
Cyclone: Safe Programming at the C
Level of Abstraction

Dan Grossman
Cornell University

Joint work with: Trevor Jim (AT&T), Greg Morrisett,
Michael Hicks (Maryland), James Cheney, Yanling Wang

Spring 2003 Dan Grossman Cyclone

A safe C-level language

Cyclone is a programming language and compiler
aimed at safe systems programming

• C is not memory safe:

void f(int* p, int i, int v) {
p[i] = v;

}

• Address p+i might hold important data or code

• Memory safety is crucial for reasoning about programs

Spring 2003 Dan Grossman Cyclone

A question of trust

• We rely on our C-level software infrastructure to
– not crash (or crash gracefully)
– preserve data, restrict access, ...
– serve customers, protect valuables, ...

• Infrastructure is enormous
– careful humans not enough

• One safety violation breaks all isolation

Memory safety is necessary for trustworthy systems

Spring 2003 Dan Grossman Cyclone

Safe low-level systems

• For a safety guarantee today, use YFHLL
Your Favorite High Level Language

• YFHLL provides safety in part via:
– hidden data fields and run-time checks
– automatic memory management

• Data representation and resource management are
essential aspects of low-level systems

• Write or extend your O/S with YFHLL?

There are strong reasons for C-like languages

Spring 2003 Dan Grossman Cyclone

Some insufficient approaches

• Compile C with extra information
– type fields, size fields, live-pointer table, …
– treats C as a higher-level language

• Use static analysis
– very difficult
– less modular

• Ban unsafe features
– there are many
– you need them

Spring 2003 Dan Grossman Cyclone

Cyclone: a combined approach

Designed and implemented Cyclone, a safe C-level
language

• Advanced type system for safety-critical invariants

• Flow analysis for tracking state changes

• Exposed run-time checks where appropriate

• Modern language features for common idioms

Today: focus on type system

Spring 2003 Dan Grossman Cyclone

Cyclone reality

• 130K lines of code, bootstrapped compiler,
Linux / Cygwin / OS X, ...

• All programs are safe (modulo interfacing to C)

• Users control if/where extra fields and checks occur
– checks can be needed (e.g., pointer arithmetic)

• More annotations than C, but work hard to avoid it

• Sometimes slower than C
– 1x to 2x slowdown
– can performance-tune more than in HLLs

Spring 2003 Dan Grossman Cyclone

The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions

Spring 2003 Dan Grossman Cyclone

Must be safe

...0 i n

p i v

void f(int* p, int i, int v) {
p[i] = v;

}

• All callers must ensure:
– p is not NULL
– p refers to an array of at least n ints
– 0 <= i < n
– p does not refer to deallocated storage
– no other thread corrupts p or i

Spring 2003 Dan Grossman Cyclone

But not too restrictive

void f(int* p, int i, int v) {
p[i] = v;

}

• Different callers can have:
– p refer to arrays of different lengths n
– i be different integers such that 0 <= i < n
– p refer to memory with different lifetimes
– p refer to thread-local or thread-shared data

...0 i n

p i v

Spring 2003 Dan Grossman Cyclone

Design goals

1. Safe
– can express necessary preconditions

2. Powerful
– parameterized preconditions allow code reuse

3. Scalable
– explicit types allow separate compilation

4. Usable
– simplicity vs. expressiveness
– most convenient for common cases
– common framework for locks, lifetimes, array

bounds, and abstract types

Spring 2003 Dan Grossman Cyclone

The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions

Spring 2003 Dan Grossman Cyclone

Safe multithreading: the problem

Data race: one thread mutating some memory while
another thread accesses it (w/o synchronization)

1. Pointer update must be atomic
– possible on many multiprocessors if you’re careful

2. But writing addresses atomically is insufficient...

Spring 2003 Dan Grossman Cyclone

Data-race example
struct SafeArr {
int len;
int* arr;

};

if(p1->len > 4) *p1 = *p2;
(p1->arr)[4] = 42;

3

p2 5

p1

Spring 2003 Dan Grossman Cyclone

Data-race example
struct SafeArr {
int len;
int* arr;

};

if(p1->len > 4) *p1 = *p2;
(p1->arr)[4] = 42;

change p1->len to 5

change p1->arr

3

p2 5

p1

Spring 2003 Dan Grossman Cyclone

Data-race example
struct SafeArr {
int len;
int* arr;

};

if(p1->len > 4) *p1 = *p2;
(p1->arr)[4] = 42;

change p1->len to 5
check p1->len > 4
write p1->arr[4] XXX

change p1->arr

3

p2 5

p1

Spring 2003 Dan Grossman Cyclone

Preventing data races

Reject at compile-time code that may have data races?

