
Solver Aided Reverse Engineering of Architectural
Features

Bill Zorn, Dan Grossman, Luis Ceze
{billzorn, djg, luisceze}@cs.washington.edu

Paul G. Allen School for Computer Science & Engineering
University of Washington

ABSTRACT
To program a processor, you need to have some model of
how it behaves. But providing accurate functional models
of processors is challenging. Traditionally, the behavior of
a processor is specified by documentation that describes its
Instruction Set Architecture, or ISA. This documentation is
usually long, making it laborious to produce, and it is often
riddled with errors, typos, and inconsistencies. Addition-
ally, it can be insufficiently formal for applications that need
an accurate formal model of a processor, such as superop-
timizers, program synthesis tools, or proof frameworks. We
observe that formal methods can be used not just to consume
these models, but to check them and to help us produce them.
To demonstrate, we reverse engineer two interesting archi-
tectural features of a TI MSP430 microcontroller. First, we
use the SMT solver Z3 [1] to synthesize the timings of many
instructions. Second, we use Synapse [2], a program syn-
thesis framework built on the Rosette solver-aided language
[3], to synthesize the semantics of arithmetic instructions as
bitvector programs. In both cases, we compare our results
with the TI user’s guide and find that we can provide a more
accurate formal model.

1. INTRODUCTION
Formal methods are already well established for use in

hardware verification. Techniques like symbolic and bounded
model checking use tools such as BDDs and SAT solvers to
check that circuits are equivalent or prove they satisfy a spec-
ification. We propose something different: using tools from
formal methods to reverse engineer models of the observable
behavior of processors.

Understanding processors solely by observing them can
be challenging. In an interdisciplinary study that spans com-
puter science, electrical engineering, and neuroscience, Eric
Jonas and Konrad Kording examine whether data analysis
techniques from neuroscience can explain the behavior of
the MOS 6502 [4]. The authors conclude that these data-
driven techniques do not produce a satisfactory understand-
ing, even for this very simple processor. Without some un-
derlying intuition about how the processor works, no amount
of data is sufficient to explain its behavior.

With formal methods, we can do better. Tools from for-
mal methods are interesting because they allow us to supply

precisely the kind of intuition that was lacking in the neu-
roscience study. Rather than attempting to explain the data
from scratch, they let us outline the form of the explanation,
or provide a partial sketch of a model, and fill in the rest of
the model so that it is guaranteed to be consistent with ob-
servation. Because the models they produce are both highly
accurate and understandable by a human, these tools are well
suited for developing models of processor behavior that are
useful to programmers.

To illustrate, we consider two behaviors of the TI MSP430
fr5969 microcontroller. In Section 3 we examine the tim-
ing behavior of the processor. We empirically test the cy-
cle counts provided in the TI user’s guide, and attempt to
synthesize a better timing model using Z3. In Section 4 we
examine the behavior of arithmetic instructions and synthe-
size simple bitvector programs that implement them, in the
process filling in some behavior that is undefined by the ISA
documentation.

Most processors and ISA documents have bugs and in-
consistencies, from the infamous Pentium FDIV bug of the
1990s to much more minor issues found by other automated
formal approaches such as [5]. That said, processors and
ISA documents tend to be mostly correct. The goal of this
paper is to show how we can use formal methods to lever-
age this mostly correct information, and the specific domain
knowledge of computer architects, to provide formal models
that are more correct when the need arises.

2. THE MSP430FR5969
We study a simple mixed-signal microcontroller, the TI

MSP430 FR5969. We choose this chip because it is sim-
ple but capable enough to be interesting and widely used.
The MSP430 is an in-order processor with no caches and
minimal pipeline state. The ISA only has 27 instructions, al-
though it supports sophisticated CISC-like addressing modes.
All our experiments are performed on an array of 16 MSP-
EXP430 FR5969 LaunchPad Development Kit evaluation
boards, pictured in Figure 1, which we control using mspde-
bug [6].

