
Input-Covering Schedules for Multithreaded Programs

Tom Bergan Luis Ceze Dan Grossman
University of Washington, Department of Computer Science & Engineering

ABSTRACT
We propose constraining multithreaded execution to small
sets of input-covering schedules, which we define as follows:
given a program P, we say that a set of schedules Σ covers
all inputs of program P if, when given any valid input, P’s
execution can be constrained to some schedule in Σ and still
produce a semantically-valid result.

Our approach is to first compute a small Σ for a given
program P, and then, at runtime, constrain P’s execution to
always follow some schedule in Σ, and never deviate. We
have designed an algorithm that uses symbolic execution
to systematically enumerate a set of input-covering sched-
ules, Σ. To deal with programs that run for an unbounded
length of time, we partition execution into bounded epochs,
find input-covering schedules for each epoch in isolation, and
then piece the schedules together at runtime. We have im-
plemented this algorithm and a constrained execution run-
time, and we report early results.

Our approach has the following advantage: because all
possible runtime schedules are known a priori, we can seek
to validate the program by thoroughly testing each schedule
in Σ, in isolation, without needing to reason about the huge
space of thread interleavings that arises due to conventional
nondeterministic execution.

1. INTRODUCTION
Multithreaded programs are notoriously difficult to test

and verify. In addition to the already daunting task of rea-
soning about program behavior over all possible inputs, test-
ing and verification tools must reason about a large number
of possible thread interleavings for each input—the number
of possible interleavings grows exponentially with the length
of a program’s execution. Tools can systematically explore
the interleaving space in part, but in practice, the interleav-
ing space is too massive to be explored exhaustively.

We want to avoid this problem entirely by constraining
execution to a small, easily enumerable set of input-covering
schedules. Given a program P, we say that a set of schedules
Σ covers the program’s inputs if, for all valid inputs, there
exists some schedule S ∈ Σ such that P’s execution can be
constrained to S and still produce a semantically-valid re-
sult. In our system, a schedule is a partial order of dynamic
instances of program statements paired with thread ids, i.e.,
a happens-before graph.

It is not obvious that small sets of input-covering schedules
should exist for realistic multithreaded programs. The key
word is small—an input-covering set Σ is of no help when it
is so intractably large that it cannot be enumerated in a rea-
sonable time. A primary contribution of this work is defining
Σ in a way that makes the problem more tractable. Notably,
programs that run for unbounded periods of time require
unboundedly many schedules, making the set Σ intractably

large. We avoid this problem by partitioning execution into
bounded epochs—we find input-covering schedules for each
epoch in isolation, and then piece those schedules together
at runtime.

1.1 System Overview
Our proposed system has three parts: an algorithm to

enumerate Σ for a given program, a runtime system that
constrains execution to Σ, and a testing strategy that ex-
ploits input-covering schedules to more efficiently find bugs
or prove their absence. Each part is summarized below:

Algorithm. We have designed an algorithm that uses sym-
bolic execution to systematically enumerate input-covering
schedules for a given program. Figure 1 gives a demonstra-
tion. On the right side of Figure 1 is a set of input-covering
schedules, Σ, that our algorithm might produce when given
the program on the left. Each schedule in Σ is paired with
an input constraint that describes the set of inputs under
which the schedule can be followed. Schedules are specified
as a happens-before ordering of synchronization statements.

Runtime System. At runtime, we constrain execution
to always follow schedules in Σ. We have implemented a
custom runtime system that captures the program’s inputs,
finds a pair (I,S) ∈ Σ such that the program’s inputs sat-
isfy input constraint I, and then constrains execution to S,
ensuring that execution never deviates from S.

Testing Strategy. Finally, and most importantly, testing
and verification become simpler under the assumption that
programs always execute using our custom runtime system.
Given this assumption, we observe that the input-covering
set Σ contains the complete set of schedules that might be
followed at runtime. As a result, verification tools can focus
on schedules in Σ only, avoiding the need to reason about a
massive nondeterministic interleaving space.

