
A Theory of Platform-Dependent Low-Level Software

Marius Nita Dan Grossman Craig Chambers
Department of Computer Science & Engineering

University of Washington
Seattle, WA 98195-2350

{marius, djg, chambers}@cs.washington.edu

Abstract
The C language definition leaves the sizes and layouts of types par-
tially unspecified. When a C program makes assumptions about
type layout, its semantics is defined only on platforms (C com-
pilers and the underlying hardware) on which those assumptions
hold. Previous work on formalizing C-like languages has ignored
this issue, either by assuming that programs do not make such as-
sumptions or by assuming that all valid programs target only one
platform. In the latter case, the platform’s choices are hard-wired
in the language semantics.

In this paper, we present a practically-motivated model for a
C-like language in which the memory layouts of types are left
largely unspecified. The dynamic semantics is parameterized by a
platform’s layout policy and makes manifest the consequence of
platform-dependent (i.e., unspecified) steps. A type-and-effect sys-
tem produces a layout constraint: a logic formula encoding layout
conditions under which the program is memory-safe. We prove that
if a program type-checks, it is memory-safe on all platforms satis-
fying its constraint.

Based on our theory, we have implemented a tool that discovers
unportable layout assumptions in C programs. Our approach should
generalize to other kinds of platform-dependent assumptions.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features; D.2.4
[Software Engineering]: Software/Program Verification

General Terms Languages, Verification, Theory

1. Introduction
In recent years, research has demonstrated many ways to improve
the quality of low-level software (typically written in C) by us-
ing programming-language and program-analysis technology. Such
work has detected safety violations (array-bounds errors, dangling-
pointer dereferences, uninitialized memory, etc.), enforced tempo-
ral protocols, and provided new languages and compilers that sup-
port reliable systems programming. The results are an important
and practical success for programming-language theory. However,
there remains a crucial and complementary set of complications
that this paper begins to address:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’08 January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

The memory-safety of a C program often depends on assumptions
that hold for some but not all compilers and machines.

Examples of assumptions include how struct values are laid
out in memory (including padding), the size of values, and align-
ment restrictions on memory accesses. To our knowledge, existing
work on safe low-level code (see Section 6) either (1) checks or
simply assumes full layout portability (e.g., that the program is un-
affected by structure padding) or (2) checks the program assuming
a particular C platform, making no guarantee for other platforms.

Requiring that code makes no platform-dependent assumptions
— e.g., by enforcing poorly understood and informally specified (C
Standard 1999) restrictions on C programs — is too strict because
low-level code often has inherently non-portable parts. An imprac-
tical solution is to rewrite large legacy applications in fully portable
languages or to use libraries that abstract all platform dependencies.
Such approaches ignore legacy issues, can be a poor match for low-
level code, and assume that language or library implementations are
available for an ever-increasing number of platforms.

Conversely, allowing implicit platform-dependent assumptions
can lead to pernicious defects that lie dormant until one uses a
platform violating the assumptions. Whereas defects like dangling-
pointer dereferences are largely independent of the language im-
plementation, so testing or verification on the “old platform” can
find many of them, defects like assuming two struct types have
similar data layouts are not. The results can be severe. Conceptu-
ally simple tasks like porting an application from a 32-bit machine
to a 64-bit machine become expensive and error-prone. Software
tested on widely available platforms can break when run on novel
hardware such as embedded systems. Widely used compilers can-
not change data-representation strategies without breaking legacy
code that implicitly relies on undocumented behavior. Section 2.2
discusses some specific real-world examples.

In practice, C programmers identify and isolate platform depen-
dencies manually. They may retest on each platform or use ad hoc
tool support, such as compiler flags and lint-like technology, rely-
ing on informal knowledge of how target platforms lay out data.
In contrast, the work presented in this paper informs the develop-
ment of a principled, fully automatic tool that discovers particular
unportable assumptions in C code.

More generally, we develop a semantics for low-level software
that has an explicit and separable notion of a platform. Without
such a notion, formal models or language-based tools for C face the
same dilemma as the C code they are designed to help: either they
apply only to fully portable code or they assume C implementation
details that do not hold on all platforms. With our approach, one
can “plug in” a platform description into a generic framework for
the operational semantics. We advocate our general approach for
making any work on C semantics (or semantics for any language
with some unspecified behavior) robust to platform dependencies.

Moreover, we use logic formulas to describe a program’s
platform-dependent assumptions. Such descriptions give a formal
definition to the idea of semi-portability — a piece of software or
an analysis may be correct given some assumptions, i.e., portable
to those platforms on which the assumptions hold. Software and
analyses could use these formulas as documentation for their as-
sumptions. In our work, we extract them automatically but conser-
vatively from C code.

1.1 Overview of Our Approach
The key to our formal model is isolating the notion of platform,
which we can think of as an oracle that answers queries about how
types are laid out. In our model, a platform has two roles: (1) as
a parameter to the operational semantics, and (2) as something we
can describe with a layout constraint. The key insight is this: Given
a program P , we can extract a layout constraint S from P and show
that P is memory-safe on all platforms satisfying S.

To see how platforms work as parameters to the operational se-
mantics, suppose we have a pointer dereference *e. The number of
bytes accessed depends on the size of the type of e, and this size is
determined by the platform. Therefore, our dynamic semantics has
the form Π ` P → P ′ where Π is a platform and P is a program
state. That way, the dereference rule can use Π to guide the memory
access and become stuck if Π deems the access misaligned.

As for layout constraints, they are formulas in a first-order
theory in which platforms are models. For example, the constraint
“access(4, 8) ∧ size(long) = 8” is modeled by any platform in
which values of type long occupy 8 bytes and 8-byte loads of 4-
byte aligned data are allowed.1 Per convention, we write Π |= S
when platform Π models constraint S.

Now given a program P we can try to find a constraint S such
that if Π |= S, then the abstract machine does not get stuck when
running P given Π. For our operational semantics, that means
it will not treat an integer as a pointer, read beyond the end of
a struct value, perform an improperly aligned memory access,
etc. Finding an S that describes exactly the set of platforms on
which the program does not get stuck is trivially undecidable,
so a sound approximation is warranted. In our theory, we take a
very conservative approach: A type system for source programs
produces S using no flow-sensitivity or alias information. Our tool
uses points-to information, but the general setup remains the same.

The key metatheoretic result is showing that the S our system
produces is indeed sound, i.e., its only models are platforms on
which the program does not get stuck. For the proof, we define a
second type system for program states. This second type system,
which exists only to show safety, is parameterized by a Π like the
dynamic semantics. Our type-safety argument then has two parts:

1. The second type system and operational semantics enjoy the
conventional preservation and progress properties.

2. If the first type system produces S given P , then P type-checks
in the second type system for any Π such that Π |= S.

1.2 Contributions and Caveats
To our knowledge, this work is the first to consider describing a
set of platforms on which a low-level program can run safely. At a
more detailed level, our development clarifies several points:

• We can define a sound type system for a language with partially
unspecified type layouts. The soundness theorem is proved once
and for all instead of once for each platform.

• Layout-portability questions are reduced to pointer-cast ques-
tions, namely, “when can a pointer to a τ1 be treated as a pointer

1 This example constraint is slightly simplified; see Section 3.4.

to a τ2?” This question, clearly akin to subtyping, depends on
the platform.

• Platform constraints can be described in a first-order theory and
extracted statically from the program.

• There should be a notion of “sensible” platform, meaning plat-
forms on which every cast-free program cannot get stuck.

For tractability, the formal model considers only a small expres-
sion language inspired by C. It has many relevant features, includ-
ing structs, heap allocation, and taking the address of fields, but we
omit some relevant features (e.g., bit-fields), and many irrelevant
ones (e.g., functions and goto). We also make some simplifying
assumptions in our definition of platform. In particular, we assume
all pointers have the same size and that alignment restrictions de-
pend on the size, but not the type, of data. We see no fundamental
problems extending our model in these directions.

The formal model directly informs the implementation of an
automatic tool we wrote to detect layout-portability problems in
C programs. In addition to producing a constraint describing the
platforms on which the program is portable, the tool checks the
constraint against a set of platforms of interest and outputs infor-
mative warnings when the constraint is violated. No access to the
platforms of interest is needed.

1.3 Outline
Section 2 presents examples of platform-dependent code and the
constraints describing their layout assumptions. Section 3 presents
our core formal model, including the definition of platforms, our
first-order theory, the dynamic and static semantics of our language,
and our soundness theorem. Section 4 describes important exten-
sions to the base model. Section 5 describes our tool. The last two
sections discuss related work and conclude.