MSP430 processors are used in a wide variety of applica-
tions, from electronic locks [7] to pacemakers [8] to energy
harvesting devices such as the WISP [9]. Many of these ap-
plications have critical safety or performance properties that

Figure 1: Experimental hardware setup

16x MSP430fr5969@16Mhz, a very low power cluster

could benefit from accurate, architecture-specific functional
models. For example, one might want to prove that a pro-
gram executes in some fixed number of cycles known to be
safely within the energy budget available on an energy har-
vesting device. The proof will not be very convincing unless
the cycle counts it assumes are accurate.

3. TIMING BEHAVIOR
TI provides cycle counts for the MSP430 ISA, in Tables

4-8, 4-9, and 4-10 on pages 141-142 of revision N of the
user’s guide [10]. But how accurate are these numbers?

To find out, we compare this model with the behavior of
real processors. We divide this task into two separate parts.
First, we measure the behavior of the real processors in our
array of evaluation boards. Then we use the SMT solver Z3
to reverse engineer a model from these measurements, which
we can compare directly to the model provided in the user’s
guide.

3.1 Measuring Cycle Counts
We would like our model of timing behavior to provide an

accurate cycle count for any sequence of instructions. Un-
fortunately, there are too many possible sequences, or even
individual instructions (an MSP430 instruction might be up
to 48 bits long, including extension words) for us to mea-
sure all of them. We need to apply domain knowledge to
come up with a manageable set of measurements that will
demonstrate all of the interesting behaviors.

The user’s guide makes the assumption that there are only
a few classes of instructions, and each class has a fixed cycle
count, regardless of surrounding instructions. To guide our
measurements, we make similar assumptions for our own
model. Specifically, we distinguish 4,256 classes of instruc-
tions with potentially different timing behavior, based on in-
struction operation, bitwidth, addressing modes, and regis-
ters used. We assume that general-purpose registers are in-
distinguishable from each other, but other registers like the
program counter and stack pointer are not.

Examining all of the binary encodings reveals some in-
consistencies in the manual. Some combinations of address-
ing modes and registers do not have a defined behavior; we
could choose to test them anyway and infer the behavior
ourselves, but for simplicity we simply exclude them from
our model. Other combinations produce predefined “con-
stant generator” values. In these cases, addressing modes

that would otherwise be redundant or nonsensical are in-
stead used to specify common constants like 1 and 2 in a
more compact way. It seems reasonable that these encod-
ings could have interesting timing behavior, but the manual
does not describe it explicitly.

Once we’ve defined the classes, we can enumerate pro-
grams and measure their timing behavior. We measure all
executable sequences of a single instruction (some are in-
valid, as they crash the debugger or cause control flow that
disrupts measurement) and almost 12 million of the 18 mil-
lion sequences of two instructions. Ideally, we would follow
an approach similar to the one emloyed by Campbell and
Stark in [11], and use an SMT solver to either find inputs
for all possible instruction sequences that would allow us to
run them or prove that no such inputs exist. Instead we use
a simpler heuristic approach, which fails to find initializa-
tions for about 1.3 million sequences that might have them.
Obviously this could be improved, but as we’ll see finding a
model for the subset that we can measure is already difficult.

3.2 Synthesizing a Model
With the data from our measurements, we can check the

accuracy of the timing model in the user’s guide. If we
only look at measurements of single instructions, then the
TI model is mostly correct, except for a few ambiguities and
one discrepancy. We present an annotated version of this
model in Table 1.

However, if we examine sequences of more than one in-
struction, we find inconsistencies. For example, based on the
documentation we would expect the pair

SXT @R4+
SXT @R4+

to take 6 cycles, but instead it takes 7.
What’s going on here? Can we produce a better model

that will let us predict it?
The root cause seems to be a pipeline stall or something

similar when executing sequences of single-operand instruc-
tions with register indirect or autoincrement mode. The first
instruction in the sequence takes 3 cycles, as expected, but
the next takes 4. This repeats; the next takes 3 cycles again,
then 4, then 3, and so on. While this behavior is easy to
explain, it is a little tricky to put into a formal model.

