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A safe C-level language

Cyclone is a programming language and compiler
aimed at safe systems programming

• C is not memory safe:

void f(int* p, int i, int v) { 
p[i] = v;   

}

• Address  p+i might hold important data or code

• Memory safety is crucial for reasoning about programs
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A question of trust

• We  rely on our C-level software infrastructure to
– not crash (or crash gracefully)
– preserve data, restrict access, ...
– serve customers, protect valuables, ...

• Infrastructure is enormous
– careful humans not enough

• One safety violation breaks all isolation

Memory safety is necessary for trustworthy systems
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Safe low-level systems

• For a safety guarantee today, use YFHLL
Your Favorite High Level Language

• YFHLL provides safety in part via:
– hidden data fields and run-time checks
– automatic memory management

• Data representation and resource management are 
essential aspects of low-level systems

• Write or extend your O/S with YFHLL?

There are strong reasons for C-like languages
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Some insufficient approaches

• Compile C with extra information
– type fields, size fields, live-pointer table, …
– treats C as a higher-level language

• Use static analysis
– very difficult
– less modular

• Ban unsafe features
– there are many
– you need them
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Cyclone: a combined approach

Designed and implemented Cyclone, a safe C-level
language

• Advanced type system for safety-critical invariants

• Flow analysis for tracking state changes

• Exposed run-time checks where appropriate

• Modern language features for common idioms    

Today: focus on type system
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Cyclone reality

• 130K lines of code, bootstrapped compiler, 
Linux / Cygwin / OS X, ...

• All programs are safe (modulo interfacing to C)

• Users control if/where extra fields and checks occur
– checks can be needed (e.g., pointer arithmetic)

• More annotations than C, but work hard to avoid it

• Sometimes slower than C
– 1x to 2x slowdown
– can performance-tune more than in HLLs
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The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions
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Must be safe

...0                 i         n

p i v

void f(int* p, int i, int v) { 
p[i] = v;   

}

• All callers must ensure:
– p is not NULL 
– p refers to an array of at least n ints
– 0 <= i < n
– p does not refer to deallocated storage
– no other thread corrupts p or i
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But not too restrictive

void f(int* p, int i, int v) { 
p[i] = v;   

}

• Different callers can have:
– p refer to arrays of different lengths n
– i be different integers such that  0 <= i < n
– p refer to memory with different lifetimes
– p refer to thread-local or thread-shared data

...0                 i         n

p i v
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Design goals

1. Safe
– can express necessary preconditions

2. Powerful
– parameterized preconditions allow code reuse

3. Scalable
– explicit types allow separate compilation

4. Usable 
– simplicity vs. expressiveness
– most convenient for common cases
– common framework for locks, lifetimes, array 

bounds, and abstract types



Spring 2003 Dan Grossman Cyclone

The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions
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Safe multithreading: the problem

Data race: one thread mutating some memory while 
another thread accesses it (w/o synchronization)

1. Pointer update must be atomic
– possible on many multiprocessors if you’re careful

2. But writing addresses atomically is insufficient...



Spring 2003 Dan Grossman Cyclone

Data-race example
struct SafeArr { 
int  len; 
int* arr; 

};

if(p1->len > 4)  *p1 = *p2;
(p1->arr)[4] = 42;

3

p2 5

p1



Spring 2003 Dan Grossman Cyclone

Data-race example
struct SafeArr { 
int  len; 
int* arr; 

};

if(p1->len > 4)  *p1 = *p2;
(p1->arr)[4] = 42;

change p1->len to 5

change p1->arr

3

p2 5

p1
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Data-race example
struct SafeArr { 
int  len; 
int* arr; 

};

if(p1->len > 4)  *p1 = *p2;
(p1->arr)[4] = 42;

change p1->len to 5
check p1->len > 4
write p1->arr[4] XXX

change p1->arr

3

p2 5

p1
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Preventing data races

Reject at compile-time code that may have data races?