2. Examples
Section 2.1 presents several tiny examples of C code to explain
issues of layout portability and relevant platform constraints. Sec-
tion 2.2 complements this “tutorial” with actual platforms, systems,
and coping strategies related to these concepts.

2.1 Small Code Fragments
Example 1: Accessing Memory

(*e).f

A memory access such as (*e).f reads or writes s bytes at some
alignment a. If e has type struct T* and the f field has type τ ,
then s is the size of τ and a is the greatest common divisor of the
alignment of struct T and the offset of f.

Platforms choose sizes, alignments, and offsets such that cast-
free programs do not fail. For example, if a machine prohibits 8-
byte accesses on 4-byte alignments, a compiler might put pad bytes
before f fields or break 8-byte accesses into two 4-byte accesses. In
the latter case, the compiler “supports” 8-byte accesses on 4-byte
alignments.

In this paper, we assume platforms include an access function
of type Int → Int → Bool, as well as size and alignment functions
that map types to integers. Our example (*e).f therefore induces
the constraint access(a, s) where a and s are defined above. How-
ever, this constraint assumes e actually evaluates to a pointer with
alignment a and a τ at the right offset. The constraints for cast ex-
pressions must ensure this.

Example 2: Prefix

struct S1 { int* f1; int* f2; int* f3; };
struct D1 { int* g1; int* g2; };

A cast from struct S1* to struct D1* is safe if struct D1 has
a less stringent alignment than struct S1, and for each field in
struct D1 there is a field of compatible type in struct S1 at the
same offset. Our formal model captures this requirement precisely.

Example 3: Flattening and Alignment

struct S2 { struct D2 {
int* f1; int* g1;
struct {int* f2; double f3;} f4; int* g2;
}; };

A cast from struct S2* to struct D2* has similar constraints as
in Example 2. However, in this case, some platforms may put pad
bytes before f4 because of alignment restrictions. Our system will
generate constraints preventing such a representation mismatch if
the program has this cast.

Example 4: Suffix

struct S3 { struct D3 {
int* f1; int* g1;
int* f2; double g2;
double f3; };
};
struct S3* x = ...;
struct D3* y = (struct D3 *)(&(x->f2));

The cast in the initializer for y above is a situation where the source
and destination types both point to an int* followed by a double.
However, a platform with 4-byte pointers, 8-byte doubles, and 8-
byte alignment of doubles cannot support this cast because struct
D3 has more padding. Platforms without padding can allow this
cast, even though &x->f2 has type int** in C.

Example 5: Arrays

struct S4 { int f1; short f2; };
struct D4 { int g1; };

struct S4 * x = ...;
struct D4 y = ((struct D4 *)x)[7];

Previous examples implicitly assumed the destination pointer was
not used as an array (i.e., it was used as a pointer to exactly one
struct). On many platforms that add trailing padding after field f2,
a cast from struct S4* to struct D4* is legal. However, the
cast above is broken due to intermittent pad bytes in the layout
pointed to by x. This issue is orthogonal to array-bounds violations;
we must reject the cast even if x points to more than 7 elements.
Section 4.1 extends our model to distinguish pointers to single-
objects from pointers to arrays.

2.2 Practical Scenarios
The scope of the platform dependency problem is not precisely
known because defects can lie dormant until one changes hardware
or compiler. Therefore, like date bugs (such as the famous Y2K
problem), offending code can be difficult to locate and fix.

The LinuxARM project, a port of Linux to the ARM embedded
processor, provides compelling evidence that defects are subtle
and widespread. The ARM compiler gives all structs at least 4-
byte alignment whereas the original Linux implementation (gcc
and x86) uses less alignment for structs containing only short and
char fields. To quote: (Aleph One Limited)

At this point, several years of fixing alignment defects in
Linux packages have reduced the problems in the most
common packages. Packages known to have had alignment

τ ::= short | long | τ∗ | N
t ::= N{τ f}
e ::= s | l | x | e = e | e.f | (τ∗)e | ∗(τ∗)(e) | (τ∗)&e→f

| new τ | e; e | if e e e | while e e | τ x; e

Figure 1. Source-Language Syntax: A program has the form t; e

defects are: Linux kernel; binutils; cpio; RPM; Orbit (part
of Gnome); X Windows. This list is very incomplete.2

They also note that defects sometimes lead to alignment traps, but
sometimes lead to silent data corruption. Kernel developers are
basically told to, “be careful” (Love 2005).

Ports to 64-bit platforms provide another evidence source. Some
vendors do little more than suggest using lint-like technology,
such as gcc’s -Wpadded flag for reporting when a struct type has
padding (IBM 2004). However, others find that aggressive warning
levels produce so much information for legacy code that they rec-
ommend using multiple independent compilers and looking only at
lines for which they all produce warnings (Martin et al. 2005).

3. Core Language
This section develops a formal model that can explain examples 1–
4 from Section 2. We define an appropriate core language, a defini-
tion of platform, a dynamic semantics, a first-order theory that con-
strains platforms, a type-and-effect system to produce constraints,
and the type-soundness result, acquired via a lower-level, platform-
dependent type system. Figure 8 on page 8 summarizes the model’s
judgments.

3.1 Idealized Syntax
For source programs, we consider a small subset of C with some
convenient syntactic changes, as defined in Figure 1. Most signif-
icantly, we omit functions and make all terms expressions. A pro-
gram is a sequence of struct definitions (t) and an expression (e)
to be evaluated. (We consistently write x for a sequence of ele-
ments from syntactic category x and · for the empty sequence. We
also write xi for a length i sequence.) Type definitions have global
scope, allowing mutually recursive types.

Types τ include short and long (for two sizes of data), pointers
(τ∗), and struct types (N rather than the more verbose struct N).
As in C, all pointers (levels of indirection) are explicit. A struct
definition (t) names the type and gives a sequence of fields. For
simplicity, we assume all field names in a program are disjoint.
Several expression forms are identical to C, including short and
long constants (s and l; we leave their exact form unspecified),
variables (x), assignments (e = e), field access (e.f), and pointer
casts ((τ∗)e).

For pointer dereference (∗(τ∗)(e)) and pointing to a field
((τ∗)&e→f), it is a technical convenience to require a type anno-
tation in the syntax. (Our particular choice happens to correspond
to C’s syntax.) Dereference in C is type-directed (if e has type τ∗,
then ∗e reads sizeof(τ) bytes); our type decoration makes this
explicit. The cast in address-of-field expressions helps us support
“suffix casts” as in Example 4 of Section 2.

The remaining expression forms are for memory allocation or
control flow. new τ heap-allocates uninitialized space to hold a τ ;
it is less verbose than malloc(sizeof(τ)). (e; e) is sequence.
(if e e e) is a conditional, branching on whether the first subex-
pression is 0. To avoid distinguishing statements from expressions,

2 Emphasis in original.

i, a, o ∈ N
b ::= 0 | 1 | . . . | 255
w ::= b | uninit | `+i
e ::= . . . | w
v ::= w
α ::= [a, o]
H ::= · | H, ` 7→ v, α

Figure 2. Syntax extensions for run-time behavior

a while-loop evaluates to a number if it terminates. Finally, (τ x; e)
creates a local variable x of type τ bound in e.

As defined in Section 3.3, program evaluation depends on a plat-
form Π and modifies a heap H . Because t does not change during
evaluation, we write Π; t ` H; e → H ′; e′ for one evaluation step.
Rather than define a translation (i.e., a compiler) from e to a lower-
level platform-dependent language, we extend e with new lower-
level forms. This equivalent approach of consulting the platform
lazily (at run-time) simplifies the metatheory while fully exposing
the intricacies of platform dependencies.

Figure 2 defines the syntactic extensions for run-time expres-
sions and heaps. A value v is a sequence of atomic values w, which
can be initialized bytes b, unininitialized bytes uninit, or pointers
`+i. A pointer is a label ` and an offset i because the heap maps
labels to value sequences, so a pointer into the middle of a value
has a non-zero offset. This heap model is higher level than assem-
bly language but low enough for middle pointers, suffix casts, etc.
In other words, it is ideal for modeling layout dependencies.

Heaps also map labels to alignments. We model alignments as
pairs [a, o] where o is an offset from alignment a. Typically o is
0, e.g., [4, 0] describes 4-byte aligned pointers. Supporting offsets
adds some precision, e.g., if we add 2 bytes to a [4, 0] pointer we
get [4, 2] and adding 2 more bytes gives [4, 4], which is isomorphic
to [4, 0]. Without offsets, adding 2 bytes to a 4-byte aligned pointer
would produce a 2-byte aligned pointer. Section 3.5 describes a
subalignment relation precisely.