The problem is that this behavior depends on state. We
can’t implement it with a stateless function like a lookup ta-
ble, even if we provide information about other instructions
in the sequence. Fortunately, tools from formal methods are
clever enough to reason about state.

To find a better model, we use Z3, a constraint solver for
satisfiability modulo theories, or SMT. We can express our
measurements to Z3 as a set of constraints on the behavior
of a function which tells us the cycle count of an instruction
in a sequence. Repeated application of this function to all
of the instructions in a sequence allows us to implement our
model.

Given these constraints, Z3 will search for an implemen-
tation of our timing function that is consistent with all of our
data—essentially performing program synthesis for a timing
model. If we want to reproduce the model from the user’s
guide, we specify the function to take just an instruction

2

Table 1: Annotated timing model from TI user’s manual
Double operand instruction cycle counts

source destination instruction cycles
Rn, Rn, not PC all 1

any CG* PC BIT, CMP† 1
all other 3

X(Rn), ADDR, MOV, BIT, CMP 3
&ADDR all other 4

#N Rn, not PC all 2
PC BIT, CMP† 2

all other 3
X(Rn), ADDR, MOV, BIT, CMP 4

&ADDR all other 5
@Rn, Rn, not PC all 2
@Rn+ PC BIT, CMP† 2

all other 4
X(Rn), ADDR, MOV, BIT, CMP 4

&ADDR all other 5
X(Rn), Rn, not PC all 3
ADDR, PC BIT, CMP† 3

&ADDR all other 5
X(Rn), ADDR, MOV, BIT, CMP 5

&ADDR all other 6

Single operand instruction cycle counts
mode RRA, RRC, PUSH CALL

SWPB, SXT,
Rn, CG* 1 3 4

@Rn 3 3 4
@Rn+ 3 3 4

#N N/A 3 4
X(Rn) 4 4 5
ADDR 4 4 5

&ADDR 4 4 5‡

Other cycle counts
RETI 5

any jump
JZ, JNZ, JC, JNC, JN, JGE, JL, JMP 2

whether taken or untaken

These tables are taken directly from [10], table 4-8, 4-9 and 4-10 on page
141-142 as of revision N, with three clarifications:
* We find that all constant generator sources have the timing of register sources.
† We find that BIT and CMP do not incur the typical 2-cycle penalty for using

the PC as a destination, as they do not actually write the destination. The
user’s guide does not state this explicitly.

‡ The user’s guide gives this latency as 6 cycles; we measure 5.

class as input and return a cycle count and provide only the
constraints from our measurements of single instructions.
An example encoding of the constraints is given in Equation
(2) of Figure 2. In just a few seconds, Z3 finds an imple-
mentation for this function that exactly matches the model
in Table 1.

But no function specified in this way can satisfy the con-
straints from our measurements of two-instruction sequences.
Since there is no solution to our constraints, Z3 gives us
something else: a small subset of constraints that cannot all
simultaneously be satisfied, or unsat core. From this unsat
core we can automatically extract the instruction sequences
that generated the constraints and present a counterexample
to the programmer. For example, our tool reports the fol-
lowing for the state-dependent behavior of single-operand
instructions:

MOV &ADDR (R2, 0x350), Rn (R14)
SXT @Rn+ (R4)
SXT @Rn+ (R4)
SXT @Rn+ (R4)
13 total cycles

MOV &ADDR (R2, 0x350), Rn (R14)
SXT @Rn+ (R4)
SXT @Rn+ (R4)
10 total cycles

MOV &ADDR (R2, 0x350), Rn (R14)
MOV &ADDR (R2, 0x1d00), Rn (R4)
MOV &ADDR (R2, 0x1d00), Rn (R4)
MOV &ADDR (R2, 0x1d00), Rn (R4)
12 total cycles

