + S). ` ≡ `′ ⇒ ((G

′ ⇒ R) ∧ (G⇒ R
′
) ∨ (` == `

′
))

∀`A,P,R,G ∈ cod(H + S).Σ; ∅; ε ` ref{A | P}[R,G]

ValidM(H,Σ, S,Γ,∆)

(H,Σ, S,Γ,∆) • (H
′
,Σ

′
, S

′
,Γ

′
,∆

′
)

def
= (H ∪H′,Σ ∪ Σ′, S ] S′,Γ ∪ Γ′,∆ ]∆′) where ValidM otherwise ⊥

m ∈ P ∗Q ⇐⇒ ∃m′
. ∃m′′

.m
′ ∈ P ∧m′′ ∈ Q ∧m′ •m′′

= m

(H,Σ, S,Γ,∆)R(H
′
,Σ

′
, S

′
,Γ

′
,∆

′
)

def
= Σ ⊆ Σ

′ ∧ (S,Γ,∆) = (S
′
,Γ

′
,∆

′
) ∧H RSH H

′

H RS,x 7→v
H H

′ def
=

 ⋂
`A,P,R,G∈v

H ↓`= H
′ ↓` ∨R H(`) H

′
(`) H ↓` H

′ ↓`

 ∩ (H RSH H
′
)

H RεH H
′ def

= True S def
= Heap× Env b(H,Σ, S,Γ)c :M→ S def

= (LbHc, LbSc)

Fig. 14. Views state space. “Hats” (e.g., M̂ ) indicate explicit annotations of RGREF components on locations,
while the erased (Lb−c) omits this.

small-step call-by-value semantics for an extension of CIC, and using syntactic λ-
terms as components of the Views model M. The Views Framework interprets loops
and conditionals as non-deterministic loops and branches respectively, so we actually
embed into a language with more relaxed semantics than the core language. Because
our typing rules are not sensitive to branch and loop conditions in the imperative frag-
ment, this relaxation is not problematic (dependent elimination in the pure fragment
is preserved by our embedding). We restrict the imperative fragment to first-order for
simpler presentation, but the RGREF-specific proof approaches used here are orthog-
onal to the Views extensions used to enable higher-order imperative contexts; they
should be straightforward (though tedious) to combine.

Following the parameter scheme from the main Views paper [Dinsdale-Young
et al. 2013], we use an interference-stabilized separation algebra for our view, and
instantiate atomic commands and axioms as one might expect relative to that state.
In particular, our views take the form {p ∈ P(M) | ∀m ∈ p.R(m) ⊆ p}32 with
(type-)instrumented states M, interference relation R (which calculates a global in-
terference relation from the references in context), the join operator ∗ on views defined
as in Figure 14, and the collection of component-wise empty maps as the unit view.
This selects the subsets of instrumented states which are closed under transitions
in the interference relation. That figure also defines concrete execution states S, an
erasure b−c from views (M) to concrete states, and an interpretation J−K(−) of atomic
commands (C) on runtime states S. Figure 15 defines J−K(−) on Views M for clarity
and indicating how view state is updated to match actual execution. This is used not

32In CIC/COQ, intuitively {p :M→ Prop | ∀xy. , p x ∧R x y → p y}.
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J−K : Atom→M→M
Jx := allocA,P,R,G MK(H,Σ, S,Γ,∆)

def
= (H[` 7→ S(M) ⇓cbv,Σ[` 7→ A], S[x 7→ `A,P,R,G], (Γ, ?), (∆, ?))

x : ref{A | P}[R,G] placed by splitting, ` fresh
Jx :=!NK(H,Σ, S,Γ,∆)

def
= (H,Σ, S[x 7→ H(N ⇓cbv)], (Γ, x : (fold G A)),∆) where Γ ` N : ref{A | P}[R,G]

J[x] := NK(H,Σ, S,Γ,∆)
def
= let ` = S(x) in (H[` 7→ S(N) ⇓cbv],Σ, S,Γ,∆) where NoDerefs(N)

J[x] := yK(H,Σ, S,Γ,∆)
def
= let ` = S(x) in (H[` 7→ S(N) ⇓cbv],Σ, S,Γ,∆/y)

Jx := interpτ (M)K(H,Σ, S,Γ,∆)
def
= (H,Σ, S[x 7→ S(M) ⇓cbv], (Γ, x : τ),∆)

Jx := interp′
τ (M)K(H,Σ, S,Γ,∆)

def
= (H,Σ, S[x 7→ S(M) ⇓cbv],Γ, (∆, x : τ))

