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Cyclone

• A safe C-level language

• Safe: Memory safety, abstract data types
must forbid dereferencing dangling pointers

• C-Level: User controlled data representation and 
resource management

cannot always resort to extra tags and checks

for legacy and low-level systems



June 2002 Cyclone Regions, PLDI 3

Dangling pointers unsafe

• Access after lifetime 
“undefined”

• Notorious problem

• Re-user of memory cannot 
maintain invariants

High-level language solution:

• Language definition: infinite lifetimes

• Implementation: sound garbage collection (GC)

void bad() {
int* x;
if(1){
int  y;
int* z = &y;
x = z;

}
*x = 123;

}
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Cyclone memory management

• Flexible: GC, stack allocation, region allocation

• Uniform: Same library code regardless of strategy

• Static: no “has it been deallocated” run-time checks 

• Convenient: few explicit annotations

• Exposed: users control lifetime of objects

• Scalable: all analysis intraprocedural

• Sound: programs never follow dangling pointers
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The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work
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Regions

• a.k.a. zones, arenas, …

• Every object is in exactly one region

• Allocation via a region handle

• All objects in a region are deallocated simultaneously 
(no free on an object)

An old idea with recent support in languages
and implementations
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Cyclone regions

• heap region: one, lives forever, conservatively GC’d
• stack regions: correspond to local-declaration blocks 

{int x; int y; s}
• dynamic regions: scoped lifetime, but growable

region r {s}

• allocation: rnew(r,3), where r is a handle
• handles are first-class

– caller decides where, callee decides how much
– no handles for stack regions
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The big restriction
• Annotate all pointer types with a region name

a (compile-time) type variable of region kind

• int*`r means “pointer into the region created by the 
construct that introduced `r”

– heap introduces `H
– L:… introduces `L
– region r {s} introduces `r

r has type  region_t<`r>
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So what?

Perhaps the scope of type variables suffices

void bad() {
int*`?? x;
if(1){
L:{int    y;

int*`L z = &y;
x = z;
}

}
*x = 123;

}

• What region name for 
type of x?

• `L is not in scope at 
allocation point

• good intuition for now

• but simple scoping does 
not suffice in general
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The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work
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Region polymorphism

Use parametric polymorphism just like you would for 
other type variables

void swap<`r1,`r2>(int*`r1 x, int*`r2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int*`r newsum<`r>(region_t<`r> r,
int x, int y){

return rnew(r) (x+y);
}
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Type definitions

struct ILst<`r1,`r2> { 
int*`r1 hd; 
struct ILst<`r1,`r2> *`r2 tl; 

};
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Region subtyping

If p points to an int in a region with name `r1, is it ever 
sound to give p type int*`r2?

• If so, let  int*`r1 < int*`r2

• Region subtyping is the outlives relationship

region r1 {… region r2 {…}…}

• LIFO makes subtyping common

• Function preconditions can include outlives constraints:

void f(int*`r1, int*`r2 :`r1 > `r2);
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The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work
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Who wants to write all that?

• Intraprocedural inference
– Determine region annotation based on uses
– Same for polymorphic instantiation
– Based on unification (as usual)
– So we don’t need L:

• Rest is by defaults
– Parameter types get fresh region names 

(default is region-polymorphic with no equalities)
– Everything else gets `H

(return types, globals, struct fields)
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Example
You write:

void fact(int* result, int n) {
int x = 1;
if(n > 1) fact(&x,n-1);
*result = x*n;

}

Which means:

void fact<`r>(int*`r result, int n) {
L: int x = 1;

if(n > 1) fact<`L>(&x,n-1);
*result = x*n;

}
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Annotations for equalities

void g(int*`r* pp, int*`r p) { 
*pp = p; 

}

• Callee writes the equalities the caller must know

• Caller writes nothing
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The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work
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Existential types

• Programs need first-class abstract types
struct T {

void (*f)(void*, int);
void* env;

};

• We use an existential type:
struct T { <`a> // ∃α…
void (*f)(`a, int);
`a env;

};

• struct T mkT(); could make a dangling pointer!
Same problem occurs with closures or objects
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Our solution

• “leak a region bound”
struct T<`r> { <`a> :regions(`a) > `r

void (*f)(`a, int);
`a env;

};

• Dangling pointers never dereferenced
• Really we have a powerful effect system, but

– Without using ∃, no effect errors
– With ∃, use region bounds to avoid effect errors

• See the paper
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Region-system summary

• Restrict pointer types via region names
• Add polymorphism, constructors, and subtyping for 

expressiveness
• Well-chosen defaults to make it palatable
• A bit more work for safe first-class abstract types

• Validation:
– Rigorous proof of type safety
– 100KLOC of experience…
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Writing libraries

• Client chooses GC, region, or stack
• Adapted OCaml libraries (List, Set, Hashtable, …)

struct L<`a,`r> {`a hd; struct L<`a,`r>*`r tl;};

typedef struct L<`a,`r>*`r l_t<`a,`r>;

l_t<`b,`r> rmap(region_t<`r>,`b f(`a),l_t<`a>);

l_t<`a,`r> imp_append(l_t<`a,`r>, l_t<`a,`r>); 

void app(`b f(`a), l_t<`a>);

bool cmp(bool f(`a,`b), l_t<`a>, l_t<`b>);
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Porting code

• about 1 region annotation per 200 lines

• regions can work well (mini web server without GC)

• other times LIFO is a bad match

• other limitations (e.g., stack pointers in globals)
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Running code

• No slowdown for networking applications
• 1x to 3x slowdown for numeric applications

– Not our target domain
– Largely due to array-bounds checking (and we 

found bugs)

• We use the bootstrapped compiler every day
– GC for abstract syntax
– Regions where natural
– Address-of-locals where convenient
– Extensive library use
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The plan from here

• Cyclone regions
• Basic type system

– Restricting pointers
– Increasing expressiveness
– Avoiding annotations

• Interaction with abstract types
• Experience
• Related and future work



June 2002 Cyclone Regions, PLDI 26

Related: regions
• ML Kit  [Tofte, Talpin, et al], GC integration [Hallenberg et al]

– full inference (no programmer control)
– effect variables for ∃ (not at source level)

• Capability Calculus  [Walker et al]
– for low-level machine-generated code

• Vault  [DeLine, Fähndrich]
– restricted region aliasing allows “must deallocate”

• Direct control-flow sensitivity [Henglein et al.]
– first-order types only

• RC  [Gay, Aiken]
– run-time reference counts for inter-region pointers
– still have dangling stack, heap pointers
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Related: safer C

• LCLint [Evans], metal [Engler et al]
– sacrifice soundness for fewer false-positives

• SLAM [Ball et al], ESP [Das et al], Cqual [Foster]
– verify user-specified safety policy with little/no 

annotation
– assumes data objects are infinitely far apart

• CCured [Necula et al]
– essentially GC (limited support for stack pointers)
– better array-bounds elimination, less support for 

polymorphism, changes data representation
• Safe-C, Purify, Stackguard, …
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Future work

• Beyond LIFO ordering

• Integrate more dynamic checking (“is this a handle 
for a deallocated region”)

• Integrate threads

• More experience where GC is frowned upon
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Conclusion

• Sound, static region-based memory management
• Contributions:

– Convenient enough for humans
– Integration with GC and stack
– Code reuse (write libraries once)
– Subtyping via outlives
– Novel treatment of abstract types

http://www.cs.cornell.edu/projects/cyclone
http://www.research.att.com/projects/cyclone
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