
Region-Based Memory Management in
Cyclone

Dan Grossman
Cornell University

June 2002

Joint work with: Greg Morrisett, Trevor Jim (AT&T),
Michael Hicks, James Cheney, Yanling Wang

June 2002 Cyclone Regions, PLDI 2

Cyclone

• A safe C-level language

• Safe: Memory safety, abstract data types
must forbid dereferencing dangling pointers

• C-Level: User controlled data representation and
resource management

cannot always resort to extra tags and checks

for legacy and low-level systems

June 2002 Cyclone Regions, PLDI 3

Dangling pointers unsafe

• Access after lifetime
“undefined”

• Notorious problem

• Re-user of memory cannot
maintain invariants

High-level language solution:

• Language definition: infinite lifetimes

• Implementation: sound garbage collection (GC)

void bad() {
int* x;
if(1){
int y;
int* z = &y;
x = z;

}
*x = 123;

}

June 2002 Cyclone Regions, PLDI 4

Cyclone memory management

• Flexible: GC, stack allocation, region allocation

• Uniform: Same library code regardless of strategy

• Static: no “has it been deallocated” run-time checks

• Convenient: few explicit annotations

• Exposed: users control lifetime of objects

• Scalable: all analysis intraprocedural

• Sound: programs never follow dangling pointers

June 2002 Cyclone Regions, PLDI 5

The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work

June 2002 Cyclone Regions, PLDI 6

Regions

• a.k.a. zones, arenas, …

• Every object is in exactly one region

• Allocation via a region handle

• All objects in a region are deallocated simultaneously
(no free on an object)

An old idea with recent support in languages
and implementations

June 2002 Cyclone Regions, PLDI 7

Cyclone regions

• heap region: one, lives forever, conservatively GC’d
• stack regions: correspond to local-declaration blocks

{int x; int y; s}
• dynamic regions: scoped lifetime, but growable

region r {s}

• allocation: rnew(r,3), where r is a handle
• handles are first-class

– caller decides where, callee decides how much
– no handles for stack regions

June 2002 Cyclone Regions, PLDI 8

The big restriction
• Annotate all pointer types with a region name

a (compile-time) type variable of region kind

• int*`r means “pointer into the region created by the
construct that introduced `r”

– heap introduces `H
– L:… introduces `L
– region r {s} introduces `r

r has type region_t<`r>

June 2002 Cyclone Regions, PLDI 9

So what?

Perhaps the scope of type variables suffices

void bad() {
int*`?? x;
if(1){
L:{int y;

int*`L z = &y;
x = z;
}

}
*x = 123;

}

• What region name for
type of x?

• `L is not in scope at
allocation point

• good intuition for now

• but simple scoping does
not suffice in general

June 2002 Cyclone Regions, PLDI 10

The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work

June 2002 Cyclone Regions, PLDI 11

Region polymorphism

Use parametric polymorphism just like you would for
other type variables

void swap<`r1,`r2>(int*`r1 x, int*`r2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int*`r newsum<`r>(region_t<`r> r,
int x, int y){

return rnew(r) (x+y);
}

June 2002 Cyclone Regions, PLDI 12

Type definitions

struct ILst<`r1,`r2> {
int*`r1 hd;
struct ILst<`r1,`r2> *`r2 tl;

};

10

81

11

0

June 2002 Cyclone Regions, PLDI 13

Region subtyping

If p points to an int in a region with name `r1, is it ever
sound to give p type int*`r2?

• If so, let int*`r1 < int*`r2

• Region subtyping is the outlives relationship

region r1 {… region r2 {…}…}

• LIFO makes subtyping common

• Function preconditions can include outlives constraints:

void f(int*`r1, int*`r2 :`r1 > `r2);

June 2002 Cyclone Regions, PLDI 14

The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work

June 2002 Cyclone Regions, PLDI 15

Who wants to write all that?

• Intraprocedural inference
– Determine region annotation based on uses
– Same for polymorphic instantiation
– Based on unification (as usual)
– So we don’t need L:

• Rest is by defaults
– Parameter types get fresh region names

(default is region-polymorphic with no equalities)
– Everything else gets `H

(return types, globals, struct fields)

June 2002 Cyclone Regions, PLDI 16

Example
You write:

void fact(int* result, int n) {
int x = 1;
if(n > 1) fact(&x,n-1);
*result = x*n;

}

Which means:

void fact<`r>(int*`r result, int n) {
L: int x = 1;

if(n > 1) fact<`L>(&x,n-1);
*result = x*n;

}

June 2002 Cyclone Regions, PLDI 17

Annotations for equalities

void g(int*`r* pp, int*`r p) {
*pp = p;