For a simple example, consider deadlocks. We can de-
termine if a schedule deadlocks by simply looking at it—if
the schedule does not terminate with a program exit state-
ment, then the schedule deadlocks. We can perform this
check for each schedule in Σ independently. If a deadlock-
ing schedule is found, we can use the schedule’s associated
input constraint to present the programmer with a concrete
input and schedule that leads to deadlock. If no deadlock-
ing schedules are found, we have proven that we will never
encounter a deadlock when execution is constrained by our
runtime system.

Deadlocks are relatively simple because they are purely
schedule-dependent, meaning that their presence depends on
the choice of schedule only, not on schedule-irrelevant choices
of data values or thread-local paths. Our approach simplifies
the search for other, more complex schedule-dependent bugs
as well. For example, consider the following code:

1

1 input X
2 global Lock A,B
3
4 Thread 1 Thread 2
5 for (i in 1..5) { for (i in 1..5) {
6 if (X == 0) { if (X == 0) {
7 lock(A) lock(A)
8 unlock(A) unlock(A)
9 } else { } else {

10 lock(B) lock(B)
11 unlock(B) unlock(B)
12 } }
13 } }

for X == 0:

Thread 1: lock(A)
unlock(A)

Thread 2:
...

(alternates)

for X != 0:

Thread 1:

Thread 2:

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(B)
unlock(B)

...
(alternates)lock(B)

unlock(B)

lock(B)
unlock(B)

lock(B)
unlock(B)

lock(B)
unlock(B)

exit

exit

exit

exit

Figure 1: On the left is a simple multithreaded program. On the right is one set of input-covering schedules for the program.

Thread 1 Thread 2 Thread 3 Thread 4
lock(m[i]) lock(m[0]) lock(L) lock(L)
d[0]++ d[0]++ if (x%2!=0) if (x%2!=0)
unlock(m[i]) unlock(m[0]) x++ fail()

unlock(L) unlock(L)

There is a data race between threads T1 and T2 when T1

executes with i!=0, and there is an assertion failure in T4

when it executes before T3 with an odd value for x. These
bugs are difficult to find in conventional systems because
they depend on specific combinations of input and schedule.
Our approach uses a small number of schedules, so we can
reason about each schedule in isolation, perhaps by serializ-
ing the original multithreaded program to each schedule in
Σ to produce |Σ| single-threaded programs (similarly to [8]).
This reduces the worst-case number of possible program be-
haviors from k! · i to |Σ| · i, where k is the length of execution
and i is the number of possible inputs.

1.2 Paper Outline and Related Work
The primary contribution of this paper is the identifica-

tion of the input-covering schedules problem, which to our
knowledge has not been introduced previously. Our solution
to this problem depends on a carefully determined represen-
tation of schedules that we describe in §2.

This paper describes a work-in-progress. We have de-
signed an algorithm for finding input-covering schedules (§3),
implemented that algorithm on the Cloud9 [2] symbolic ex-
ecution engine, and implemented a runtime system to con-
strain execution to input-covering schedules produced by our
algorithm (§4). Our implementation targets C programs
that use pthreads. We have not yet explored testing strate-
gies in any significant detail, though we have implemented
a simple but imperfect deadlock checker that we describe in
§4. We summarize early experimental results in §5.

Our system generalizes ideas introduced by Tern [4] and
Peregrine [5]. Those systems memoize schedules from a
few tested inputs, so they provide best-effort schedule memo-
ization only, while our system enumerates a complete input-
covering set. Computing complete input-covering sets re-
quires solving a number of technical challenges not faced by
any prior system. Another important difference between our
work and [4, 5] is that we assume programs are data race
free—this assumption simplifies our analysis in a number of
important ways that we will mention later.

Our runtime system selects schedules deterministically for
each input, giving our system all the benefits of determin-
ism that have been championed by many prior authors (see
[1] for a summary). However, our primary goal is not de-

terminism per se—we could just as easily record multiple
schedules for each input constraint in Σ and randomly se-
lect from those schedules at runtime. This added flexibility
increases schedule diversity, which has potential benefits for
security, fault-tolerance, and performance [1].