• Limited power: problem is undecidable

• Trivial if too limited: e.g., don’t allow threads

• A structured solution:
Require mutual exclusion on all thread-shared data

Spring 2003 Dan Grossman Cyclone

Lock types

Type system ensures:
For each shared data object, there exists a lock that
a thread must hold to access the object

• Basic approach for Java found many bugs
[Flanagan et al]

• Extensions allow other locking idioms and code reuse
for shared/local data
[Boyapati et al]

Spring 2003 Dan Grossman Cyclone

Lock-type contributions [TLDI 03]

1. Adapt the approach to a C-level language

2. Integrate parametric polymorphism

3. Integrate region-based memory management

4. Code reuse for thread-local and thread-shared data
– simple rule to “keep local data local”

5. Proof for an abstract machine where data races
violate safety

Spring 2003 Dan Grossman Cyclone

Cyclone multithreading

• Multithreading language
– terms
– types

• Limitations

• Insight into why it’s safe

Spring 2003 Dan Grossman Cyclone

Multithreading terms

• spawn(«f»,«p»,«sz»)
run f(p2) in a new thread (where *p2 is a shallow
copy of *p and sz is the size of *p)
– thread initially holds no locks
– thread terminates when f returns
– creates shared data, but *p2 is thread-local

• sync(«lk»){«s»} acquire lk, run s, release lk

• newlock() create a new lock

• nonlock a pseudo-lock for thread-local data

Spring 2003 Dan Grossman Cyclone

Examples, without types

Suppose *p1 is shared (lock lk) and *p2 is local

Callee-locks
void g(int* p,

lock_t l) {
sync(l){« use *p »}

}

void caller() {
«...»
g(p1,lk);
g(p2,nonlock);

}

Caller-locks
void f(int* p) {
« use *p »

}

void caller() {
«...»
sync(lk){f(p1);}
f(p2);

}

Spring 2003 Dan Grossman Cyclone

Types

• Lock names in pointer types and lock types

• int*`L is a type for pointers to locations guarded by
a lock with type lock_t<`L>

• Different locks cannot have the same name
– lock_t<`L1> vs. lock_t<`L2>
– this invariant will ensure mutual exclusion

• Thread-local locations use lock name `loc

lock names describe “what locks what”

Spring 2003 Dan Grossman Cyclone

Types for locks

• nonlock has type lock_t<`loc>

• newlock() has type ∃`L. lock_t<`L>

• Removing ∃ requires a fresh lock name
– so different locks have different types
– using ∃ is an established PL technique [ESOP 02]

Spring 2003 Dan Grossman Cyclone

Access rights

Assign each program point a set of lock names:
• if lk has type lock_t<`L>,
sync(«lk»){«s»} adds `L

• using location guarded by `L requires `L in set
• functions have explicit preconditions

– default: caller locks

lock-name sets ensure code acquires the right locks

(Lock names and lock-name sets do not exist at run-time)

Spring 2003 Dan Grossman Cyclone

Examples, with types

Suppose *p1 is shared (lock lk) and *p2 is local

Callee-locks
void g(int*`L p,

lock_t<`L> l
;{}) {

sync(l){« use *p »}
}

void caller() {
«...»
g(p1,lk);
g(p2,nonlock);

}

Caller-locks
void f(int*`L p

;{`L}) {
« use *p »

}

void caller() {
«...»
sync(lk){f(p1);}
f(p2);

}

Spring 2003 Dan Grossman Cyclone

Quantified lock types

• Functions universally quantify over lock names

• Existential types for data structures
struct LkInt {<`L> //there exists a lock-name

int*`L p;
lock_t<`L> lk;

};

• Type constructors for coarser locking
struct List<`L> { //lock-name parameter

int*`L head;
struct List<`L>*`L tail;

};

Spring 2003 Dan Grossman Cyclone

Lock types so far
1. Safe

– lock names describe what locks what
– lock-name sets prevent unsynchronized access

2. Powerful
– universal quantification for code reuse
– existential quantification and type constructors

for data with different locking granularities
3. Scalable

– type-checking intraprocedural
4. Usable

– default caller-locks idiom
– bias toward thread-local data

Spring 2003 Dan Grossman Cyclone

But...