• Limited power: problem is undecidable

• Trivial if too limited: e.g., don’t allow threads

• A structured solution: 
Require mutual exclusion on all thread-shared data
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Lock types

Type system ensures:
For each shared data object, there exists a lock that 
a thread must hold to access the object

• Basic approach for Java found many bugs
[Flanagan et al]

• Extensions allow other locking idioms and code reuse 
for shared/local data 
[Boyapati et al]
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Lock-type contributions [TLDI 03]

1. Adapt the approach to a C-level language

2. Integrate parametric polymorphism

3. Integrate region-based memory management

4. Code reuse for thread-local and thread-shared data
– simple rule to “keep local data local”

5. Proof for an abstract machine where data races 
violate safety



Spring 2003 Dan Grossman Cyclone

Cyclone multithreading

• Multithreading language 
– terms
– types

• Limitations

• Insight into why it’s safe
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Multithreading terms

• spawn(«f»,«p»,«sz»)
run f(p2) in a new thread (where *p2 is a shallow 
copy of *p and sz is the size of *p)
– thread initially holds no locks
– thread terminates when f returns
– creates shared data, but *p2 is thread-local

• sync(«lk»){«s»} acquire lk, run s, release lk

• newlock() create a new lock

• nonlock a pseudo-lock for thread-local data



Spring 2003 Dan Grossman Cyclone

Examples, without types

Suppose *p1 is shared (lock lk) and *p2 is local

Callee-locks
void g(int* p, 

lock_t l) { 
sync(l){« use *p »}

}

void caller() {
«...»
g(p1,lk);
g(p2,nonlock);

}

Caller-locks
void f(int* p) { 
« use *p »

}

void caller() {
«...»
sync(lk){f(p1);}
f(p2);

}
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Types

• Lock names in pointer types and lock types

• int*`L is a type for pointers to locations guarded by 
a lock with type lock_t<`L>

• Different locks cannot have the same name 
– lock_t<`L1> vs.   lock_t<`L2>
– this invariant will ensure mutual exclusion

• Thread-local locations use lock name `loc

lock names describe “what locks what”
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Types for locks

• nonlock has type lock_t<`loc>

• newlock() has type   ∃`L. lock_t<`L>

• Removing ∃ requires a fresh lock name
– so different locks have different types
– using ∃ is an established PL technique [ESOP 02]
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Access rights

Assign each program point a set of lock names:
• if lk has type lock_t<`L>, 
sync(«lk»){«s»} adds `L

• using location guarded by `L requires `L in set
• functions have explicit preconditions

– default: caller locks

lock-name sets ensure code acquires the right locks

(Lock names and lock-name sets do not exist at run-time)
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Examples, with types

Suppose *p1 is shared (lock lk) and *p2 is local

Callee-locks
void g(int*`L p, 

lock_t<`L> l 
;{}) { 

sync(l){« use *p »}
}

void caller() {
«...»
g(p1,lk);
g(p2,nonlock);

}

Caller-locks
void f(int*`L p

;{`L}) { 
« use *p »

}

void caller() {
«...»
sync(lk){f(p1);}
f(p2);

}
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Quantified lock types

• Functions universally quantify over lock names

• Existential types for data structures
struct LkInt {<`L> //there exists a lock-name

int*`L      p; 
lock_t<`L>  lk;

};

• Type constructors for coarser locking
struct List<`L> { //lock-name parameter

int*`L head; 
struct List<`L>*`L tail;

};
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Lock types so far
1. Safe

– lock names describe what locks what
– lock-name sets prevent unsynchronized access

2. Powerful
– universal quantification for code reuse
– existential quantification and type constructors 

for data with different locking granularities
3. Scalable

– type-checking intraprocedural
4. Usable

– default caller-locks idiom
– bias toward thread-local data
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But...