3.2 Platforms
Before we show the semantics of our language, we need to intro-
duces a precise notion of platform, as platforms play central roles in
both the dynamic and static semantics. A platform (Π) is a record of
functions with the following components, summarized in Figure 3:

• A translation of types into a lower-level representation (σ), de-
scribed below. We write Π.xtype(t, τ) for the σ corresponding
to the translation of a type τ assuming type definitions t.

• An alignment function (Π.align) returns the alignment α used
to allocate space for a τ .

• An offset function (Π.offset) takes a field f and returns the
number of bytes from the beginning of the nearest enclosing
struct to the field f .

• An access function takes an alignment α and a size i and returns
true if accessing i bytes at an alignment α is not an error.

• The size of pointers (Π.ptrsize) is a constant i.3

• An xliteral function translates integer literals into byte se-
quences. The layout of values in memory is platform-dependent.

The access function is typically associated with hardware and the
other components with compilers, but a platform comprises all
components. It is clear a “sensible” platform cannot define its

3 This is a slight simplification since a C implementation could use different
sizes for different pointers.

σ ::= byte | pad[i] | ptrα(σ) | ptrα(N)

Π.xtype(t, τ) = σ
Π.align(t, τ) = α
Π.offset(t, f) = i
Π.access(α, i) = {true, false}
Π.ptrsize = i
Π.xliteral(s) = b
Π.xliteral(l) = b

Figure 3. Platforms and low-level types

components in isolation (e.g., the type translation must mind the
access function); our constraint language will let us define these
restrictions precisely.

Low-level types (the target of Π.xtype) are σ, a sequence of σ.
For example, if long is four bytes, the translation is byte4. The type
pad[i] represents i bytes of padding. The type ptrα(σ) describes
pointers to data described by σ at alignment α. As a technical
point, we disallow the type N for low-level types except for the
form ptrα(N). This restriction simplifies type equalities without
restricting platforms or disallowing recursive types.

3.3 Dynamic Semantics
The dynamic semantics is a small-step rewrite system for expres-
sions, parameterized by a platform and a sequence of type declara-
tions. Figure 4 holds the full definition for Π; t ` H; e → H ′; e′. It
is defined via evaluation contexts for conciseness. As in C, the left
side of assignments (called left-expressions) are evaluated differ-
ently from other expressions (called right-expressions). Therefore,
we have two sorts of contexts (L and R) defined by mutual induction
and a different sort of primitive reduction (l→ and r→) for each sort
of context (Grossman 2003). In particular, R[e]r is a right-context
R containing a right-hole filled by e and R[e]l is a right-context R
containing a left-hole filled by e. Each context contains exactly one
right-hole or exactly one left-hole, but not both.

Most primitive reductions depend on Π, but let us first dispense
with those that do not. D-CAST shows that casts have no run-time
effect. D-SEQ is typical. D-IFF and D-IFT are typical except we treat
0 as false (as in C) and other byte-sequences as true. D-WHILE is
a typical small-step unrolling; we make the arbitrary choice that a
terminating loop produces some s literal nondeterministically.

D-NEW extends the heap with a new label holding uninitialized
data. The platform determines the alignment and size of the new
space, with the latter computed by applying the auxiliary size
function to the translation of the allocated type. The resulting value
`+0 is a pointer to the beginning of the space. The type system
does not prevent getting stuck due to uninitialized data; this issue
is orthogonal. D-LET has the same hypotheses as D-NEW. Because
memory management is not our concern, we use heap allocation
even for local variables. We substitute ∗(τ∗)(`+0) for x in the
resulting expression.

D-DEREF reads data from the heap and the resulting expression
is the data. In particular, it extracts a sequence “from the middle”
of H(`). This sequence is from offset j (where the expression
before the step is ∗(τ∗)(` + j)) to j + k (where k is the size of
the translation of τ). If it is not possible to “carve up” H(`) in
this way, then the rule does not apply and the machine is stuck. As
expected, we also use Π.access to model alignment constraints on
the memory access.

D-ASSIGN has exactly the same hypotheses as D-DEREF plus the
requirement that the right-hand side be a value equal in size to the
value being replaced in the heap. The resulting heap differs only
from offset j to offset j + k of H(`).

R ::= [·]r | L = e | ∗(τ∗)(`+i) = R | R.f | ∗(τ∗)(R) | (τ∗)R | R; e | (τ∗)&R→f | if R e e
L ::= [·]l | L.f | ∗(τ∗)(R)

D ::= Π; t

D ` H; e
r→ H ′; e′

D ` H; R[e]r → H ′; R[e′]r

D ` H; e
l→ H ′; e′

D ` H; R[e]l → H ′; R[e′]l
D-CAST

D ` H; (τ∗)w r→ H; w

D-SEQ

D ` H; (v; e)
r→ H; e

D-WHILE

D ` H; while e1 e2
r→ H; if e1 (e2; while e1 e2) s

D-IFF

D ` H; if 0i e1 e2
r→ H; e2

D-IFT
b1 . . . bi 6= 0i

D ` H; if (b1 . . . bi) e1 e2
r→ H; e1

D-NEW
` 6∈ Dom(H) Π.align(t, τ) = α
Π.xtype(t, τ) = σ size(Π, σ) = i

Π; t ` H; new τ
r→ (H, ` 7→ uniniti, α); `+0

D-LET
` 6∈ Dom(H) Π.align(t, τ) = α
Π.xtype(t, τ) = σ size(Π, σ) = i

Π; t ` H; τ x; e
r→ (H, ` 7→ uniniti, α); e{∗(τ∗)(`+0)/x}

D-DEREF
H(`) = w1w2w3, [a, o] size(Π, w1) = j
Π.xtype(t, τ) = σ size(Π, w2) = size(Π, σ) = k
Π.access([a, o + j], k)

Π; t ` H; ∗(τ∗)(`+j) r→ H; w2

D-ASSIGN
H(`) = w1w2w3, [a, o] size(Π, w1) = j
Π.xtype(t, τ) = σ size(Π, w2) = size(Π, σ) = k
Π.access([a, o + j], k) size(Π, w) = k

Π; t ` H; (∗(τ∗)(`+j)) = w
r→ (H, ` 7→ w1w w3, α); w

D-FADDR
Π.offset(t, f) = j′

Π; t ` H; (τ∗)&(`+j)→f
r→ H; `+(j + j′)

D-FETCHL
Π.offset(t, f) = j′ N{. . . τ2 f . . .} ∈ t

Π; t ` H; (∗(τ1∗)(`+j)).f
l→ H; ∗(τ2∗)(`+(j + j′))

D-FETCH
N{. . . τ f . . .} ∈ t Π.offset(t, f) = size(Π, w1)
Π.xtype(t, τ) = σ size(Π, σ) = size(Π, w2)

Π; t ` H; w1w2w3.f
r→ H; w2

D-SHORT

Π.xliteral(s) = b

Π; t ` H; s
r→ H; b

D-LONG

Π.xliteral(l) = b

Π; t ` H; l
r→ H; b

size(Π, σ) =

8><>:
1 if σ = byte

i if σ = pad[i]

Π.ptrsize if σ ∈ {ptrα(N), ptrα(σ)}
size(Π, w) =

(
1 if w ∈ {b, uninit}
Π.ptrsize if w = `+i

size(Π, σ1 . . . σn) =
Pn

i=1 size(Π, σi) size(Π, w1 . . . wn) =
Pn

i=1 size(Π, wi)

Figure 4. Dynamic Semantics

D-FADDR takes a pointer value and increases its offset by the
offset of the field f , which is defined by Π. D-FETCHL, the one
primitive reduction in left contexts, is similar, but we also have to
change a type to reflect that e.f refers to less memory than e. A
“left-value” (i.e., a terminal left-expression) looks like ∗(τ∗)(`+j).

D-FETCH uses the offset and size information from Π to project
a subsequence of a value. We do not use the access function here
because we are not accessing the heap.4 Finally, D-SHORT and D-
LONG use the platform to translate literals to byte-sequences.

Several of the rules require computing the size of a value w or a
type σ. Figure 4 includes these platform-dependent functions.

There are many ways to get stuck in the dynamic semantics,
especially in the presence of arbitrary, unchecked pointer casts. To

4 On actual machines, large values do not fit in registers so alignment re-
mains a concern. We could model this by treating field access as an address-
of-field computation followed by a dereference. However, the computation
that produced the v in v.f must have done a properly aligned memory ac-
cess, so if v has the right type, then the more complicated treatment of
field-access also would not have failed for any sensible platform.

characterize memory-safe programs and the platforms on which
they will not become stuck, we need a way to write down the
platform-dependent layout assumptions made by a program and
then a way to extract the assumptions from the program. The next
two sections address these issues.