2. REPRESENTING SCHEDULES
We represent a schedule using a happens-before graph over

a bounded execution trace, where graph nodes are labeled
by the triple (program-counter, thread-id, dynamic-counter)
and edges are induced from program order and synchroniza-
tion in the usual way, such as between release and acquire
operations on the same lock. The program-counter label rep-
resents a synchronization statement in the program, such
as a call to pthread_mutex_lock, and the pair (thread-id,
dynamic-counter) is a coordinate of a Lamport clock. No-
tice that ordinary memory accesses are not included in the
happens-before graph, as we assume data race freedom.

We return to the example in Figure 1. On the left is a sim-
ple program in which each thread acquires a different global
lock depending on the value of the input X. A conventional
nondeterministic execution might follow one of 240 possible
schedules (5! when X==0, and another 5! when X!=0). How-
ever, just two schedules are necessary to cover all inputs
for this program—one schedule for X==0, and another for
X!=0. This is illustrated by the right side of Figure 1, which
shows one possible set of input-covering schedules, Σ. (The
schedules have been abbreviated for space.)

Importantly, for each pair (I,S) ∈ Σ, the constraint I
should include only those constraint terms that affect whether
the schedule S can be followed. That is, constraint I should
be a weakest precondition of the schedule S. For example,
suppose we modify the program in Figure 1 to perform a
complex computation in each loop iteration. As long as this
computation does not mutate X or perform synchronization,
the set of input-covering schedules shown in Figure 1 will
work equally well for our modified program.

The above representation works well for programs that
read their entire input up front (e.g., from the command
line or a file) and then perform a bounded-length computa-
tion on that input. We extend this representation to support
unbounded-length programs in §2.1. To support programs
that read inputs continuously, we follow the suggestion made
by Tern [4] to represent schedules using a decision tree in
which nodes are program statements that read new input
and edges are partial schedules that start at an input state-
ment and end at either another input statement or program
exit. For brevity, we omit the details.

2

2.1 Bounded Epochs
We support programs of unbounded length by partitioning

execution into bounded epochs. In practice, we care not only
about programs of truly unbounded length, but also about
programs that execute for a “very long” time. For example,
consider the following simple program with two threads:

Thread 1 Thread 2
for (i in 1..X) { for (i in 1..Y) {
lock(L) lock(L)
unlock(L) unlock(L)

} }

If X and Y are program inputs, then any set of input-covering
schedules must have a unique schedule for each pair (X,Y). If
X and Y are 32-bit integers, there are 264 possible inputs, so
any set of input-covering schedules must contain 264 total
schedules. Equally problematic: the longest of these sched-
ules must contain 264 total synchronization operations.

Our basic idea is to define schedules one loop iteration
at a time. We do this by partitioning the program into
bounded epochs that are separated by epoch markers. We
statically analyze the program to find all loops that perform
synchronization, and then place a epoch marker at the entry
of such loops. We do this with a simple bottom-up traversal
of the call graph starting from synchronization functions like
pthread_mutex_lock. If some statement s in function f
performs synchronization, and if s is contained in the body
of a loop, we place an epoch marker at the entry of that
loop. Otherwise, we continue up the call graph since callers
of f may contain loops that need to be annotated.1 The
above program would be annotated as follows:

Thread 1 Thread 2
for (i in 1..X) { for (i in 1..Y) {
epochMarker() epochMarker()
lock(L) lock(L)
unlock(L) unlock(L)

} }

Epoch markers act as barriers during program execution,
forcing threads to execute in a bulk-synchronous manner.
For example, suppose a program’s threads begin executing
from some initial state. The threads will execute concur-
rently until each thread is blocked on synchronization, has
terminated, or has reached a future epoch marker (possibly
the same epoch marker the thread started at, e.g., if the
thread started at the beginning of a loop). This quantum
of execution corresponds to a single bounded epoch. Ex-
ecution repeats in this bulk-synchronous manner until all
threads terminate. We include “is blocked” in the end-of-
epoch conditions to avoid deadlock when thread T1 attempts
to acquire a lock that is held by T2 while T2 is stalled at an
epoch marker. Note that, in practice, we can use loop un-
rolling to reduce the frequency of epoch markers.