• What about spawn?
spawn(«f»,«p»,«sz»)

run f(p2) in a new thread (*p2 a shallow copy of *p)

• Everything reachable from *p is shared

• Safe: 
– f’s argument type and p’s type should be the same
– Type of *p must forbid (supposedly) local data

• Powerful: No other limits on the type of *p
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Shareability

spawn(«f»,«p»,«sz»)

• Assign every type and lock name a shareability
– `loc is unshareable
– locks from newlock() have shareable names
– type is shareable only if all its lock names are 

shareable
– default: unshareable 

(necessary for local/shared code reuse)

• Type of *p must be shareable

• Result: thread-local data is really local
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Cyclone multithreading

• Multithreading language 
– terms
– types

• Limitations

• Insight into why it’s safe
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Threads limitations

• Shared data enjoys an initialization phase

• Read-only data and reader/writer locks

• Object migration

• Global variables need top-level locks

• Semaphores, signals, ...

• Deadlock (not a safety problem)

• ...
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Why it works

There is one shared heap with implicit structure

thread 1

thread 2

...
thread n

...

Shared                  Local

• spawn preserves structure because of shareabilities
• each thread accesses only its “color”
• lock acquire/release changes some objects’ “color”
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Why it works, continued

• objects changing color are not being mutated
• so no data races occur
• basis for a formal proof for an abstract machine
• structure is for the proof – colors/boxes don’t “exist”

thread 1

thread 2

...
thread n

...

Shared                  Local
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The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions
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Memory reuse: the problem

Dereferencing dangling pointers breaks safety:
void f() {

int* x;
{
int  y = 0;
x = &y; // x not dangling

} // x dangling
{
int* z = NULL;
*x = 123;
...

}
}
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Regions

• a.k.a. zones, arenas, …

• Each object is in exactly one region

• Allocation via a region handle

• Deallocate an entire region
simultaneously 
(cannot free an object)

• Type system [Tofte/Talpin] 
– types for handles and pointers use region names
– should sound familiar
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Region contributions [PLDI 02]

1. Integrate heap, stack, and user-defined regions
– RC [Gay/Aiken 01] not for heap or stack

2. Usable source language
– MLKit: compiler intermediate language
– Walker et al.: assembly language

3. New approach to abstract types

4. Subtyping based on “outlives”
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Cyclone regions

• Heap region: one, lives forever, conservatively GC’d
• Stack regions: correspond to local-declaration blocks 

{int x; int y; s}
• Growable regions: scoped lifetime, but growable 

{region r; s}

• Allocation routines take a region handle
• Handles are first-class

– caller decides where, callee decides how much
– no handles for stack regions
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Region names

• Annotate all pointer types with a region name

• int*`r means “pointer into the region named `r”

– heap has name `H
– l:… has name `l
– {region r; s} has name `r

r has type region_t<`r>
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Safety via scoping (almost)

void f() {
int*__ x;

l:{int    y;
int*`l p = &y;
x = p;
}

...
}

• What region name for type 
of x ?

• `l is not in scope at 
allocation point

• scoping insufficient in 
general

• But system is equivalent to 
“scoping rule” unless you 
use first-class abstract 
types
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Power via quantified types

• Universal quantification lets code take stack, region, 
and heap pointers

• Example: swap exactly like in C

void swap(int*`r1 x, int*`r2 y);

• Existential types and type constructors too
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A common framework

• void f(lock_t<`L>,  int*`L);
• void f(region_t<`r>,int*`r);
• void f(bound_t<`i>, int*`i);
• void f(void g(`a),  `a);

• Quantified types express invariants while permitting 
code reuse

• No hidden fields or checks

• Use flow analysis and alias information when 
invariants are too strong
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The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions
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Status

Cyclone really exists (except threads underway)

• >130K lines of Cyclone code, including the compiler

• gcc back-end (Linux, Cygwin, OSX, …)

• User’s manual, mailing lists, …

• Still a research vehicle

• More features: exceptions, datatypes, …
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Evaluation

1. Is Cyclone like C?
– port code, measure source differences
– interface with C code (extend systems)

2. What is the performance cost?
– port code, measure slowdown

3. Is Cyclone good for low-level systems?
– write systems, ensure scalability
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Code differences

02   (32=5.5%)+   34 (5.8%)
– 29

584ccured-
olden-mst
(1 of 4)

112 (261=8.7%)+ 273 (9.1%)
– 245

3005mini-httpd
(1 of 6)