Jx := CAS(r,M,M ′)K(H,Σ, S,Γ,∆)
def
= let ` = S(r) in

{
(H[` 7→ S(M ′) ⇓cbv],Σ, S[x 7→ true], (Γ, x : B),∆) if H(`) = S(M) ⇓cbv
(H,Σ, S[x 7→ false], (Γ, x : B),∆) otherwise

JRNZ xK(H,Σ, S,Γ,∆)
def
= (H,Σ, S,Γ′,∆) if H(S(x)) = Z, Γ′ extends Γ as inRN rule’s Z case

JRNS x nK(H,Σ, S,Γ,∆)
def
= (H,Σ, S[n 7→ v],Γ′,∆) if H(S(x)) = S v, Γ′ extends Γ as inRN rule’s S case

JRrefx rK(H,Σ, S,Γ,∆)
def
= (H,Σ, S[r 7→ v],Γ′,∆) if H(S(x)) = v, Γ′ extends Γ as in T-REFINEREF

J−,−K : Env × Env→ P(M)

Jε, εK def
= {(∅, ∅, [], ε)}

J(Γ, x : N), εK def
= JΓ, εK ∗ {m ∈ M | m.Σ;m.H;m.Γ ` m.S(x) : S(N) ∧m.Σ;m.H;m.Γ ` N : Prop ∧m.Γ(x) = N}

JΓ, (∆, x : N)K def
= JΓ,∆K ∗ {m ∈ M | m.Σ;m.H;m.Γ ` m.S(x) : S(N) ∧m.Σ;m.H;m.Γ ` N : Prop ∧m.∆(x) = N}

Fig. 15. Embedding into the Views Framework. We lift stack lookup (S(−)) to terms as well, substituting
stack contents for variables.

only to define the dynamic semantics of atomic commands, but the specification of
updates to the non-concrete portions of the view state necessary for proving soundness.

Our view states M are the well-formed (ValidM) subset of 5-tuples of heap and
stack, with heap and stack typings. The validity check enforces basic well-typing of
heap and stack components (including enforcing that they contain no dereference
expressions), compatibility between references, and that all refinements are true.

We instantiate the framework’s atomic statements to the statements of the impera-
tive fragment, modulo an embedding ↓ − ↓ on commands which decomposes loops and
conditionals into the Views Framework’s non-deterministic forms. Every command
containing a pure term M steps by fully (call-by-value) reducing the term. This re-
spects correct thread interleaving semantics because reduction of the pure fragment
may not access the heap.

We must also prove the axioms respect execution. Axiom soundness intuitively
states that the axioms for atomic commands (the embedding of Figure 4’s imperative
typing rules for atomic actions) on views (R-stabilized Ms) coincide with the actual
semantics of the commands on concrete runtime states S: that any time a command
is executed in a runtime state consistent with the erasure of its axiom’s precondition
view, the resulting state is consistent with the erasure of the same axiom’s postcon-
dition view. We give a stylized proof by defining our atomic action semantics on M
instead of S in Figure 15. The basic interpretation can be obtained by paying attention
to only the H and S components ofM, with the other components essentially demon-
strating how the postcondition views would need to be modified to be consistent with
the new concrete states. For each atomic command, lifting the definition to a set of
valid R-stableMs (views), the outputM will also be a set of valid R-stableMs.

LEMMA A.1 (AXIOM SOUNDNESS). For all Γ,∆,Γ′,∆′, and atomic command a, if
Γ; ∆ ` a a Γ′; ∆′ (i.e., if p ∈ JΓ,∆K and q ∈ JΓ′,∆′K then (p, a, q) ∈ Axiom), for all m ∈M,
JaK(bp ∗ {m}c) ⊆ bq ∗ R({m})c.

PROOF. By induction on the atomic command typing. Most cases are variations on
writes, which depend on guarantee checks, global compatibility, and the calculated
global interference for framed-out views.
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— Interpret: Progress, preservation, and strong normalization hold of the pure frag-
ment (see original RGREF proof [Gordon et al. 2013]). Thus, the complete call-by-
value reduction of a pure term terminates with the appropriate type. As in previous
proofs, folding and restrictions on reads ensure that global compatibility invariants
are preserved. The only change to the underlying state S is binding a new stack vari-
able, which trivially composes correctly with the (unmodified) framed view. The only
deviation from previous proofs is the presence of field reads, which are equivalent to
field projection following a standard read.