• What about spawn?
spawn(«f»,«p»,«sz»)

run f(p2) in a new thread (*p2 a shallow copy of *p)

• Everything reachable from *p is shared

• Safe:
– f’s argument type and p’s type should be the same
– Type of *p must forbid (supposedly) local data

• Powerful: No other limits on the type of *p

Spring 2003 Dan Grossman Cyclone

Shareability

spawn(«f»,«p»,«sz»)

• Assign every type and lock name a shareability
– `loc is unshareable
– locks from newlock() have shareable names
– type is shareable only if all its lock names are

shareable
– default: unshareable

(necessary for local/shared code reuse)

• Type of *p must be shareable

• Result: thread-local data is really local

Spring 2003 Dan Grossman Cyclone

Cyclone multithreading

• Multithreading language
– terms
– types

• Limitations

• Insight into why it’s safe

Spring 2003 Dan Grossman Cyclone

Threads limitations

• Shared data enjoys an initialization phase

• Read-only data and reader/writer locks

• Object migration

• Global variables need top-level locks

• Semaphores, signals, ...

• Deadlock (not a safety problem)

• ...

Spring 2003 Dan Grossman Cyclone

Why it works

There is one shared heap with implicit structure

thread 1

thread 2

...
thread n

...

Shared Local

• spawn preserves structure because of shareabilities
• each thread accesses only its “color”
• lock acquire/release changes some objects’ “color”

Spring 2003 Dan Grossman Cyclone

Why it works, continued

• objects changing color are not being mutated
• so no data races occur
• basis for a formal proof for an abstract machine
• structure is for the proof – colors/boxes don’t “exist”

thread 1

thread 2

...
thread n

...

Shared Local

Spring 2003 Dan Grossman Cyclone

The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions

Spring 2003 Dan Grossman Cyclone

Memory reuse: the problem

Dereferencing dangling pointers breaks safety:
void f() {

int* x;
{
int y = 0;
x = &y; // x not dangling

} // x dangling
{
int* z = NULL;
*x = 123;
...

}
}

Spring 2003 Dan Grossman Cyclone

Regions

• a.k.a. zones, arenas, …

• Each object is in exactly one region

• Allocation via a region handle

• Deallocate an entire region
simultaneously
(cannot free an object)

• Type system [Tofte/Talpin]
– types for handles and pointers use region names
– should sound familiar

Spring 2003 Dan Grossman Cyclone

Region contributions [PLDI 02]

1. Integrate heap, stack, and user-defined regions
– RC [Gay/Aiken 01] not for heap or stack

2. Usable source language
– MLKit: compiler intermediate language
– Walker et al.: assembly language

3. New approach to abstract types

4. Subtyping based on “outlives”

Spring 2003 Dan Grossman Cyclone

Cyclone regions

• Heap region: one, lives forever, conservatively GC’d
• Stack regions: correspond to local-declaration blocks

{int x; int y; s}
• Growable regions: scoped lifetime, but growable

{region r; s}

• Allocation routines take a region handle
• Handles are first-class

– caller decides where, callee decides how much
– no handles for stack regions

Spring 2003 Dan Grossman Cyclone

Region names

• Annotate all pointer types with a region name

• int*`r means “pointer into the region named `r”

– heap has name `H
– l:… has name `l
– {region r; s} has name `r

r has type region_t<`r>

Spring 2003 Dan Grossman Cyclone

Safety via scoping (almost)

void f() {
int*__ x;

l:{int y;
int*`l p = &y;
x = p;
}

...
}

• What region name for type
of x ?

• `l is not in scope at
allocation point

• scoping insufficient in
general

• But system is equivalent to
“scoping rule” unless you
use first-class abstract
types

Spring 2003 Dan Grossman Cyclone

Power via quantified types

• Universal quantification lets code take stack, region,
and heap pointers

• Example: swap exactly like in C

void swap(int*`r1 x, int*`r2 y);

• Existential types and type constructors too

Spring 2003 Dan Grossman Cyclone

A common framework

• void f(lock_t<`L>, int*`L);
• void f(region_t<`r>,int*`r);
• void f(bound_t<`i>, int*`i);
• void f(void g(`a), `a);

• Quantified types express invariants while permitting
code reuse

• No hidden fields or checks

• Use flow analysis and alias information when
invariants are too strong

Spring 2003 Dan Grossman Cyclone

The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions

Spring 2003 Dan Grossman Cyclone

Status

Cyclone really exists (except threads underway)

• >130K lines of Cyclone code, including the compiler

• gcc back-end (Linux, Cygwin, OSX, …)