We now require a set of input-covering schedules for each
bounded epoch. A bounded epoch E is named by a list of
tuples (pci, callstacki), where pci represents the current pro-
gram counter of thread Ti (i.e., the pc of an epoch marker)
and callstacki is a list of return addresses that represents the
calling context. Our algorithm, defined in §3, enumerates all
reachable bounded epochs E and computes an input-covering
set ΣE for each E ∈ E. The initial bounded epoch starts at

1Our current implementation does not support recursive
programs. This can be remedied by transforming recursive
functions into equivalent functions that use loops.

program entry, and its inputs are the program’s inputs. All
other bounded epochs start from a point in the middle of a
program’s execution. The “input” to these epochs is, poten-
tially, the entire state of memory.

2.2 Discussion
Bounded epochs make an intractable problem tractable—

they limit state-space explosion by bounding both the length
of each computed schedule as well as the total number of
schedules—but they introduce necessary approximations, as
we will demonstrate in §3.2. Further, bounded epochs do
not eliminate all causes of explosion in the size of Σ. For
example, consider a thread that determines which locks to
acquire using a sequence of conditionals as in the following:

Thread 1
if (X[0]) { if (X[1]) { if (X[n]) {
lock(L[0]) lock(L[1]) ... lock(L[n])
unlock(L[0]) unlock(L[1]) unlock(L[n])

} } }

In this case, the set of locks acquired by thread T1 is uniquely
determined by the value of the bitvector X. If X has 32 bits,
any set of input-covering schedules must have 232 unique
schedules. This is a source of state-space explosion that we
can think of no good way to eliminate. Since our underlying
problem is undecidable, anyway, we focus our current work
on programs without such pathological behavior.

3. FINDING INPUT-COVERING SCHEDULES
Our algorithm for enumerating input-covering schedules is

shown in Figure 2. The input is a program P, and the output
is a mapping from epochs E ∈ E to set of input-coverings
schedules ΣE for each epoch, where E is a set of bounded
epochs that may be reachable. The function Search tra-
verses all reachable bounded epochs, starting from an initial
epoch representing the call to main(). For each epoch E,
Search invokes SearchEpoch(E), which performs a depth-
first search to enumerate a set of input-covering schedules
for E along with the set of epochs reachable from E. We
describe each function below.

3.1 Finding Schedules for a Single Epoch
The function SearchEpoch uses ExecutePath to symboli-

cally execute a single path from a given initial state. This
path completes when all threads have deadlocked, termi-
nated, or reached an epoch marker. ExecutePath can follow
any path from a branch and may context switch between
threads arbitrarily, as long as it follows a path that is fea-
sible given the initial input constraint. If the path did not
end in program termination or deadlock, it ended at a new
bounded epoch that we add to the set of reachable epochs
(lines 34–35). EpochId extracts a unique epoch identifier (re-
call from §2.1 that an epoch is named by the calling context
from which each of its threads begins execution).

For each path, we extract the schedule and then compute a
conservative weakest precondition of the schedule using pre-
condition slicing [3], where a precondition slice is computed
from a dynamic trace and includes only those statements
from the trace that might affect whether the final statement
was executed. The set of branching statements in a pre-
condition slice combine to form a precondition of the final
statement. We have modified the algorithm from [3] to in-
stead enumerate all statements from the trace that might

3

1 Search(p: Program) {
2 worklist = {MakeInitialState(p)}
3 output = {}
4
5 while (!worklist.empty()) {
6 // Explore another bounded epoch
7 state = worklist.remove()
8 (schedules, reachable) = SearchEpoch(state)
9