— Write: By the global reference compatibility invariant and the fact that conversion
can only weaken reference types, compatibility is preserved in the current view,
and the update is also permitted (by obliviousness or compatibility) according to the
calculated global rely form. By compatibility and the proof of predicate preservation,
the predicates are preserved for all view components.

— Allocation: This case is in some ways a simplification of the write case, only estab-
lishing the predicate.

— CAS: Similar to the write case.

Lemma A.1 concerns only the soundness of atomic commands, rather than the full
language. As long as all typing derivations can be embedded to a valid Views deriva-
tion, full soundness for larger structures (loops, sequencing, conditionals, etc.) follows
from Lemma A.1 and the Views Framework’s soundness (for structural rules).

THEOREM A.2 (RGREF SOUNDNESS). For all Γ, ∆, C, Γ′, and ∆′

Γ; ∆ ` C a Γ′; ∆′ =⇒ {JΓ,∆K} `↓ C ↓a {JΓ′,∆′K}

PROOF. By induction on the source derivation. The atomic command cases ap-
peal to Lemma A.1, while the compound command cases proceed mostly by the in-
ductive hypothesis and soundness of the underlying Views Framework Logic. Loops
and conditionals become slightly more complex due to desugaring. The only complex
cases are the refiners, which embed to nondeterministic choice of specialized com-
mands for each constructor case, which get stuck if run with the wrong constructor
(this is a nondeterministic model of execution semantics that would only run the cor-
rect branch). Reference refiners simply desugar to binding and the refiner body (i.e.,
↓ Rref(x, r ⇒ C) ↓= Rref(x, r);C).

(1) Heap writes: Follows from Lemma A.1.
(2) Loops, conditionals, sequencing, parallel composition: Straightforward by com-

mand embedding and the inductive hypothesis.
(3) Environment weakening: By the Views frame rule.
(4) Refiners: Each refiner embeds to possibly-nondeterministic choice of constructor-

specific refinement commands, each of which:
— Gets stuck if it tries to match the wrong constructor in the heap, and
— Binds the constructor components appropriately if the constructor matches.
Each constructor-specific command is sequentially followed by the body for that
constructor case, and embeds via the inductive hypothesis.

B. SEMANTICS FOR CONVERT
Most primitives in the pure fragment are standard elements of CIC or modest exten-
sions (e.g., references with no eliminator) with obvious semantics. The exception is
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Parameter A. (Atomic Commands) The atomic commands as in Figure 4. The composi-
tional commands are simply inherited from the Views Framework language.
Parameter B. (Machine States) S as in Figure 14.
Parameter C. (Interpreting Atomic Commands) J−K(−) as in 15, projected to its actions
on S rather thanM.
Parameter D. (Views Commutative Semigroup) Instantiated as the stabilized View
monoid induced byM and R in Figure 14.
Parameter E. (Axiomatization) Embedding of the typing rules for atomic commands
from Figure 4, using the environment embedding from Figure 15.
Parameter H. (Separation Algebra) (M, ∗, emp) as in Figure 14.
Parameter I. (Separation Algebra Reification) Erasure b−c.
Parameter K. (Interference Relation) R as in Figure 14.
Parameter L. (Axiom Soundness III) Lemma A.1, which then induces Parameters G
and J.
We require no instantiation of Parameters M–Q, as we require no equivalent of con-
junction or disjunction of assertions, and use only the standard frame rule.
Fig. 16. Views Framework parameter instantiation, according to Dinsdale-Young et al. [Dinsdale-Young
et al. 2013].

e→ e′

convertτ (e)→ convertτ (e′) convertτ∗τ ′((e, e′))→ (convertτ (e), convertτ ′(e′))

τ ∈ {>, unit,N,B}
convertτ (e)→ e convertσ→τ ((λx : σ′. e))→ (λy : σ. (λx : σ′. e) (convertσ′(y)))

convertref{A|P ′}[R′,G′](`A,P,R,G)→ `A,P ′,R′,G′

Fig. 17. Dynamic semantics for convert.

convert, for which we give full semantics in Figure 17. Recall that after elaboration,
locations at runtime are explicitly annotated with their base type, predicate, rely, and
guarantee:

`A,P,R,G

Similarly, in the elaborated core language, convert is annotated with its result type:

convertτ (e)

Every use of convert is subject to the following elaborated type rule:
T-CONV-ELAB
Σ;H; Γ `M : N Γ ` N ; N ′

Σ;H; Γ ` convertN ′(M)
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