3.4 Constraint Language
To define a sound type system for our language, we need to limit
what platforms we consider. That is, “P does not get stuck” makes
no sense, but “P run on platform Π does not get stuck” does. We
use first-order logic to give a syntactic representation to a set of
platforms; a formula S represents the platforms that model it, i.e.,
the set {Π | Π |= S}.

The syntax for formulas S is a first-order theory with (1) arith-
metic, (2) sorts for aspects of our language (including fields f ,
types τ , low-level types σ, etc.), and (3) function symbols relevant
to platform-dependencies. Figure 5 defines the function symbols
and their interpretations. The interpretations induce the full defini-
tion of Π |= S (e.g., Π |= S1 ∧ S2 iff Π |= S1 and Π |= S2).

syntax interpretation under Π defined in
xtype(t, τ) Π.xtype(t, τ) Figure 3
align(t, τ) Π.align(t, τ)
offset(t, f) Π.offset(t, f)
access(α, i) Π.access(α, i)
xliteral(s) Π.xliteral(s)
xliteral(l) Π.xliteral(l)
size(σ) size(Π, σ) Figure 4
size(w) size(Π, w)
subtype(t, σ1, σ2) Π; t ` σ1 ≤ σ2 Figure 6
subalign(α1, α2) ` α1 ≤ α2

Figure 5. Function Symbols for the First-Order Theory

Consider two example formulas:

• ∀τ, t. access(align(t, τ), size(xtype(t, τ)))

• Let t0 abbreviate:
N1{short f1 short f2 short f3}
N2{short g1 short g2}

in the formula:
subtype(t0, xtype(t0, N1∗), xtype(t0, N2∗)).

The first formula says every type must have a size and alignment
that allows memory to be accessed. Without this constraint, a pro-
gram like (τ x; x = e) could get stuck because D-LET uses the
alignment Π.align(t, τ) for the space allocated for x. The second
formula requires a low-level subtyping relationship between two
pointer types. This is the constraint our static semantics generates
for a cast like in Example 2 from Section 2.

These examples demonstrate the two flavors of formulas that
arise in practice. First, there are constraints that every “sensible”
platform would satisfy. We are not interested in other platforms,
but stating these requirements as a constraint is much simpler than
revisiting our definition of platforms. Second, there are constraints
that we do not expect every platform to satisfy. Our static semantics
produces a formula for these extra assumptions that a particular
program makes.

The sensibility clauses we assume for type safety are straight-
forward to enumerate. We collect them in a constraint, called
Ssensible , defined as the conjunction of the following formulas:

1. Size and alignment allows access of all types:
∀τ, t. access(align(t, τ), size(xtype(t, τ)))

2. Translation of literals respects the translation of their types:
∀s, l, t. size(xliteral(s)) = size(xtype(t, short))

∧ size(xliteral(l)) = size(xtype(t, long))

3. Greater alignment does not restrict access:
∀α1, α2, i. (access(α1, i)∧ subalign(α1, α2)) ⇒ access(α2, i)

4. Translation of τ∗ respects the alignment and translation of τ :
∀τ, t.subtype(t, ptralign(t,τ)(xtype(t, τ)), xtype(t, τ∗))

5. Struct translation respects the offset and alignment of each field:
∀t, τ, f, σ, N.
(N{. . . τ f . . . } ∈ t ∧ (xtype(t, τ) = σ) ⇒
(∃σ1, σ2, α, o, o′, i.

xtype(t, N) = σ1σ σ2 ∧ size(σ1) = offset(t, f) = o′

∧ align(t, N) = [a, o] ∧ subalign([a, o+o′], align(t, τ))))

This gives rise to a precise notion of sensible platform:

DEFINITION 1. A platform Π is sensible if Π |= Ssensible.

The sensibility constraints are necessary for portable code in the
sense that without them, cast-free programs could get stuck. The C

standard also allows other assumptions that we can write in our
logic but that our safety theorem need not assume. Here are just
two examples:

• The first field always has offset 0:
∀f, t, τ, N. (N{τ f . . . } ∈ t) ⇒ offset(t, f) = 0

• Fields are in order and do not overlap:
∀τ1, f1, τ2, f2, N. N{. . . τ1 f1 . . . τ2 f2 . . . } ∈ t} ⇒
(offset(t, f1) + size(xtype(t, τ1)) ≤ offset(t, f2))

3.5 Static Semantics and Constraint Generation
With constraints in hand, we can now define a type-and-effect
system where the main judgment t; Γ r̀ e : τ ; S gives a constraint
S suitable for e. Because it is the pointer casts in e that give rise
to the constraints, this type system needs an expressive notion of
pointer subtyping. Therefore, we consider subtyping (Figure 6)
before describing the typing judgments for expressions (Figure 7).

Subtyping: We use a subtyping relation on low-level types to for-
malize when data described by σ can also be described by σ′, and
hence when pointer casts are safe. This notion has been called phys-
ical subtyping because it relies on actual memory layouts. Because
we take a byte-for-byte view of memory, our notion of physical sub-
typing is richer than those defined in prior work (Chandra and Reps
1999; Siff et al. 1999; Necula et al. 2005), which are at the level of
ground C types instead of bytes. For example, our definition allows
casting a struct S{short x;short y}* to a struct D{long
a;}* on many platforms, whereas prior definitions forbid it. The
rules for our judgment Π; t ` σ1 ≤ σ2 appear in Figure 6.

As expected in a language with mutation, pointer types have
invariant subtyping (rule PTR). However, we do allow forgetting
fields under a pointer type as this corresponds to restricting access
to a prefix of the data previously accessible. This encodes the core
concept behind casts like Example 2 in Section 2. We also allow
assuming a less restrictive alignment. For example, a 4-byte aligned
value can be safely treated as if it were 2- or 1-byte aligned.

Although we allow sequence-shortening under pointer types, it
is not correct to allow shortening as a subtyping rule because a
supertype should have the same size as a subtype (we can prove our
rules have this property by induction on a subtyping derivation).
This fact may seem odd to readers not used to subtyping in a
language with explicit pointers. It is why C correctly disallows casts
between struct types (as opposed to pointers to structs).

Rules UNROLL and ROLL witness the equivalence between a
struct name and its definition. Recall we restrict a type N to occur
under pointers.

Rules PAD and ADD let us forget about the form of data (not
under a pointer) without forgetting its size. Note that we disallow
Π; t ` pad[i + j] ≤ pad[i]pad[j] to prohibit accessing “part of
a pointer”, which would cause the abstract machine to get stuck.
Rule SEQ lifts subtyping to sequences.

As usual, subsumption is sound for right-expressions but un-
sound for left-expressions. The static semantics enforces this re-
striction by disallowing casts as left-expressions.

Static Semantics: The static semantics is shown in Figure 7.
The judgments t; Γ r̀ e : τ ; S and t; Γ l̀ e : τ ; S (for right-
and left-expressions respectively) produce types as usual, but also
layout constraints S. This constraint is a conjunction of the lay-
out assumptions the program is making. An alternative approach
could parameterize the typing judgment by a platform instead of
outputting a constraint, to essentially perform platform-dependent
type-checking. This approach can be recovered from ours: we can
check the constraint against a platform.

The interesting rules are S-CAST and S-FADDR because the con-
straint Ssensible in Section 3.4 suffices to ensure other expression

PTR
` α1 ≤ α2

D ` ptrα1
(σ1σ2) ≤ ptrα2

(σ1)

UNROLL
Π.xtype(t, N) = σ

Π; t ` ptrα(N) ≤ ptrα(σ)

ROLL
Π.xtype(t, N) = σ

Π; t ` ptrα(σ) ≤ ptrα(N)

PAD
size(Π, σ) = i

Π; t ` σ ≤ pad[i]

ADD

Π; t ` pad[i]pad[j] ≤ pad[i + j]

SEQ

D ` σ1 ≤ σ2 D ` σ3 ≤ σ4

D ` σ1σ3 ≤ σ2σ4

REFL

D ` σ ≤ σ

TRANS
D ` σ1 ≤ σ2 D ` σ2 ≤ σ3

D ` σ1 ≤ σ3

ALIGN-BASE
a1 = a2 × i

` [a1, o] ≤ [a2, o]

ALIGN-OFFSET
o1 ≡ o2 mod a

` [a, o1] ≤ [a, o2]