}

• Callee writes the equalities the caller must know

• Caller writes nothing

June 2002 Cyclone Regions, PLDI 18

The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work

June 2002 Cyclone Regions, PLDI 19

Existential types

• Programs need first-class abstract types
struct T {

void (*f)(void*, int);
void* env;

};

• We use an existential type:
struct T { <`a> // ∃α…
void (*f)(`a, int);
`a env;

};

• struct T mkT(); could make a dangling pointer!
Same problem occurs with closures or objects

June 2002 Cyclone Regions, PLDI 20

Our solution

• “leak a region bound”
struct T<`r> { <`a> :regions(`a) > `r

void (*f)(`a, int);
`a env;

};

• Dangling pointers never dereferenced
• Really we have a powerful effect system, but

– Without using ∃, no effect errors
– With ∃, use region bounds to avoid effect errors

• See the paper

June 2002 Cyclone Regions, PLDI 21

Region-system summary

• Restrict pointer types via region names
• Add polymorphism, constructors, and subtyping for

expressiveness
• Well-chosen defaults to make it palatable
• A bit more work for safe first-class abstract types

• Validation:
– Rigorous proof of type safety
– 100KLOC of experience…

June 2002 Cyclone Regions, PLDI 22

Writing libraries

• Client chooses GC, region, or stack
• Adapted OCaml libraries (List, Set, Hashtable, …)

struct L<`a,`r> {`a hd; struct L<`a,`r>*`r tl;};

typedef struct L<`a,`r>*`r l_t<`a,`r>;

l_t<`b,`r> rmap(region_t<`r>,`b f(`a),l_t<`a>);

l_t<`a,`r> imp_append(l_t<`a,`r>, l_t<`a,`r>);

void app(`b f(`a), l_t<`a>);

bool cmp(bool f(`a,`b), l_t<`a>, l_t<`b>);

June 2002 Cyclone Regions, PLDI 23

Porting code

• about 1 region annotation per 200 lines

• regions can work well (mini web server without GC)

• other times LIFO is a bad match

• other limitations (e.g., stack pointers in globals)

June 2002 Cyclone Regions, PLDI 24

Running code

• No slowdown for networking applications
• 1x to 3x slowdown for numeric applications

– Not our target domain
– Largely due to array-bounds checking (and we

found bugs)

• We use the bootstrapped compiler every day
– GC for abstract syntax
– Regions where natural
– Address-of-locals where convenient
– Extensive library use

June 2002 Cyclone Regions, PLDI 25

The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work

June 2002 Cyclone Regions, PLDI 26

Related: regions
• ML Kit [Tofte, Talpin, et al], GC integration [Hallenberg et al]

– full inference (no programmer control)
– effect variables for ∃ (not at source level)

• Capability Calculus [Walker et al]
– for low-level machine-generated code

• Vault [DeLine, Fähndrich]
– restricted region aliasing allows “must deallocate”

• Direct control-flow sensitivity [Henglein et al.]
– first-order types only

• RC [Gay, Aiken]
– run-time reference counts for inter-region pointers
– still have dangling stack, heap pointers

June 2002 Cyclone Regions, PLDI 27

Related: safer C

• LCLint [Evans], metal [Engler et al]
– sacrifice soundness for fewer false-positives

• SLAM [Ball et al], ESP [Das et al], Cqual [Foster]
– verify user-specified safety policy with little/no

annotation
– assumes data objects are infinitely far apart

• CCured [Necula et al]
– essentially GC (limited support for stack pointers)
– better array-bounds elimination, less support for

polymorphism, changes data representation
• Safe-C, Purify, Stackguard, …

June 2002 Cyclone Regions, PLDI 28

Future work

• Beyond LIFO ordering

• Integrate more dynamic checking (“is this a handle
for a deallocated region”)

• Integrate threads

• More experience where GC is frowned upon

June 2002 Cyclone Regions, PLDI 29

Conclusion

• Sound, static region-based memory management
• Contributions:

– Convenient enough for humans
– Integration with GC and stack
– Code reuse (write libraries once)
– Subtyping via outlives
– Novel treatment of abstract types

http://www.cs.cornell.edu/projects/cyclone
http://www.research.att.com/projects/cyclone

	Region-Based Memory Management in Cyclone
	Cyclone
	Dangling pointers unsafe
	Cyclone memory management
	The plan from here
	Regions
	Cyclone regions
	The big restriction
	So what?
	The plan from here
	Region polymorphism
	Type definitions
	Region subtyping
	The plan from here
	Who wants to write all that?
	Example
	Annotations for equalities
	The plan from here
	Existential types
	Our solution
	Region-system summary
	Writing libraries
	Porting code
	Running code
	The plan from here
	Related: regions
	Related: safer C
	Future work
	Conclusion