1 (half of 
examples)

41 (216=6.6%)+ 257 (7.9%)
– 190

3260grobner 
(1 of 4)

bugs 
found

incidentaldiff totalLines 
of C

Example

• Porting not automatic, but quite similar
• Many changes identify arrays and lengths
• Some changes incidental (absent prototypes, new keywords)
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Run-time performance

+   35
– 30
nogc

+ 336
– 196

faster

1.39x1.93x+   34
– 29

584ccured-
olden-mst
(1 of 4)

1.02x+ 273
– 245

3005mini-httpd
(1 of 6)

1.51x1.94x+ 257
– 190

3260grobner 
(1 of 4)

execution 
time

execution 
time

diff 
total

Lines 
of C

Example

RHLinux 7.1 (2.4.9), 1.0GHz PIII, 512MRAM, gcc2.96 -O3, glibc 2.2.4

• Comparable to other safe languages to start
• C level provides important optimization opportunities
• Understanding the applications could help
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Larger program: the compiler

• Scalable
– compiler + libraries (80K lines) build in <1 minute

• Generic libraries (e.g., lists, hashtables)
– clients have no syntactic/performance cost

• Static safety helps exploit the C-level
– I use &x more than in C
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Other projects

• MediaNet [Hicks et al, OPENARCH2003]: 
– multimedia overlay network
– servers written in Cyclone
– needs quick data filtering

• Open Kernel Environment [Bos/Samwel, OPENARCH2002]
– runs partially trusted code in a kernel
– extended compiler, e.g., resource limits
– uses regions for safe data sharing

• Windows device driver (6K lines)
– 100 lines still in C (vs. 2500 in Vault [Fähndrich/DeLine]) 
– unclear what to do when a run-time check fails
– still many ways to crash a kernel (fewer with Vault)
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The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions
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Related work: higher and lower

• Adapted/extended ideas:
– universal quantification [ML, Haskell, GJ, …]
– existential quantification [Mitchell/Plotkin, …]
– region types [Tofte/Talpin, Walker et al., …]
– lock types [Flanagan et al., Boyapati et al.]
– safety via dataflow [Java, …]
– controlling data representation [Ada, Modula-3, …]

• Safe lower-level languages [TAL, PCC, …]
– engineered for machine-generated code

(TIC 2000, WCSSS 1999)
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Related work: making C safer

• Compile to make dynamic checks possible
– Safe-C [Austin et al.], ...
– Purify, Stackguard, Electric Fence, …
– CCured [Necula et al.]

• performance via whole-program analysis
• less user burden
• less memory management, single-threaded

– RTC [Yong/Horwitz]

• Splint [Evans], Metal [Engler]: unsound, but very useful

• SFI [Wahbe, Small, ...]: sandboxing via binary rewriting
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Plenty left to do

• Resource exhaustion 
(e.g., stack overflow)

• User-specified aliasing properties 
(e.g., all aliases are known)

• More “compile-time arithmetic” 
(e.g., array initialization)

• Better error messages 
(not a beginner’s language)
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Integrating more approaches

• My work uses types, flow analysis, and run-time 
checks for low-level safety

• Integrate and compare: model checking, 
metacompilation, type qualifiers, pointer logics, code 
rewriting, theorem proving, ...
– many tools assume memory safety

• Cross-fertilization for languages, tools, and compilers
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Beyond C code

A safe C-level language is only part of the battle

• Language interoperability

• Distributed, cross-platform, embedded computing

• Let programmers treat “code as data”
– sensible tools for querying and transforming code
– examples: modern linkers, data mining

Language research for managing heterogeneity
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Summary

• Memory safety is essential, but the world relies on C
• Cyclone is a safe C-level language
• Today:

– types to prevent races and dangling pointers
– safe, powerful, scalable, usable
– justified with design insight and empirical evidence

• To learn more:
– http://www.cs.cornell.edu/projects/cyclone
– write some code!
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[Presentation ends here –
some auxiliary slides follow]
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Our work cut out for us