Figure 2: Example SMT encodings

MOV &0x350, R14 (1)
SXT @R4+

SXT @R4+

10 total cycles

p =⇒ ftiming(MOV.W &ADDR Rn) (2)
+ ftiming(SXT @Rn+)

+ ftiming(SXT @Rn+) = 10
p =⇒ s0 = finitstate() (3)

∧ s1 = fstate(MOV.W &ADDR Rn,s0)

∧ s2 = fstate(SXT @Rn+,s1)

∧ (ftiming(MOV.W &ADDR Rn,s0)

+ ftiming(SXT @Rn+,s1)

+ ftiming(SXT @Rn+,s2) = 10)

Two ways (2) and (3) of encoding the constraint that the instruction se-
quence (1) takes 10 cycles to execute. The guard predicate p is unique to
the trace and is used by the solver to identify this particular trace in an unsat
core. ftiming is the timing function we want to synthesize; (3) also introduces
an update function to track persistent state as the instructions are executed.

The last trace serves to fix the cycle count of the measure-
ment MOV instruction that must occur at the beginning of all
of our traces at 3 cycles; the other two traces exhibit the be-
havior. This set of traces is interesting because it isn’t just a
counterexample to one timing model. It is a counterexample
to all possible models that could exist under our specifica-
tion, a set of traces that is in some way hard to model.

3

A simple script could easily check our measurements against
the model from the TI user’s guide and flag the first two
traces as incorrect, but that would give us a very incomplete
picture: both of those traces seem to have consistent timing
if we assume the MOV instruction takes 4 cycles. Unsat cores
allow us to use Z3 (or any other solver that supports unsat
core generation) to reason globally about a very large set of
constraints, in our case tens of millions, and condense the
outcome down enough that it is readable by a human.

Seeing this counterexample, and perhaps a few more with
different numbers of SXT instructions, a programmer can
easily figure out what is happening. But what to do about
it? As a model synthesizer, Z3 is very flexible: we can spec-
ify any signature we want for our timing function. To model
state, we introduce a new type with some finite number of
values—here 2 is sufficient. We change our specification of
the timing function to take a value of this type as input, and
simultaneously synthesize another function that updates the
state between each instruction in a sequence. Instead of a
simple lookup table, Z3 is now searching for a state machine
that satisfies our constraints. Equation (3) of Figure 2 gives
an example of constraints from this encoding.

This is sufficient to model the discussed state-dependent
behavior of single-operand instructions, but it doesn’t quite
scale to cover all state-dependent timing behavior of the pro-
cessor. There seem to be a lot of dark corners involving the
PUSH instruction:

MOV &ADDR (R2, 0x350), Rn (R14)
PUSH @Rn+ (R2)
SXT Rn (R4)
7 total cycles

MOV &ADDR (R2, 0x350), Rn (R14)
PUSH @Rn+ (R2)
JC 4, taken=True
8 total cycles

MOV &ADDR (R2, 0x350), Rn (R14)
PUSH @Rn+ (R4)
JC 4, taken=True
9 total cycles

MOV &ADDR (R2, 0x350), Rn (R14)
PUSH @Rn+ (R4)
SXT Rn (R4)
7 total cycles

We can actually handle this counterexample, and many
others, by increasing the number of states to 4. The re-
sulting model takes an entire day and 60GB of memory to
synthesize (unfortunately Z3 is difficult to parallelize), but
it does accurately predict the timings of all two-instruction
sequences in our dataset. Unfortunately, it doesn’t general-
ize beyond that. By extracting traces from real programs,
we can find sequences of 3 instructions that the model is not
correct for.

The most troubling problem with the accurate 4-state tim-
ing model is not the cost of producing it (which nonetheless
gives us an idea of the scalability limitations of Z3) nor its
inaccuracy on longer sequences. It is the difficulty of ex-

plaining the model once it has been synthesized.
The simple timing model in Table 1 fits on half a page.