• User’s manual, mailing lists, …

• Still a research vehicle

• More features: exceptions, datatypes, …

Spring 2003 Dan Grossman Cyclone

Evaluation

1. Is Cyclone like C?
– port code, measure source differences
– interface with C code (extend systems)

2. What is the performance cost?
– port code, measure slowdown

3. Is Cyclone good for low-level systems?
– write systems, ensure scalability

Spring 2003 Dan Grossman Cyclone

Code differences

02 (32=5.5%)+ 34 (5.8%)
– 29

584ccured-
olden-mst
(1 of 4)

112 (261=8.7%)+ 273 (9.1%)
– 245

3005mini-httpd
(1 of 6)

1 (half of
examples)

41 (216=6.6%)+ 257 (7.9%)
– 190

3260grobner
(1 of 4)

bugs
found

incidentaldiff totalLines
of C

Example

• Porting not automatic, but quite similar
• Many changes identify arrays and lengths
• Some changes incidental (absent prototypes, new keywords)

Spring 2003 Dan Grossman Cyclone

Run-time performance

+ 35
– 30
nogc

+ 336
– 196

faster

1.39x1.93x+ 34
– 29

584ccured-
olden-mst
(1 of 4)

1.02x+ 273
– 245

3005mini-httpd
(1 of 6)

1.51x1.94x+ 257
– 190

3260grobner
(1 of 4)

execution
time

execution
time

diff
total

Lines
of C

Example

RHLinux 7.1 (2.4.9), 1.0GHz PIII, 512MRAM, gcc2.96 -O3, glibc 2.2.4

• Comparable to other safe languages to start
• C level provides important optimization opportunities
• Understanding the applications could help

Spring 2003 Dan Grossman Cyclone

Larger program: the compiler

• Scalable
– compiler + libraries (80K lines) build in <1 minute

• Generic libraries (e.g., lists, hashtables)
– clients have no syntactic/performance cost

• Static safety helps exploit the C-level
– I use &x more than in C

Spring 2003 Dan Grossman Cyclone

Other projects

• MediaNet [Hicks et al, OPENARCH2003]:
– multimedia overlay network
– servers written in Cyclone
– needs quick data filtering

• Open Kernel Environment [Bos/Samwel, OPENARCH2002]
– runs partially trusted code in a kernel
– extended compiler, e.g., resource limits
– uses regions for safe data sharing

• Windows device driver (6K lines)
– 100 lines still in C (vs. 2500 in Vault [Fähndrich/DeLine])
– unclear what to do when a run-time check fails
– still many ways to crash a kernel (fewer with Vault)

Spring 2003 Dan Grossman Cyclone

The plan from here

• Goals for the type system

• Safe multithreading

• Region-based memory management

• Evaluation (single-threaded)

• Related work

• Future directions

Spring 2003 Dan Grossman Cyclone

Related work: higher and lower

• Adapted/extended ideas:
– universal quantification [ML, Haskell, GJ, …]
– existential quantification [Mitchell/Plotkin, …]
– region types [Tofte/Talpin, Walker et al., …]
– lock types [Flanagan et al., Boyapati et al.]
– safety via dataflow [Java, …]
– controlling data representation [Ada, Modula-3, …]

• Safe lower-level languages [TAL, PCC, …]
– engineered for machine-generated code

(TIC 2000, WCSSS 1999)

Spring 2003 Dan Grossman Cyclone

Related work: making C safer

• Compile to make dynamic checks possible
– Safe-C [Austin et al.], ...
– Purify, Stackguard, Electric Fence, …
– CCured [Necula et al.]

• performance via whole-program analysis
• less user burden
• less memory management, single-threaded

– RTC [Yong/Horwitz]

• Splint [Evans], Metal [Engler]: unsound, but very useful

• SFI [Wahbe, Small, ...]: sandboxing via binary rewriting

Spring 2003 Dan Grossman Cyclone

Plenty left to do

• Resource exhaustion
(e.g., stack overflow)

• User-specified aliasing properties
(e.g., all aliases are known)

• More “compile-time arithmetic”
(e.g., array initialization)

• Better error messages
(not a beginner’s language)

Spring 2003 Dan Grossman Cyclone

Integrating more approaches

• My work uses types, flow analysis, and run-time
checks for low-level safety

• Integrate and compare: model checking,
metacompilation, type qualifiers, pointer logics, code
rewriting, theorem proving, ...
– many tools assume memory safety

• Cross-fertilization for languages, tools, and compilers

Spring 2003 Dan Grossman Cyclone

Beyond C code

A safe C-level language is only part of the battle

• Language interoperability

• Distributed, cross-platform, embedded computing

• Let programmers treat “code as data”
– sensible tools for querying and transforming code
– examples: modern linkers, data mining

Language research for managing heterogeneity

Spring 2003 Dan Grossman Cyclone

Summary

• Memory safety is essential, but the world relies on C
• Cyclone is a safe C-level language
• Today:

– types to prevent races and dangling pointers
– safe, powerful, scalable, usable
– justified with design insight and empirical evidence

• To learn more:
– http://www.cs.cornell.edu/projects/cyclone
– write some code!