ALIGN-TRANS
` α1 ≤ α2 ` α2 ≤ α3

` α1 ≤ α3

Figure 6. Physical Subtyping and Alignment Subtyping

S-SHORT

t; Γ r̀ s : short; true

S-LONG

t; Γ r̀ l : long; true

S-NEW

t; Γ r̀ new τ : τ∗; true

S-VAR
Γ(x) = τ

t; Γ r̀ x : τ ; true

S-ASSN
t; Γ l̀ e1 : τ ; S1 t; Γ r̀ e2 : τ ; S2

t; Γ r̀ e1 = e2 : τ ; S1 ∧ S2

S-FETCH
t; Γ r̀ e : N ; S N{. . . τ f . . .} ∈ t

t; Γ r̀ e.f : τ ; S

S-SEQ

t; Γ r̀ e1 : τ ′; S1 t; Γ r̀ e2 : τ ; S2

t; Γ r̀ e1; e2 : τ ; S1 ∧ S2

S-DEREF
t; Γ r̀ e : τ∗; S

t; Γ r̀ ∗(τ∗)(e) : τ ; S

S-CAST
t; Γ r̀ e : τ1∗; S1

t; Γ r̀ (τ∗)e : τ∗; S1 ∧ subtype(t, xtype(t, τ1∗), xtype(t, τ∗))

S-FADDR
t; Γ r̀ e : N∗; S1 N{. . . τ1 f . . .} ∈ t

t; Γ r̀ (τ∗)(&e → f) : τ∗; S1 ∧ ∃σ1, σ2, a, o. xtype(t, N∗) = ptr[a,o](σ1σ2)
∧ offset(f) = size(σ1)
∧ subtype(ptr[a,o+offset(f)](σ2), xtype(t, τ∗))

S-IF
t; Γ r̀ e1 : long; S1 t; Γ r̀ e2 : τ ; S2 t; Γ r̀ e3 : τ ; S3

t; Γ r̀ if e1 e2 e3 : τ ; S1 ∧ S2 ∧ S3

S-WHILE
t; Γ r̀ e1 : long; S1 t; Γ r̀ e2 : τ ; S2

t; Γ r̀ while e1 e2 : short; S1 ∧ S2

S-DECL
t; Γ, x : τ1 r̀ e : τ2; S

t; Γ r̀ τ1 x; e : τ2; S

S-VARL
Γ(x) = τ

t; Γ l̀ x : τ ; true

S-DEREFL
t; Γ r̀ e : τ∗; S

t; Γ l̀ ∗(τ∗)(e) : τ ; S

S-FETCHL
N{. . . τ f . . .} ∈ t t; Γ l̀ e : N ; S

t; Γ l̀ e.f : τ ; S

Figure 7. Static Semantics (letting Γ ::= · | Γ, x:τ)

forms (such as dereferences and assignments) cannot fail due to
a platform dependency. The constraints directly describe the im-
plicit assumptions made in Examples 2, 3, and 4 in Section 2. The
key insight here is that we can allow a pointer cast to assign an
arbitrary type to an expression, but the cast will only be deemed
legal on platforms that model the associated layout constraint. Re-
call subtype(t, σ1, σ2) is the logical formula corresponding to
Π; t ` σ1 ≤ σ2. The S-FADDR constraint is much more compli-
cated because it must state that there is some sequence of fields
starting at the offset of field f that can be viewed as a τ .

Absent from this formal type system is support for downcasts,
which are obviously important in practice. To support safe down-
casts, we would just need to invert the direction of the subtyp-
ing constraint generated by the cast and employ existing tech-
niques (Necula et al. 2005; Jim et al. 2002) to ensure that the casted
value actually has the type dictated by the cast.

3.6 Metatheory and Low-Level Static Semantics
Safety: Ideally, our type-safety result would claim that running
a well-typed program on a “sensible” platform that also models

the program’s constraint would never lead to a stuck state. That is,
given t; · r̀ e : τ ; S, Π is sensible, Π |= S, and Π; t ` ·; e →∗

H; e′ (where →∗ is the reflexive, transitive closure of →), either e′

is a value or there exists H ′, e′′ such that Π; t ` H; e′ →∗ H ′; e′′.
However, it is possible that the abstract machine can get stuck

by accessing uninitialized data. Because preventing uninitialized
accesses is not our focus, we relax our safety guarantee to admit
that e′ might also be legally stuck. An expression e is legally stuck
if e is of the form R[ls]r or R[ls]l, where

ls ::= if (w1 uninit w2) e e | ∗(τ∗)(uniniti) | (τ∗)&uniniti→f

Our memory-safety proof employs a low-level type system that
captures the relevant invariants that evaluation preserves. The main
judgment of this type system has the form Π; t; Ψ; Γ r̀ e : σ where
Ψ gives a type to the heap.5 This system has implicit subsumption,
which is necessary for a step via D-CAST to preserve typing:

Π; t; Ψ; Γ r̀ e : σ1 Π; t ` σ1 ≤ σ2

Π; t; Ψ; Γ r̀ e : σ2

5 Ψ ::= · | Ψ, ` 7→ σ, α

Dynamic Semantics:

Π; t ` H; e → H ′; e′ small step
Π; t ` H; e

r→ H ′; e′ primitive right-step
Π; t ` H; e

l→ H ′; e′ primitive left-step

High−Level Static Semantics:
Π |= S platform Π models formula S
` α1 ≤ α2 subtyping on alignments
Π; t ` σ1 ≤ σ2 platform-dependent subtyping
t; Γ r̀ e : τ ; S typing for right-expressions
t; Γ l̀ e : τ ; S typing for left-expressions

Low−Level Static Semantics:
Π; t; Ψ; Γ r̀ e : σ typing for right-expressions
Π; t; Ψ; Γ l̀ e : σ, α typing for left-expressions

Figure 8. Summary of Judgments

Like in the source-level type system, we also have a judgment for
left-expressions (Π; t; Ψ; Γ l̀ e : σ, α). This judgment does not
have a subsumption rule, but does produce an alignment α for the
location to which e will evaluate.

Many of the low-level typing rules have hypotheses that refer
directly to the platform. For example, the rule for type-checking
dereferences is:

Π; t; Ψ; Γ r̀ e : ptrα(σ1σ2)
Π.xtype(t, τ) = σ1 Π.access(α, size(Π, σ1))

Π; t; Ψ; Γ r̀ ∗(τ∗)(e) : σ1

See the technical report (Nita et al. 2007) for the complete system,
which includes rules for run-time forms (such as w) and heaps.

The dynamic semantics and low-level type system enjoy the
usual type soundness property (modulo legally stuck states), proven
with the aid of the usual progress and preservation lemmas.

THEOREM 2. (Low-Level Type Soundness) If Π; t; ·; · r̀ e : σ and
Π; t ` ·; e →∗ H ′; e′, then H ′; e′ is not stuck on Π.

The connection between the static semantics and the low-level
type system is concisely stated by this theorem:

THEOREM 3. If t; Γ r̀ e : τ ; S, Π is sensible, Π |= S, and
Π.xtype(t, τ) = σ, then Π; t; ·; Γ r̀ e : σ.

The proof, by induction on the derivation of t; Γ r̀ e : τ ; S, uses
the definition of Π |= S in many cases. For example, a source
derivation ending in S-DEREF can produce a low-level derivation
ending in the dereference rule above because sensible platforms
model access(align(t, τ), size(xtype(t, τ))). Indeed, the proof of
Theorem 3 ensures our definition of Ssensible is sufficient.

Last but not least, we state the key theorem that a program will
not get stuck on any platform on which its layout assumptions hold:

THEOREM 4. (Layout Portability) If t; Γ r̀ e : τ ; S, Π is sensible,
Π |= S, and Π; t ` ·; e →∗ H ′; e′, then H ′; e′ is not stuck on Π.

This is a corollary to Theorems 2 and 3.

Cast-Free Portability: The constraint produced by our type sys-
tem is fairly expressive, ruling out only platforms for which some
cast in the program would make no sense. To make this intuition
precise, we prove that for the right definition of “cast-free”, a cast-
free program does not get stuck on any sensible platform.

DEFINITION 5. (Cast-Free) A program t; e is cast-free if:

• No expressions of the form (τ∗)e′ occur in e.

• For every expression of the form (τ∗)&e′→f in e, the type τ
is the type of f . That is, N{. . . τ f . . . } ∈ t.

The second point allows taking the address of a field but requires
the resulting type to be the type of the field (rather than allowing a
platform-dependent suffix cast). The key theorem is as follows:

THEOREM 6. If t; e is cast-free and t; · r̀ e : τ ; S, then
Ssensible ⇒ S.

The intuition that only casts threaten layout portability is captured
by the following theorem, a corollary to Theorems 4 and 6:

THEOREM 7. (Cast-Free Layout Portability) If t; e is cast-free,
t; · r̀ e : τ ; S, Π is sensible, and Π; t ` ·; e →∗ H ′; e′, then
H ′; e′ is not stuck on Π.