In contrast, the 4-state model is implemented as two lookup
tables, one to keep track of state and the other to provide
cycle counts, each with multiple thousands of entries. Even
though the 4-state model is more accurate, it is probably less
useful to a programmer, as it conveys no insights about the
MSP430 processor, just a black box oracle that usually pre-
dicts the cycle count of a sequences of instructions. For all
its accuracy, it lacks explicable structure.

Perhaps a better specification would allow us to synthe-
size an explicable timing function, and scale it to longer se-
quences. The limitations we face are not in our ability to
collect data or solve constraints, but in our ability to state
the right constraints to solve. As we add more state to deal
with counterexamples that we don’t fully understand, the im-
plementation quickly grows beyond our ability to explain it.

A potential workaround is to limit the scope of the formal
model. For example, most of the complex timing interac-
tions can be avoided if we require that code place at least
one NOP in between other instructions. This would have
a negative effect on both the size and runtime of programs
that are legal under our model, but it might be an acceptable
trade-off if knowing the exact timing behavior is important.

4. REGISTER OPERATIONS
TI describes the behavior of the MSP430 ISA with a mix

of text and pseudocode found on pages 158-208 of revision
N of the user’s guide. Given the inconsistencies we found
with the timing model, we might want to ask: is this docu-
mentation sufficient to implement a formal semantics?

Similar to our approach for checking timing behavior, we
can answer this question by measuring the behavior of real
processors and using the data to construct a formal model
which we compare to the documentation. We examine a
convenient subset, specifically the behavior of two-operand
arithmetic instructions on registers.

Operations on two 16-bit words have billions of possible
inputs, too many for us to test exhaustively. However, the
MSP430 also supports byte-width operations. With only 20
bits of input (8 for each operand, and another 4 for the flag
bits of the status register), we can exhaustively test the be-
havior of these operations with only a million measurements,
which we can perform in a matter of hours.

4.1 Synthesizing Bitvector Programs
We formalize the semantics of arithmetic operations as

bitvector programs. This way we can synthesize our formal
model using a tool for program synthesis called Synapse [2].

Synapse allows programs to be specified as metasketches,
sets of program specifications, or sketches, that it can search
in an orderly way. The arithmetic operations we want to
model are quite simple, so we get good results with a simple
metasketch: the set of all bitvector programs in SSA form,
of increasing length. Synapse defines a formal language and
interpreter for these programs, bv, which we adopt for our
semantics as well.

For most arithmetic operations, the synthesis problem is
rather trivial. The operations themselves (ADD, SUB, bit-
wise AND) tend to be implemented as primitives in the bv

4

language. Most of the actual bv operations in the synthe-
sized programs are devoted to masking the result to the cor-
rect number of bits. The hardest part is providing a manage-
able set of constraints, as the constraint formulas for these
program synthesis problems tend to be relatively larger com-
pared to the size of the data than the ones we use to synthe-
size timing models.

We find that a counterexample-guided search strategy works
well. First we provide constraints from only a few hundred
inputs to synthesize a candidate program. This candidate
might be correct for all inputs; since there are only a mil-
lion, we can run it on all of them to find out. If it gets an
input wrong, then we add that one to our set of constraints
and synthesize a new candidate, until we find a final program
that is correct in all cases.

There is also a bit of trouble determining the correct val-
ues for the flag bits in the status register. Trying to synthe-
size the value of the status register all at once is extremely
difficult—the expression is usually a bitwise OR of several
unrelated subexpressions, which becomes quite long when
expressed in bv. Fortunately, domain knowledge indicates
that we can break this expression down and synthesize the
flags individually. Even then, the flag expressions are often
harder to synthesize than the operations themselves, as they
require computing the operation first and then doing some-
thing further to the result. Things are more manageable if
both the inputs and outputs of arithmetic are provided as in-
puts to the flag computations.

Inspecting the synthesized bitvector programs, we find
that they agree with the ISA documentation. However, one
instruction presents a particular challenge, as its behavior is
undefined on a large fraction of its inputs.