10 // Found an input-covering set for this epoch
11 output.add(EpochId(state), schedules)
12
13 // Add unexplored epochs to the worklist
14 for (e in reachable)
15 if (e not yet visited)
16 worklist.add(MakeStateForEpoch(e))
17 }
18
19 return output
20 }
21
22 SearchEpoch(initState: SymbolicState) {
23 reachableEpochs = {}
24 schedules = {}
25 constraints = {true}
26
27 while (!constraints.empty()) {
28 // Explore a new input constraint
29 state = initState.clone()
30 state.applyConstraint(constraints.remove())
31 (finalState, trace) = ExecutePath(state)
32
33 // Update set of reachable epochs
34 if (!IsTerminatedOrDeadlocked(finalState))
35 reachableEpochs.add(EpochId(finalState))
36
37 // Update set of schedules
38 slice = PrecondSlice(trace)
39 schedules.add(MakeConstraint(slice.branches),
40 trace.schedule)
41
42 // Accumulate unexplored input constraints
43 inputConstraint = true
44 for (b in slice.branches) {
45 c = inputConstraint ∧ ¬b
46 if (c not yet covered)
47 constraints.add(c)
48 inputConstraint = inputConstraint ∧ b
49 }
50 }
51
52 return (schedules, reachableEpochs)
53 }

Figure 2: Searching for input-covering schedules

affect the set of synchronization operations that would be
performed. We call this a synchronization-preserving slice.

The original algorithm in [3] works much like a standard
dynamic backwards slicing algorithm: it iterates backwards
over an execution trace, uses a live set to track data depen-
dencies, and adds statements to the slice if they modify items
in the live set. Branches are handled as shown in Figure 3:
a branch is included in the slice if either (a) the current
head-of-slice is control-dependent on the branch (this is the
Postdominates check, which is computed with a standard
postdominators analysis), or (b) some other path through
the branch (not taken in the given trace) might modify an
item in the live set (this is the WritesLiveVarBetween check,
which is computed with a static alias analysis).

HandleBranch() {
if (!Postdominates(thread. slice.head, branch)

|| WritesLiveVarBetween(branch, thread. slice.head)
|| SyncOpBetween(branch, thread.slice.head))

Take(branch)
}

Figure 3: How precondition slicing handles branches (our
additions are in italics)

We make three modifications. First, we include all syn-
chronization statements in the slice to ensure that all control
and data dependencies of synchronization are included in the
slice. Second, we keep a separate head-of-slice per-thread so
that all control-flow checks remain single-threaded. Finally,
we include a branch in the slice if some other path through
the branch (not taken in the given trace) might perform syn-
chronization (this is the SyncOpBetween check in Figure 3).
The final addition ensures that a branch is included in the
slice if it may affect synchronization.

Because we assume data race freedom, our slicing algo-
rithm does not need to account for potentially-racing ac-
cesses when computing data dependencies. Relaxing this
assumption would involve a much more complicated imple-
mentation of WritesLiveVarBetween that would require a
may-race analysis, much like the algorithm described in [5].

3.2 Exploring All Reachable Epochs
The function Search enumerates input-covering schedules

for all epochs that are uncovered by SearchEpoch. In Search,
the key is a call to MakeStateForEpoch, which computes, for
a given epoch, an initial symbolic state that will be explored
by SearchEpoch. Each symbolic state includes a set of call-
ing contexts (one per thread), along with a set of constraints
on memory. The calling contexts are provided directly by
the epoch identifer, but the memory constraints must be
computed by MakeStateForEpoch.

How does MakeStateForEpoch compute the initial mem-
ory constraints? The difficulty is that we must compute
constraints that are abstract enough to cover all possible
concrete initial states of the epoch. The most conservative
option is to use a completely unconstrained initial memory,
represented by the constraint true, but this is obviously an
over-approximation—SearchEpoch will waste time explor-
ing many infeasible paths. The most precise option is to
symbolically enumerate all paths from program entry to the
beginning of the epoch, then summarize those paths to com-
pute a very precise initial state, but this will be prohibitively
expensive—it suffers from exactly the sort of state-space ex-
plosion that bounded epochs are designed to avoid.