4. Extensions
This section sketches how the core model we have developed is
flexible enough to be extended with some other relevant features
of C and its platforms. We focus first on arrays because they are
ubiquitous and require restricting our subtyping definition.

4.1 Arrays
As Example 5 demonstrates, a subtyping rule for pointers that drops
a suffix of pointed-to fields (rule PTR in Figure 6) is unsound if the
pointer may be used as a pointer to an array. Therefore, extending
our model with arrays is important and requires some otherwise
unnecessary restrictions. Figure 9 defines this extension formally.

Rather than conservatively assume all pointers may point to ar-
rays, the types distinguish pointers to one object (τ∗ as already de-
fined) from pointers to arrays (τ∗ω; the ω just distinguishes it from
τ∗). This dichotomy is common in safe C-like languages (Necula
et al. 2005; Jim et al. 2002), can be approximated via static analy-
sis, and is necessary to identify what platform assumptions are due
only to arrays. The low-level types (σ) make the same distinction.

We add two right-expression forms. First, new τ [e] creates
a pointer to a heap-allocated array of length e. (Because e will
evaluate to a byte-sequence b, a platform must interpret b as an
integer; we use Π.val for this conversion.) The dynamic rule D-
NEWARR is exactly like D-NEW except it creates enough space at
H(`) for the array. Our type system does not prevent new τ [e] from
being stuck if e has uninitialized bytes or e is negative.6

Second, &((τ∗ω)(e1))[e2] is more easily read as &e1[e2]; the
size of τ guides the dynamic semantics like it does with pointer
dereferences. This form produces a pointer to one array element,
which can be dereferenced or assigned through. The dynamic rule
D-ARRELT produces the pointer `+(i + j × k) where the array be-
gins at `+i, elements have size j, and e2 evaluates to k. How-
ever, the two hypotheses on the right perform a run-time bounds
check; our type system does not prevent this check from fail-
ing and therefore the machine being stuck.7 The bounds-check on
&((τ∗ω)(e1))[e2] ensures an ensuing dereference can never fail.

With this economical addition of arrays, we can design con-
straints and subtyping such that the only failures are bounds-
checks. A key issue is alignment: Given the alignment of e1, how
can we know the alignment of &((τ∗ω)(e1))[e2] without statically
constraining the value of e2? The solution taken by every sensible
C platform is to ensure the size of τ is a multiple of its alignment;
see Figure 9 for the formal constraint. That way, &((τ∗ω)(e1))[e2]
is at least as aligned as e1. Assuming this constraint, the typing
rules for the new expression forms add nothing notable.

6 In C, e is unsigned, but large allocations due to conversion from negative
numbers are a well-known cause of defects.
7 This check disallows pointing just past the end of the array, unlike C.

Syntax: τ ::= . . . | τ∗ω Platforms: Π.val(b) = i
e ::= . . . | new τ [e] | &((τ∗ω)(e))[e]
R ::= . . . | new τ [R] | &((τ∗ω)(R))[e] | &((τ∗ω)(`+i))[R]
σ ::= . . . | ptrω

α(σ) | ptrω
α(N)

Dynamic semantics:
D-NEWARR

` 6∈ Dom(H) Π.align(t, τ) = α
Π.xtype(t, τ) = σ size(Π, σ) = i
Π.val(b) = j ≥ 0

Π; t ` H; new τ [b]
r→ H, ` 7→ uniniti×j , α; `+0

D-ARRELT
Π.xtype(t, τ) = σ H(`) = w, α
size(Π, σ) = j 0 ≤ (i + j × k) < size(Π, w)
Π.val(b) = k

Π; t ` H; &((τ∗ω)(`+i))[b]
r→ H; `+(i + j × k)

Sensibility constraint: size is a multiple of alignment

∀τ, t.∃i, a, o. size(t, xtype(t, τ)) = i× a ∧ align(t, τ) = [a, o]

Subtyping and static semantics:
ARR

σ1 = σ i
2 ` α1 ≤ α2

Π; t ` ptrω
α1

(σ1) ≤ ptrω
α2

(σ2)

S-NEWARR
t; Γ r̀ e : long; S

t; Γ r̀ new τ [e] : τ∗ω; S

S-ARRELT
t; Γ r̀ e1 : τ∗ω; S1 t; Γ r̀ e2 : long; S2

t; Γ r̀ &((τ∗ω)(e1))[e2] : τ∗; S1 ∧ S2

Figure 9. Additions for Arrays

Finally but most importantly, we consider subtyping for pointer-
to-array types. Analogues of UNROLL and ROLL are sound for types
of the form ptrω

α(σ), but PTR must be replaced with a more restric-
tive rule. Therefore, ARR requires the element type of the subtype to
be the element type of the supertype repeated i times. This is more
lenient than strict invariance. For example, it supports the platform-
dependent idiom of treating an array of: struct { short i1;
short i2; short i3; short i4;}; as an array of short. We
have proven safety given this subtyping rule (Nita et al. 2007).

The ARR rule does not support subtyping such as:
D ` ptrω

α(byte byte byte) ≤ ptrω
α(byte byte). A cast requiring

this subtyping makes sense if the pointed-to-array has an element
count divisible by 6, else it is memory-safe but probably a bug since
the target type will “forget” the last byte in the array. We have not
extended our formal model with arrays of known size, but we see
no problems doing so. Such arrays are common in C, particularly
with multidimensional arrays (all but one dimension have known
size), which is why CCured (Necula et al. 2005) allows such casts.

4.2 Platform Selection
In practice, programs written in low-level languages can selectively
run code based on features of the underlying platform. For example,
in the following snippet, lb has type long*, ib points to a buffer
filled with integers, and the program needs to treat ib as if it were
an array of long:

if (sizeof(int) == sizeof(long))
lb = (long*)ib;

else
lb = convert(ib);

If the size of int equals the size of long, the buffer can be directly
used at type long*. Otherwise, the function convert allocates a
new long* buffer, copies the elements from ib into it, and assigns
it into lb. The test offers a common-case short path, avoiding a
copy on many platforms while remaining portable. Figure 10 shows
the additions to our model to support this idiom. The pcase form
has n branches, each guarded by a constraint. Given a platform
Π, pcase steps to a branch whose guard is true under Π (shown
in D-PCASE). The output constraint in the high-level typing rule
(S-PCASE) encodes two important properties. The first conjunct
requires the constraint for each branch’s body to hold only if the
constraint guarding the branch holds. In particular, an implication

e ::= . . . | pcase S1 => e1 . . . Sn => en

D-PCASE
Π |= Sk

Π; t ` (pcase S1 => e1 . . . Sn => en)
r→ ek

S-PCASE
∀1 ≤ i ≤ n . t; Γ r̀ ei : τ ; S′

i

t; Γ r̀ pcase S1 => e1 . . . Sn => en : τ ;
Vn

i=1(Si ⇒ S′
i) ∧

Wn
i=1 Si

L-PCASE
∀1 ≤ i ≤ n . if Π |= Si then Π; t; Ψ; Γ r̀ ei : σ
∃1 ≤ i ≤ n . Π |= Si

Π; t; Ψ; Γ r̀ pcase S1 => e1 . . . Sn => en : σ

Figure 10. Additions for Platform Selection

holds vacuously on platforms not modeling the guard. The second
conjunct demands that at least one of the guards is true. The low-
level typing rule (L-PCASE) similarly demands that at least one
guard is true under Π and its corresponding expression type-checks
under Π. Using pcase, the previous example can be written as:

pcase
size(xtype(int)) = size(xtype(long)) => lb=(long*)ib
size(xtype(int)) 6= size(xtype(long)) => lb=convert(ib)

In addition to the idiom exemplified above, pcase effectively
explains selective compilation, where the preprocessor is used to
compile code on a platform-dependent basis.

4.3 Other Extensions
Additional discussion of extensions, including support for read-
only (const) pointers, for platforms that choose to skip pad bytes
when copying values, and for proper recursive subtyping (Amadio
and Cardelli 1993), can be found in the companion technical re-
port (Nita et al. 2007). All these extensions permit more subtyping.

5. Implementation
To give our theory a practical outlet, we have implemented a bug-
finding tool that is directly inspired by the formal model. In general,

a tool based on the model should extract a layout constraint S from
a program and present informative warnings based on S. We see
several ways to achieve this. For example:

• Directly explain S to the user, simplifying it into a legible form
and connecting it to relevant locations in the code.

• Check S against a set of platforms. That is, the user chooses
a set of platforms of interest Π1, . . . , Πn, and warnings are
reported whenever Πi 6|= S, for 1 ≤ i ≤ n.

Our tool takes the latter approach; we leave the former to future
work. Implementing the formal model poses two main challenges:

1. The type system relies on syntactic types to produce constraints,
using no flow or alias information. While convenient for the
exposition and metatheory, such simplicity is too imprecise.