4.2 DADD
The MSP430 ISA includes an arithmetic instruction for

binary-coded decimal addition, DADD. The ISA documen-
tation on page 173 presents the operation of this instruction
as “src + dst + C → dst (decimally).” The text description
clarifies that “the result is not defined for non-BCD num-
bers,” i.e. any number that contains a 4-bit nibble not in the
range 0-9.

Defined or not, we can still measure the behavior of the
operation on non-BCD inputs. We find that the processor
doesn’t crash, but as expected the results can be surprising,
though fortunately still deterministic. For example, assum-
ing that the carry flag is 0, 0xff + 0xff produces a result of
0x54 and sets the overflow and carry flags. Can we synthe-
size a model that explains this?

DADD is harder to synthesize than the other MSP430
arithmetic operations because it doesn’t have a direct coun-
terpart in bv. Even if it did, it seems unlikely that the two
would agree on all non-BCD inputs. Synthesizing a full 8-
bit DADD implementation as a single bv program proves
problematic because it’s far too long—even with a timeout
of a day, we can only synthesize programs of about 7 or 8 bv
operations.

To work around this limitation, we apply domain knowl-
edge to simplify the task. DADD operates on groups of 4
bits, each representing a single decimal digit. We can think
of it as the combination of an iteration strategy and a com-

Figure 3: DADD iterator
(define (<< x i)
(arithmetic-shift x i))

(define (>> x i)
(arithmetic-shift x (- i)))

(define (iter-4n/cv n compute/c compute/v)
(define (op sr a b)
(let ([carry-in (bitwise-and sr 1)])
(for/fold ([c carry-in]

[v 0])
([i (in-range 0 (* n 4) 4)])

(let*
([a_n (bitwise-and (>> a i) #xf)]
[b_n (bitwise-and (>> b i) #xf)]
[c_n (compute/c c a_n b_n)]
[v_n (compute/v c a_n b_n)])
(values
c_n
(bitwise-ior v (<< v_n i)))))))

op)

Iterative strategy for computing DADD in 4-bit increments. Definitions
for << and >> are provided for clarity. The outer function iter-4n/cv
takes a fixed number of steps and implementations for the computations
and produces another function that iterates to produce the final result.

putation: first it looks at the first 4 bits of each input and
performs the computation to produce the first 4 bits of the
output, then it looks at the next 4 bits and performs the same
computation, and so on. The computation is what we want
the synthesize.

The iteration strategy is expressed as a Racket function in
Figure 3. Note that we have to be careful with the carry; we
treat it as a separate computation to synthesize, but instead
of bitwise OR-ing the output together at different offsets like
we do with the output value bits, we pass the carry along to
the next step of iteration.

We can check if this strategy is valid by looking at the ob-
served behavior for inputs in the range of one step of the iter-
ation: 0 or 1 for the carry, and 0-15 for both inputs. Masking
off the the fifth bit of the output value gives us the output
carry. A lookup table of these measurements is sufficient to
implement the full behavior of DADD, given the iteration
strategy. However the 512-entry table is cumbersome and
does not provide much intuition about why DADD behaves
the way it does.

The reduced, one-nibble table is almost simple enough for
us to synthesize bitvector implementations of the value and
carry computations to use with our iteration strategy. How-
ever, synthesis still times out. Even though there are only
512 pairs of inputs and outputs, expressing the computation
still takes too many bv operations. To amend this, we apply
one final piece of domain knowledge. DADD differs from
ordinary bitvector addition in the way it handles the carry.
Specifically, if addition produces a digit value greater than
9, we need to add 6 more, so that we carry to the next digit.
If we implement this as a primitive in bv, we can then suc-
cessfully synthesize both the value and carry computations

5

Figure 4: Synthesized 4-bit DADD
;; DADD 4-bit value computation
(program 3
#| 0: c |#
#| 1: a |#
#| 2: b |#
(list
#| 3|# (bvadd 0 1)
#| 4|# (bvadd 2 3)
#| 5|# (bcd_carry 4)
#| 6|# (bv 15)
#| 7|# (bvand 5 6)))