Our approach is to use a collection of static dataflow anal-
yses as a comprimise between those two extremes. Each
analysis is scalable, interprocedural, and context-specific in
the sense that it analyzes the specific calling contexts from
which the epoch begins. The analyses were designed to re-
move a few common sources of infeasible paths, but they
are necessarily conservative. Included in this collection is a
reaching definitions analysis, a lockset analysis [7], a form
of barrier matching [9], and a few smaller analyses that we
cannot describe in any detail due to space constraints.2 The
following example demonstrates the general idea:

2Our data race free assumption makes these analyses more
effective. For example, it enables using interference-free re-
gions to reason about cross-thread interference [6].

4

1 Thread 1 Thread 2
2 void RunA() { void RunB() {
3 Foo(&thelock) Bar(&thelock)
4
5 } }
6 void Foo(Lock *a) { void Bar(Lock *b) {
7 for (i in 1..X) { for (k in 1..Y) {
8 epochMarker() epochMarker()
9 lock(a) lock(b)

10

Suppose we are given an epoch in which threads T1 and T2

begin executing from line 8. To execute this epoch sym-
bolically, ExecutePath needs to answer questions such as:
Do a and b alias? (If so, the critical sections in T1 and T2

must be serialized.) And, does any thread hold lock a when
the epoch begins? (If so, T1 must block until the lock is
released.) Our dataflow analyses enable precise answers to
these questions in many common scenarios, including the
above scenario. For example, our reaching definitions anal-
ysis learns that a and b refer to the same lock, and our lock-
set analysis learns that no locks are held at the beginning of
the epoch. Since our ultimate goal is to enumerate input-
covering schedules, we are especially interested in avoiding
infeasible schedules—we have found synchronization invari-
ants such as locksets especially helpful towards this goal.

3.3 Optimizations

3.3.1 Shortest-Path First
We have not specified which path ExecutePath should fol-

low, only that it sould execute some path that is feasible
given the initial constraints. The choice of path can have a
significant effect on performance. An extreme example is an
input-dependent loop that contains no synchronization (and
thus does not contain epoch markers): a näıve ExecutePath

would spin in this loop up to the maximum trip count, which
can be quite large. Our insight is that we should always take
the shortest feasible path, then allow precondition slicing to
direct us down longer paths when necessary. Determining
the true shortest feasible path is not decidable, so at each
branch our heuristic is to select the branch edge with the
shortest static distance to a statement that either returns
from the current function or exits a loop.

3.3.2 Ignoring Prefix Schedules
Programs are often implemented using a defensive coding

style: they frequently check for errors (e.g., via assertions or
by checking return codes from system calls) and terminate
the program when a failure is detected. Since we include
“thread exit” events in our schedules, it appears that enu-
merating a complete set of input-covering schedules requires
enumerating all ways in which the program can exit. In the
limit, this requires enumerating all feasible assertion failures,
which is a very hard problem on its own.

We avoid this problem using the concept of prefix sched-
ules. Suppose a thread executes the following code fragment:

lock(A)
if (X == 0) { abort() }
lock(B)

Concretely, there are two feasible schedules: (1) the thread
locks A and then aborts the process, and (2) the thread locks
A and then locks B. We consider the first schedule a prefix
of the second schedule: at runtime, we can always execute

following the second schedule, and then stop early if the
abort statement is reached. To support prefix schedules, we
modify ExecutePath and PrecondSlice to ignore paths that
end in process-exit and do not perform synchronization. For
the above fragment, our optimized algorithm outputs just
the second schedule, paired with the input-constraint true.

3.3.3 Abstracting Input Constraints
Occasionally, symbolic execution eagerly enumerates a large

set of input constraints when a single, more abstract con-
straint would suffice. The following code fragment, adapted
from the dedup kernel in PARSEC, is a good example:

TreeNode* T = TreeSearch(x)
if (T) { lock(L) ... }

In this example, a thread searches for a value in a binary
search tree, and then performs synchronization if the value is
found. Our problem is that symbolic execution will eagerly
enumerate all concrete heaps for which the expression T!=0

evaluates to true. Specifically, it attempts to enumerate the
following infinite set of input constraints:

root->x == x
root->x > x && root->left && root->left->x == x
root->x > x && root->left && root->left->x > x && ...
...