2. Real C programs contain many downcasts that are safe at run-
time. In a simple implementation of the model, these downcasts
would result in spurious warnings.

To address (1), our tool replaces the simple type system with
a points-to analysis. Using points-to information yields much more
precise constraints and correctly handles “round-trip” casts through
void*. For example, D*t=(D*)(void*)e, where e points to a
value of type S*, is properly identified as a cast from S* to D*.

To address (2), we built our tool assuming a standard scenario:
The program was developed and tested on a platform called the
host, and a programmer is now interested in porting it to some
targets. We assume that if a pointer cast is legal on the host, it
should also be legal on a target. If a cast is illegal on both the host
and a target, we do not report a warning. Our experience suggests
that (a) if a cast is legal on the host and illegal on a target, it is
highly likely to be a bug, and (b) if a cast is illegal on both the host
and a target, then it is highly unlikely to be a bug. The warning is
likely a result of imprecision in the static analysis. In essence, our
host-target scenario is an effective false-positive filter.

While it remains future work to use the tool to investigate
thoroughly the extent of layout-portability bugs in C software,
preliminary experience suggests it is a valuable addition to the
developer’s toolset when porting or programming with portability
in mind. The rest of this section describes the tool’s architecture
and a case study that discovered a previously unknown bug.

5.1 Tool Overview
The tool has two main components. The cast gatherer is a static
analysis that takes a C program and outputs a list of pointer casts
that may occur at run-time. The cast analyzer inputs this list of
casts, generates and checks their corresponding constraints, and
outputs a list of warnings with code locations.

The cast gatherer uses an interprocedural points-to analysis8 to
determine which memory layouts an expression may point to at
run-time. A first pass analyzes all malloc9 sites and records a map
of associated program points and their allocation-time types in a
type table. In addition to allocation sites, program points for local
variables that participate in pointer casts are also entered in the
type table. A second pass analyzes each pointer cast (τ*)e. For
each entry (p,τ’*) in the type table, if e may-alias the allocation
expression at program point p (hence e may point to memory with
run-time type τ’*), a pointer cast from τ’* to τ* is recorded.

The list of pointer casts output by the cast gatherer is passed
to the cast analyzer along with a set of platform descriptions cho-
sen by the user: one for the host and one or more for each tar-
get. A platform description is a module, written by us in Caml,

8 We use the points-to analysis that ships with CIL (Necula et al. 2002a).
9 A command-line flag allows specifying names of user-defined allocators.

data_link.c:196: scat_element * ==> iovec *
Host (Gcc/32-bit X86):

Src: ptr_4(ptr_1(b) bbbb)
Dest: ptr_4(ptr_1(b) bbbb)

Target (Gcc/LP-64):
Src: ptr_8(ptr_1(b) bbbb----)
Dest: ptr_8(ptr_1(b) bbbbbbbb)

events.c:150: sp_time * ==> timeval *
Host (Gcc/32-bit X86):

Src: ptr_4(bbbb bbbb)
Dest: ptr_4(bbbb bbbb)

Target (Gcc/LP-64):
Src: ptr_8(bbbbbbbb bbbbbbbb)
Dest: ptr_8(bbbbbbbb bbbb----)

Figure 11. Tool Output on Spread

that implements a platform’s layout policy by defining exactly the
platform functions in our model (recall Figure 3). We have imple-
mented many such platform descriptions, most of which represent
real platforms, and some of which implement imagined platforms
that are still within the C language specification.

For each pointer cast, the cast analyzer generates the appropriate
constraint. It then checks the constraint against the host descrip-
tion. If the constraint is true (i.e., the cast is legal on the host), it
is checked against each target. If it is false for any target, the rel-
evant warnings (described below) are output. We implemented the
constraint checker manually and specialized it to our constraint lan-
guage. It queries the physical subtyping relation, for which we have
implemented an algorithm, and the platform description functions.

While a whole-program analysis is necessary for soundness,
the tool can be run on a subset of the program at the expense
of coverage. Also, it is easy to plug in a different cast gatherer.
For example, we have experimented with a dynamic analysis that
produces exact results per run.

5.2 Case Study
We ran our tool on Spread10, a high-performance messaging ser-
vice intended for use by distributed applications. We chose Spread
because (a) it contained a reported layout portability bug11, and (b)
it is intended to be portable. Our tool issued two warnings, one
of which was the known bug, and the other a new bug that to our
knowledge has not been reported on the developer mailing lists. No
false positives were reported.

A relevant subset of the tool’s output is given in Figure 11. The
rest of the output was about these same casts at different locations
in the code. The two warnings (the first of which is the known bug)
are issued in the context of a conventional “Gcc on 32-bit X86” host
description and a so-called “LP-64” target, on which integers are 32
bits and long and pointers are 64 bits. Each warning lists the bad
pointer cast and its location, followed by the layouts of the source
and destination type on each platform. The layouts are displayed
in an ASCII version of the language for σ in Figure 3, where ’b’
stands for byte, ’-’ for pad[1], ’ptr_4(b)’ for ptr[4,0](byte), etc.

In the first case, we learn that the two types are laid out identi-
cally on the host, but on the target, the source type has four bytes
of trailing padding where the destination type contains data bytes.
The types involved in the cast are as follows:

struct scat_element { char *buf; int len; }
struct iovec { char *buf; size_t len; }

10 http://www.spread.org
11 http://commedia.cnds.jhu.edu/pipermail/spread-users/2002-
November/001185.html

The cast makes an assumption that sizeof(int) is equal to
sizeof(size_t). On LP-64 platforms, however, int is 4 bytes
and size_t is 8 bytes, and the cast leads to a bigger-than-expected
value in iovec’s len field and hence out-of-bounds buf accesses.

In the second warning, the target layout contains trailing
padding where the host does not. The two types are:

struct sp_time { long sec; long usec; }
struct timeval { time_t tv_sec;

suseconds_t tv_usec; }

On both the host and target, time_t is a type alias for long and
suseconds_t is a type alias for int. The cast leads to truncation
of the usec field, only half of the bytes being visible through
tv_usec. If the target machine is big-endian, most or all of the
relevant data is lost, being mapped to the sequence of padding.

This bug is particularly interesting, because in addition to being
impossible to detect on the host via testing, it is also very difficult to
detect on the target. Since the tv_usec field is off by some number
of nanoseconds, finding this bug by testing literally depends on the
time of day. Our tool detects it statically and without access to the
target platform.

6. Previous Work
To our knowledge, previous work considering platform-dependent
layout assumptions or low-level type-safety has taken one of the
following approaches:

• Consider only one platform or one complete “bit-by-bit” data
description.

• Check that a C program is portable, giving a compile-time error
or fail-stop run-time termination if it is not.

• Assume that a C program is portable, i.e., extend the C com-
piler’s view that behavior for unportable programs is undefined.

The first approach is not helpful for writing code that works cor-
rectly on a set of platforms. The second approach suffices for ap-
plications that should be written in a higher-level language. The
third approach relegates some issues to work such as ours, much as
we relegate some issues like array-bounds errors to other work.

6.1 Assuming a Platform
Most closely related is the work on physical type-checking (Chan-
dra and Reps 1999; Siff et al. 1999), which motivated our work con-
siderably. Their tool classifies C casts as “upcasts”, “downcasts”, or
“neither”, reporting a warning for the last possibility. Their notion
of physical subtyping is at a higher level than ours (requiring that
types, offsets, and field names match), and they neither parame-
terize their system by a platform nor produce descriptions of sets
of platforms. Checking code against a new platform would require
reverification and changing their tool. They present no metatheory
validating their approach.

CCured (Necula et al. 2005), a memory-safe C platform, in-
cludes physical type-checking to reduce the number of casts that
require run-time checks. That is, CCured permits casts that work in
practice but are not allowed by the C standard. The allowed casts
are safe under a padding strategy used by common C compilers
for the x86 architecture, which covers some but certainly not all
platforms. An interesting avenue for future work is to reimplement
the CCured type analysis engine using our platform-as-parameter
approach, thus making its memory-safety guarantee portable.

Work on typed assembly language and proof-carrying code
(Necula 1997; Morrisett et al. 1999; Crary 2003; Chen et al. 2003;
Hamid et al. 2003) clearly needs a low-level view of memory. Such
projects can establish that certifying compilers produce code that
cannot get stuck due to uninitialized memory, unaligned memory

access, segmentation faults, etc. In particular, work on allocation
semantics (Petersen et al. 2003; Ahmed and Walker 2003) has
taken a lower-level view than our formalism by treating addresses
as integers and exposing that pointer arithmetic can move between
adjacent data objects. These approaches provide less help for writ-
ing platform-dependent code because verification of type-safety is
repeated for each platform. In practice, defining a new platform is
an enormous amount of work.