;; DADD 4-bit carry
(program 3
#| 0: c |#
#| 1: a |#
#| 2: b |#
(list
#| 3|# (bvadd 0 2)
#| 4|# (bvadd 1 3)
#| 5|# (bcd_carry 4)
#| 6|# (bvor 4 5)
#| 7|# (shr4 6)
#| 8|# (bv 1)
#| 9|# (bvand 7 8)))

Synthesized bitvector programs used to compute DADD 4 bits at a time
with the iteration strategy from Figure 3, as output by Synapse. Programs
are in SSA form and refer to operands by the index of their binding location,
provided in comments. The first three locations hold the three arguments.
The bv instruction does not take a binding location; it instead returns a
bitvector value equal to its argument. Each program returns the value of its
last binding.

in under a minute.
Figures 4 and 5 present the resulting 4-bit DADD compu-

tations, along with our manually provided implementation
of the BCD carry operation. The solver is allowed to use the
bvand, bvadd, bvor, shr4, and bcd_carry instructions,
as well as the bv constructor with values of 1 and 15. It
searches the space of programs in SSA form in order of in-
creasing length until an implementation is found.

This might seem like a lot of code, but the model is ex-
pressed much more compactly as a bitvector program than as
tables of inputs and outputs, and the iteration strategy gives
us a natural way to extend it to operations wider than 8 bits.
It also lets us give a coherent explanation why 0xff + 0xff is
0x54:

0xf is 15. 15 + 15 is 30. 30 is greater than 9, so add
6 more to get the proper BCD carry behavior. That’s 36;
taking the low 4 bits gives us the first digit, 4. When we
move on to the next digit, we have a carry of 1, because the
previous digit was larger than 15 after we added 6 for the
BCD carry. Interestingly, the bv implementation has to OR
together the values before and after the BCD carry so that a
carry to the fifth bit isn’t lost due to another carry into the
sixth bit. Otherwise, the calculation of the second digit is
like the first; 15 + 15 + 1 + 6 is 37, take the low 4 bits to get
5 and a carry out of 1.

Figure 5: Final DADD implementation
(define (bcd-carry x)
(if (or (> x 9) (< x 0)) (+ x 6) x))

(define (dadd-compute/v c a b)
(bitwise-and (bcd-carry (+ c a b)) 15))

(define (dadd-compute/c c a b)
(bitwise-and (>> (bitwise-ior

(+ c a b)
(bcd-carry (+ c a b)))

4) 1))

(define dadd.b (iter-4n/cv 2
dadd-compute/c
dadd-compute/v))

Synthesized bitvector programs expressed in native racket. The bcd-carry
function is implemented by hand and provided to the synthesizer; dadd-
compute/v and dadd-compute/c are translated from the Figure 4. The
final implementation of DADD is provided by applying the iterator from
Figure 3 in dadd.b. Passing n=2 yields an 8-bit DADD. We could also
produce implementations of the 16 and 20-bit versions of the instruction by
passing n=4 and n=5.

This explanation, and the bitvector programs that let us
provide it, are particularly interesting because they are so
high-level. A circuit diagram of the relevant hardware logic
in the MSP430 processor might also let us accurately predict
the behavior, but even if we could obtain such a diagram, it
would be less useful to a programmer who is used to thinking
about Racket code or bitvector programs. Program synthesis
tools let us provide our models as mathematical expressions,
which are both easy to reason about and convenient for reuse
in other formal analyses.

5. CONCLUSION
Providing accurate models of processors is an important

task to ensure the correctness and reliability of software that
runs on them. As our experience with the MSP430 shows, it
can be surprisingly difficult even for simple processors. And
as processors become both more complex and more diverse,
the problem isn’t getting any easier.