To guarantee safety, we must address all
sources of safety violations

Some of my favorites:

incorrect casts, array-bounds violations, 
misused unions, uninitialized pointers, 
dangling pointers, null-pointer dereferences, 
dangling longjmp, vararg mismatch, not 
returning pointers, data races, …
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Example in Cyclone

void f(int@{`j} p, bound_t<`i> i, int v
; `i < `j){ 

p[i] = v;   
}

• @ for not-NULL
• regions and locks use implicit defaults

(live and accessible)
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Using existential types – arrays

struct SafeArr {<`i>
bound_t<`i> len; 
int*{`i} arr; 

};

// p has type struct SafeArr*
let SafeArr{<`i>.len=bd, .arr=a} = *p;
if(bd > i) 
a[i]=42;

// p2 can be longer or shorter
*p=*p2; 
// e has type int*{37}
*p=SafeArr{.len=37, .arr=e}; 
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Using existential types – locks

struct LkInt {<`L>
lock_t<`L> lk; 
int*`L i; 

};

// p has type struct LkInt*, 
// `L not in scope
let LkInt{<`L>.lk=lk, .i=val} = *p;
sync lk { *val = 42; }
// p2 can use a different lock
*p=*p2; 
// e has type int*loc
*p=SafeArr{.lk=nonlock, .i=e}; 
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Using locks

∃`L. lock_t<`L> lk = newlock();
let nlk<`L1> = lk; // `L1 not in scope
int*`L1 p = e;
sync nlk {/* use *p */}
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Not-null pointers

pointer to a t valuet@

pointer to a t value or NULLt*

• Subtyping: t@ < t* but t@@ < t*@ 

• Downcast via run-time check, often avoided 
via flow analysis

/
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Example

FILE* fopen(const char@, const char@);
int fgetc(FILE @);
int fclose(FILE @);
void g() {
FILE* f = fopen(“foo”, “r”);
while(fgetc(f) != EOF) {…}
fclose(f);

}

• Gives warning and inserts one null-check
• Encourages a hoisted check
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A classic moral

FILE* fopen(const char@, const char@);
int fgetc(FILE @);
int fclose(FILE @);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)
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Flow-Analysis Example

int*`r* f(int*`r q) { 

int **p = malloc(sizeof(int*));
// p not NULL, points to malloc site
*p = q; 
// malloc site now initialized
return p;

}

Harder than in Java because of:
– pointers to uninitialized memory

analysis computes must-points-to information
– under-defined evaluation order

conservatively approximate all orders
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Empirical results – numeric

1.93x+ 141
– 110

2.12x+120
–105

4057cfrac

1

1

bugs

+ 110
– 95
3 in C

+21
– 6

+ 336
– 196

faster

1.251.32x+108
– 94
(13)

1345tile

1.18x1.22x+ 16
– 1
(13)

340cacm

1.51x1.94x+257
–190
(41)

3260grobner 

execution 
time (C=1)

execution 
time (C=1)

diff 
total

LOCExample

RHLinux 7.1 (2.4.9), 1.0GHz PIII, 512MRAM, gcc2.96 -O3, glibc 2.2.4
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Empirical results – CCured-Olden

1.11x+ 9
– 9

565tsp

bugs

+ 35
– 30
nogc

+21
–21
nogc

faster

1.39x1.93x+34
–29  

584mst

1.15x1.89x+21 
–21

370treeadd

1.03x+11
– 9

514bisort 

execution 
time (C=1)

execution 
time (C=1)

diff 
total

LOCExample

RHLinux 7.1 (2.4.9), 1.0GHz PIII, 512MRAM, gcc2.96 -O3, glibc 2.2.4
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CCured results

• As published in POPL02
• I have not run CCured

Cyclone time 
(C=1)

Ccured time 
(C=1)

Program

1.93x / 1.39x2.05xmst

1.11x1.15xtsp

1.89x / 1.15x1.47xtreeadd

1.03x1.03xbisort
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“Incidental”

• new is a Cyclone keyword
• extraneous semicolons (void f() {...};)
• C missing prototypes (or omitting argument types)

• Nonincidental: distinguishing arrays of unknown 
length from those of length 1 (majority of changes)
– other default would “improve” results
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Why conservative GC?