Our approach is a form of abstraction: instead of exe-
cuting TreeSearch symbolically, we treat TreeSearch as a
function that returns new symbolic “input” in the same way
that the getchar function returns a new symbolic character.
(Recall the discussion of programs that read continuous in-
put in §2.) For now, we construct this abstraction manually
by annotating TreeSearch as an input function. In practice,
a few subtle conditions must be met for this annotation to
be sound—e.g., we must be careful if TreeSearch mutates
global state—but we omit a discussion for brevity.

4. IMPLEMENTATION
We implemented the above algorithms in the Cloud9 [2]

symbolic execution engine. Cloud9 executes C programs
that compile to LLVM bytecode, and it includes symbolic
models for the pthreads library and most Linux system calls.
Programs that use other standard libraries are linked to a
version of uClibc that has been compiled to LLVM byte-
code. Our current implementation supports programs that
synchronize via pthreads only—we do no support programs
that synchronize through signals, pipes, or other OS services.

As an optimization, users of our tool can opt to ignore
internal synchronization used by library functions such as
printf to ensure consistency of uClibc data structures. With
this option, our algorithm produces schedules that do not
include internal uClibc synchronization—such synchroniza-
tion will be performed nondeterministically at runtime. Our
rationale is that developers are more concerned about test-
ing their own code than library internals, so it is sensible to
ignore library internals and construct input-covering sched-
ules for application code only. This option works especially
well with the prefix schedules optimization (§3.3.2), as pro-
grams often call printf just before aborting the program.

Checking For Deadlocks. We already check for dead-
locks during our search for input-covering schedules. So, in
a sense, we get deadlock checking “for free.” Our algorithm
either outputs a set of non-deadlocking schedules, in which
case we are guaranteed to never deadlock at runtime, or its

5

output will include schedules that deadlock, in which case we
may deadlock at runtime. Note that we cannot prove these
schedules will deadlock, as they may actually be infeasible
(recall §3.2). In this way, our deadlock checker is imper-
fect. Currently, we manually inspect deadlocking schedules
to determine if they are actually feasible, but we hope to use
more sophisticated strategies for removing infeasible paths
in future work to make these manual checks unnecessary.

Runtime System. Our symbolic execution algorithm (§3)
outputs a database of input-covering schedules that our run-
time system follows faithfully. This is mostly straightfor-
ward. At the beginning of the program, or after the pro-
gram reads new input, the runtime system compares the
current inputs with the database of input constraints to se-
lect a new schedule. Similarly, epoch markers are turned
into barriers, and when all threads reach an epoch barrier, a
single thread is selected (arbitrarily) to determine the next
schedule. Then, at each synchronization statement, the run-
time system inspects the thread’s current happens-before
node, waits until all incoming happens-before dependencies
are satisfied, and then advances to the next node.

The only non-trivial problem our runtime system must
solve is the following: How do we check input constraints?
The difficulty is that the choice of schedule at an epoch
boundary can depend on thread-local variables. Somehow,
we must gather all local values so input constraints can be
checked. Our solution is to instrument the program to main-
tain a globally-visible shadow copy of each local variable that
is used in input constraints—in practice this is a very small
percentage of all variables. Note that we must also make
shadow copies of variables that are needed to reach heap
objects used in input constraints. For example, if a con-
straint depends on the value of x->next->data, where x is
a local variable, then we maintain a shadow copy of x to
ensure that the data field is globally reachable.

5. EVALUATION
The primary question we want answered is the following:

Are sets of input-covering schedules enumerable, in a reason-
able amount of time, for a number of interesting programs?
We are still in the early stages of answering this question.
Results so far are summarized below. Our methodology for
each application is to mark all command-line parameters and
input files as symbolic input, with the exception of the “num
threads” parameter, which we fix to a small set of values—
our happens-before representation of schedules makes the
number of threads explicit, so we must compute a different
set of input-covering schedules for each thread count.