Fortunately, and in contrast to the situation in neuroscience,
we have formal tools that seem well suited to reasoning about
processors. By combining the insight and domain knowl-
edge of a human architect with the relentless thoroughness
of a formal analysis, SMT solvers and program synthesis
frameworks can help us to build models that are simple, gen-
eralizable, and demonstrably correct, as we saw synthesizing
DADD, and even guide us in cases where our initial insight
is insufficient, as we saw synthesizing timing models. Based
on our explatory work, we draw three conclusions.

First, off-the-shelf SMT solvers and synthesis tools are
strong enough to handle interesting datasets measured from
real processors. This is perhaps surprising, given the size
of our constraint formulas, or perhaps not, given the recent
success of solvers on other industrial SAT instances. Either
way, the ready availability of these tools is helpful.

6

Second, off-the-shelf tools are good at telling us when a
formal model is wrong. In a sense, the same can be said
about simple scripts; the point is that a script can call out to
an existing solver and provide a useful explanation of any-
thing that goes wrong, for example by returning unsat cores,
at a relatively small cost in terms of complexity.

Third, formal tools can help us to create better formal
models, but only if we help them in return. Applying domain
knowledge like the iterative nature of DADD is necessary to
get good results. In some cases tools can help us refine our
knowledge, or at least check that it is accurate, but they can’t
discover it on their own. And as we saw synthesizing timing
models, sometimes the right domain knowledge is hard to
come by.

Formal models of processors in languages such as L3 [12]
and machine-readable specifications such as recent work at
ARM [13] are becoming more prevalent. We believe that
formal methods can help accelerate this trend, not just by
checking models but by creating them.

6. REFERENCES
[1] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in

International conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 337–340, Springer, 2008.

[2] J. Bornholt, E. Torlak, D. Grossman, and L. Ceze, “Optimizing
synthesis with metasketches,” in Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, (New York, NY, USA), pp. 775–788, ACM,
2016.

[3] E. Torlak and R. Bodik, “Growing solver-aided languages with
rosette,” in Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming &
Software, Onward! 2013, (New York, NY, USA), pp. 135–152,
ACM, 2013.

[4] E. Jonas and K. Kording, “Could a neuroscientist understand a
microprocessor?,” bioRxiv, 2016.

[5] P. Godefroid and A. Taly, “Automated synthesis of symbolic
instruction encodings from i/o samples,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, (New York, NY, USA), pp. 441–452,
ACM, 2012.

[6] D. Beer, “Mspdebug.” http://dlbeer.co.nz/mspdebug/.

[7] C. Chong-chong, “The ultra low power consumptive lock based on
msp430f122 [j],” Techniques of Automation and Applications, vol. 5,
p. 041, 2009.

[8] C. Rotariu, V. Manta, and H. Costin, “Wireless remote monitoring
system for patients with cardiac pacemakers,” in Electrical and
Power Engineering (EPE), 2012 International Conference and
Exposition on, pp. 845–848, IEEE, 2012.

[9] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith, “Design of an rfid-based battery-free programmable sensing
platform,” IEEE Transactions on Instrumentation and Measurement,
vol. 57, no. 11, pp. 2608–2615, 2008.

[10] TI, MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx Family User’s Guide.

[11] B. Campbell and I. Stark, “Randomised testing of a microprocessor
model using smt-solver state generation,” Science of Computer
Programming, vol. 118, pp. 60–76, 2016.

[12] A. Fox, “Directions in isa specification,” in International Conference
on Interactive Theorem Proving, pp. 338–344, Springer, 2012.

[13] A. Reid, “Trustworthy specifications of armr v8-a and v8-m system
level architecture,” in Proceedings of Formal Methods in
Computer-Aided Design (FMCAD), 2016.

7

http://dlbeer.co.nz/mspdebug/

	Introduction
	The MSP430fr5969
	Timing Behavior
	Measuring Cycle Counts
	Synthesizing a Model

	Register Operations
	Synthesizing Bitvector Programs
	DADD

	Conclusion
	References