• Would be inefficient because we:
– Don’t tag data
– Have full-width integers
– Allow instantiating `a with int

• We allow dangling pointers

• We have not noticed false-pointer problems (yet?)

• Could compact with a mostly-copying scheme
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Enforcing thread-local

• A possible type for spawn: spawn(<f>,<p>,<sz>)
void spawn(void f(`a*loc ;{}), `a*`L,

sizeof_t<`a> ;{`L});

• But not any `a will do – local must stay local!

• We already have different kinds of types: 
L for lock names
A for (conventional) types

• Examples: loc::L, int*`L::A,  struct T :: A
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Enforcing loc cont’d

• Enrich kinds with shareabilities, S or U
• loc::LU
• newlock() has type ∃`L::LS. lock_t<`L>
• A type is shareable only if every part is shareable
• Unshareable is the default (allows every type)

void spawn<`a::AS>(void f(`a*;{}),
`a*`L,
sizeof_t<`a> 
;{`L});

// `a::AS means `a is a shareable type
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Abstract Machine

Program state: 
(H, L0, (L1,s1), ..., (Ln,sn))

• One heap H mapping variables to values
(local vs. shared not a run-time notion)

• Li are disjoint lock sets: a lock is available (L0) or 
held by some thread

• A thread has held locks (Li) and control state (si)

Thread scheduling non-deterministic
– any thread can take the next primitive step
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Dynamic semantics

• Single-thread steps can:
– change/create a heap location
– acquire/release/create a lock
– spawn a thread
– rewrite the thread’s statement (control-flow)

• Mutation takes two steps.  Roughly:
H maps x to v, x=v’; s ⇒
H maps x to junk(v’),  x=junk(v’); s    ⇒
H maps x to v’, s

• Data races can lead to stuck threads
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Type system – source

• Type-checking (right) expressions: 
∆;Γ;ε | e : τ–

∆ : lock names and their shareabilities
Γ : term variables and their types & lock-names
ε : names of locks that we know must be held

• junk expressions never appear in source programs

• Largely conventional
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Type system – program state

• Evaluation preserves implicit structure on the heap
• spawn preserves the invariant because of its 

shareability restriction
• Lock acquire/release “recolors” the shared heap

L0

s1 L1

s2 L2

...
sn Ln

...

Shareable             Unshareable
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No data races
• Invariant on where junk(v) appears:

– Color has 1 junk if thread is mutating a location
– Else color has no junk

• So no thread gets stuck due to junk

L0

s1 L1

s2 L2

...
sn Ln

...

Shareable             Unshareable
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Formalism summary

• One “flat” run-time heap 

• Machine models the data-race problem

• Straightforward type system for source programs
(graduate student does the proof once)

• Proof requires understanding how the type system 
imposes structure on the heap...

• ... which helps explain “what’s really going on”

First proof for a system with thread-local data
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Power via quantified types

void swap(int*`r1 x, int*`r2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int*`r newptr(region_t<`r> r, int x){
return rnew(r,x);

}

• Default: different region name for each omission
• Existential types and type constructors too
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To learn more:
• Cyclone: http://www.research.att.com/projects/cyclone

• My work: http://www.cs.cornell.edu/home/danieljg

• Cyclone publications 
– overview: USENIX 2002 

[Jim,Morrisett,Grossman,Hicks,Cheney,Wang]
– existential types: ESOP 2002 

[Grossman]
– regions: PLDI 2002

[Grossman,Morrisett,Jim,Hicks,Wang,Cheney]
– threads: TLDI 2003

[Grossman]

• Write some code
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Related: ownership types
Boyapati et al. concurrently developed similar techniques
for locks, regions, and encapsulation in Java
• Cyclone

– nonlock
– no run-time type passing
– support for parametric polymorphism
– rigorous proof

• Ownership types
– deadlock prevention
– support for OO subtyping
– object migration
– “existentials” easier syntactically
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