Various program analyses for C, such as the work by Wilson and
Lam (1995) and Miné (2006), have represented structs and unions
with explicit bytes and offsets by assuming one particular platform.

6.2 Safe C
Memory-safe dialects or implementations of C, such as CCured (Nec-
ula et al. 2005, 2002b; Condit et al. 2003), Deputy (Condit et al.
2007), SAFECode (Dhurjati et al. 2006), and Cyclone (Jim et al.
2002; Grossman et al. 2002; Grossman 2006), do not solve the
platform dependency problem. Rather, they may reject (at compile-
time) or terminate (at run-time) programs that attempt platform-
dependent operations, or they may support only certain platforms.
These approaches are fine for fully portable code or code that is
correct assuming particular compilers.

Furthermore, the implementations of these systems include run-
time systems (automatic memory managers, type-tag checkers,
etc.) that themselves make platform-dependent assumptions! For
example, Cyclone assumes 32-bit integers and pointers, and mak-
ing this code more portable is a top request from actual users.

6.3 Formalizing C
Some recent work (Leroy 2006; Blazy et al. 2006) uses Coq to
prove a C compiler correct. Their operational semantics for C
distinguishes left and right expressions much as we do. How-
ever, their source language omits structs, avoiding many align-
ment and padding issues, and their metatheory proves correctness
only for correct source programs, presumably saying nothing about
platform-dependent code.

The HOL formalization of C by Norrish (1998) includes structs
and uses a global namespace mapping struct names to sequences of
typed fields, like our work. However, he purposely omits padding
and alignment from his formalism. He has no separable notion of a
platform; instead he models platform choices as nondeterminism.

6.4 Low-Level Code without C
Our work has been C-centric, whereas other projects have started
with languages at higher levels of abstraction and added bit-level
views for low-level programming. See Bacon (2003) and Hallgren
et al. (2005) for just two recent examples. We believe this com-
plementary approach would benefit from our constraint-based view
rather than choosing just between completely high-level types and
completely low-level ones.

C-- (Ramsey et al. 2005) makes data representation and align-
ment explicit, but C-- is not appropriate for writing platform-
dependent code. Rather, it is a low-level language designed as a
target for compiling high-level languages. It has explicit padding on
data (a compiler inserts bits where desired) and explicit alignment
on all memory accesses.12 Incorrect alignment is an unchecked
run-time error. The purpose of C-- is to handle back-end code-
generation issues for a compiler; it is still expected that the front-
end compiler will generate different (but similar) code for each
platform and provide a run-time system, probably written in C.

12 Syntactically, an omitted alignment is taken to be n for an n-byte access.

7. Conclusions and Future Work
We developed a formal description of platform dependencies in
low-level code. The key insight is a semantic notion of “platform”
that directs a low-level operational semantics and models a syntac-
tic constraint that we can produce via static analysis on a source
program. We have proven soundness for a small core language and
a simple static analysis. Giving platforms a clear identity in our
framework clarifies a number of poorly understood issues. The for-
mal model directly informs the implementation of a useful tool that
finds and reports layout portability problems in C programs.

The technique of platform-as-parameter can apply broadly since
high-level languages also have platform-defined behavior. As ex-
amples, SML programs may depend on the size of int, Scheme
programs may depend on evaluation order, and Java programs may
depend on fair thread-scheduling.

In the future we hope to move beyond memory-safety by check-
ing that a C program is observationally equivalent on a set of plat-
forms. This level of portability must account for issues like endi-
anness, integer overflow, and perhaps floating-point roundoff. We
believe the notion of platform selection described in Section 4.2
(pcase) is essential in such an endeavor. The idea is to translate a C
program into a version of C with a pcase primitive, where prepro-
cessor directives and if statements encoding platform selection are
translated to corresponding pcase statements. Then, we can extract
from this program the necessary proof obligations under which all
pcase branches are equivalent when executed under their respective
assumptions. Since pcase branches can be arbitrary code, equiva-
lence checking is undecidable. We envision discharging the proof
obligations in an interactive proof environment.

A key feature of the work in this paper is that it detects a relevant
subset of portability problems fully automatically. A portability
checker requiring interactive theorem proving is not accessible to
most C programmers.

References
Amal Ahmed and David Walker. The logical approach to stack typing. In

International Workshop on Types in Language Design and Implementa-
tion, 2003.

Aleph One Limited. The ARMLinux Book Online, Chapter 10. 2005.
http://www.aleph1.co.uk/armlinux/book.

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4), 1993.

David F. Bacon. Kava: a Java dialect with a uniform object model for
lightweight classes. Concurrency and Computation: Practice and Ex-
perience, 15(3–5), 2003.

Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification
of a C compiler front-end. In 14th International Symposium on Formal
Methods, 2006.

C Standard 1999. ISO/IEC 9899:1999, International Standard—
Programming Languages—C. International Standards Organization,
1999.

Satish Chandra and Tom Reps. Physical type checking for C. In Workshop
on Program Analysis for Software Tools and Engineering, 1999.

Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai Fang. A provably
sound TAL for back-end optimization. In ACM Conference on Program-
ming Language Design and Implementation, 2003.

Jeremy Condit, Matthew Harren, Scott McPeak, George Necula, and West-
ley Weimer. CCured in the real world. In ACM Conference on Program-
ming Language Design and Implementation, 2003.

Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George Necula. Dependent types for low-level programming. In Eu-
ropean Symposium on Programming, 2007.

Karl Crary. Toward a foundational typed assembly language. In 30th ACM
Symposium on Principles of Programming Languages, 2003.

Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. SAFECode: En-
forcing alias analysis for weakly typed languages. In ACM Conference
on Programming Language Design and Implementation, 2006.

Dan Grossman. Type-safe multithreading in Cyclone. In International
Workshop on Types in Language Design and Implementation, 2003.

Dan Grossman. Quantified types in imperative languages. ACM Transac-
tions on Programming Languages and Systems, 28(3), 2006.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. Region-based memory management in Cyclone. In
ACM Conference on Programming Language Design and Implementa-
tion, 2002.

Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew Tolmach. A
principled approach to operating system construction in Haskell. In 10th
ACM International Conference on Functional Programming, 2005.

Nadeem A. Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and
Zhaozhong Ni. A syntactic approach to foundational proof-carrying
code. Journal of Automated Reasoning, 31(3–4), 2003.

IBM. Developing embedded software for the IBM Pow-
erPC 970FX processor. Application Note 970, IBM, 2004.
http://www.ibm.com/chips/techlib/.

Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual
Technical Conference, 2002.

Xavier Leroy. Formal certification of a compiler back-end. In 33rd ACM
Symposium on Principles of Programming Languages, 2006.

Robert Love. Linux Kernel Development, Second Edition. Novell Press,
2005. Page 328.

Brad Martin, Anita Rettinger, and Jasmit Singh. Multiplatform porting to
64 bits. Dr. Dobb’s Journal, 2005.

Antoine Miné. Field-sensitive value analysis of embedded c programs
with union types and pointer arithmetics. In Conference on Language,
Compilers, and Tool Support for Embedded Systems, 2006.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System
F to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3), 1999.

George Necula. Proof-carrying code. In 24th ACM Symposium on Princi-
ples of Programming Languages, 1997.

George Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of
C programs. In Conference on Compiler Construction, 2002a.

George Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe
retrofitting of legacy code. In 29th ACM Symposium on Principles of
Programming Languages, 2002b.

George Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and West-
ley Weimer. CCured: Type-safe retrofitting of legacy software. ACM
Transactions on Programming Languages and Systems, 27(3), 2005.

Marius Nita, Dan Grossman, and Craig Chambers. A theory of platform-
dependent low-level software (extended version). 2007. Available at
http://www.cs.washington.edu/homes/marius/papers/tpd/.

Michael Norrish. C formalised in HOL. PhD thesis, University of Cam-
bridge, 1998.

Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type
theory for memory allocation and data layout. In 30th ACM Symposium
on Principles of Programming Languages, 2003.

Norman Ramsey, Simon Peyton Jones, and Christian
Lindig. The C-- language specification version 2.0, 2005.
http://www.cminusminus.org/extern/man2.pdf.

Micahel Siff, Satish Chandra, Thomas Ball, Krishna Kunchithapadam, and
Thomas Reps. Coping with type casts in C. In 7th European Software
Engineering Conference 7th ACM Symposium on the Foundations of
Software Engineering, 1999.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer
analysis for C programs. In ACM Conference on Programming Lan-
guage Design and Implementation, 1995.