Blackscholes (from PARSEC) is a simple program that
uses fork-join parallelism with no other synchronization. Our
algorithm very easily infers that blackscholes can execute
under a single schedule for each thread count. Further, the
entire program requires just one bounded epoch.

Lu (from SPLASH) is a more complex barrier-synchronized
program. Our algorithm annotates Lu’s main parallel loop
with an epoch marker and produces three schedules: (1) a
schedule to trace execution from program entry to the first
loop iteration; (2) a schedule in which each thread executes
one loop iteration; and (3) a schedule for the final loop iter-
ation followed by program exit. Schedule (1) is in the initial
bounded epoch, and schedules (2) and (3) comprise a second
bounded epoch. When executing the second epoch at run-

time, we decide between schedules (2) and (3) by considering
the loop induction variable an “input.”

Our static analysis (§3.2) infers that the loop executes in
lockstep, so we avoid exploring infeasible paths in which dif-
ferent threads exit the loop at different iterations. However,
calls to pthread_join(tid[i]), made by the main thread to
join with all threads before exiting, were a problem. These
calls occur in the second epoch. Our static analysis could not
concretize each tid[i], resulting in infeasible paths for two
reasons: we could not prove that each tid[i] was a valid id,
and we had to consider all happens-before orderings (e.g.,
join with T1, T2, then T3, or T2, T3, then T1, and so on).
We avoided these paths by replacing the pthread_join calls
with a more high-level “joinAllThreads” call that is easier
to reason about symbolically.

Dedup (from PARSEC) uses a five-stage parallel pipeline
and is the most complex program we have analyzed. Each
pipeline stage contains between one and three loops that
are annotated with epoch markers. We have analyzed the
“one thread per stage” pipeline configuration only. For ini-
tial parallel epoch, the average precondition slice contains
between 10 and 15 branches, so we estimate there are about
215 paths in that epoch. Our tool ran out of memory after
analyzing just over 5000 paths in 5 hours, so we were unable
to produce a final result. We are currently investigating the
memory-exhaustion issue, and further, we believe our path
completion rate can be improved, e.g., by distributing exe-
cution as in [2] or by further optimizing the symbolic engine.

Unfortunately, based on a random sampling of the paths
that we explored before timing out, it appears that almost
all of those 215 paths represent real behaviors that must be
considered, so any further attempt to reduce the number of
schedules would need to focus on schedule redundancies, as
in §3.3.2, rather than on removing infeasible paths.

Discussion and Future Work. We are currently expand-
ing our empirical evaluation, both to evaluate more appli-
cations and to more completely evaluate our system on a
number of additional dimensions. Although our results so
far are incomplete, we consider them promising. In the long
term, we hope to build a set of testing and verification tools
that exploit input-covering schedules to more completely in-
vestigate the benefits of our system as a whole.

References
[1] T. Bergan et al. The Deterministic Execution Hammer:

How well does it actually pound nails? In WoDet, 2011.

[2] S. Bucur et al. Parallel Symbolic Execution for Auto-
mated Real-World Software Testing. In EuroSys, 2011.

[3] M. Costa et al. Bouncer: Securing Software by Blocking
Bad Input. In SOSP, 2007.

[4] H. Cui et al. Stable Deterministic Multithreading
Through Schedule Memoization. In OSDI, 2010.

[5] H. Cui et al. Efficient Deterministic Multithreading
through Schedule Relaxation. In SOSP, 2011.

[6] L. Effinger-Dean et al. Extended Sequential Reasoning
for Data-Race-Free Programs. In MSPC, 2011.

[7] J. Voung et al. RELAY: Static Race Detection on Mil-
lions of Lines of Code. In FSE, 2007.

[8] J. Wu et al. Sound and Precise Analysis of Parallel Pro-
grams through Schedule Specialization. In PLDI, 2012.

[9] Y. Zhang et al. Barrier Matching for Programs With
Textually Unaligned Barriers. In PPoPP, 2007.

6