Spring 2003 Dan Grossman Cyclone

[Presentation ends here –
some auxiliary slides follow]

Spring 2003 Dan Grossman Cyclone

Our work cut out for us

To guarantee safety, we must address all
sources of safety violations

Some of my favorites:

incorrect casts, array-bounds violations,
misused unions, uninitialized pointers,
dangling pointers, null-pointer dereferences,
dangling longjmp, vararg mismatch, not
returning pointers, data races, …

Spring 2003 Dan Grossman Cyclone

Example in Cyclone

void f(int@{`j} p, bound_t<`i> i, int v
; `i < `j){

p[i] = v;
}

• @ for not-NULL
• regions and locks use implicit defaults

(live and accessible)

Spring 2003 Dan Grossman Cyclone

Using existential types – arrays

struct SafeArr {<`i>
bound_t<`i> len;
int*{`i} arr;

};

// p has type struct SafeArr*
let SafeArr{<`i>.len=bd, .arr=a} = *p;
if(bd > i)
a[i]=42;

// p2 can be longer or shorter
*p=*p2;
// e has type int*{37}
*p=SafeArr{.len=37, .arr=e};

Spring 2003 Dan Grossman Cyclone

Using existential types – locks

struct LkInt {<`L>
lock_t<`L> lk;
int*`L i;

};

// p has type struct LkInt*,
// `L not in scope
let LkInt{<`L>.lk=lk, .i=val} = *p;
sync lk { *val = 42; }
// p2 can use a different lock
*p=*p2;
// e has type int*loc
*p=SafeArr{.lk=nonlock, .i=e};

Spring 2003 Dan Grossman Cyclone

Using locks

∃`L. lock_t<`L> lk = newlock();
let nlk<`L1> = lk; // `L1 not in scope
int*`L1 p = e;
sync nlk {/* use *p */}

Spring 2003 Dan Grossman Cyclone

Not-null pointers

pointer to a t valuet@

pointer to a t value or NULLt*

• Subtyping: t@ < t* but t@@ < t*@

• Downcast via run-time check, often avoided
via flow analysis

/

Spring 2003 Dan Grossman Cyclone

Example

FILE* fopen(const char@, const char@);
int fgetc(FILE @);
int fclose(FILE @);
void g() {
FILE* f = fopen(“foo”, “r”);
while(fgetc(f) != EOF) {…}
fclose(f);

}

• Gives warning and inserts one null-check
• Encourages a hoisted check

Spring 2003 Dan Grossman Cyclone

A classic moral

FILE* fopen(const char@, const char@);
int fgetc(FILE @);
int fclose(FILE @);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)

Spring 2003 Dan Grossman Cyclone

Flow-Analysis Example

int*`r* f(int*`r q) {

int **p = malloc(sizeof(int*));
// p not NULL, points to malloc site
*p = q;
// malloc site now initialized
return p;

}

Harder than in Java because of:
– pointers to uninitialized memory

analysis computes must-points-to information
– under-defined evaluation order

conservatively approximate all orders

Spring 2003 Dan Grossman Cyclone

Empirical results – numeric

1.93x+ 141
– 110

2.12x+120
–105

4057cfrac

1

1

bugs

+ 110
– 95
3 in C

+21
– 6

+ 336
– 196

faster

1.251.32x+108
– 94
(13)

1345tile

1.18x1.22x+ 16
– 1
(13)

340cacm

1.51x1.94x+257
–190
(41)

3260grobner

execution
time (C=1)

execution
time (C=1)

diff
total

LOCExample

RHLinux 7.1 (2.4.9), 1.0GHz PIII, 512MRAM, gcc2.96 -O3, glibc 2.2.4

Spring 2003 Dan Grossman Cyclone

Empirical results – CCured-Olden

1.11x+ 9
– 9

565tsp

bugs

+ 35
– 30
nogc

+21
–21
nogc

faster

1.39x1.93x+34
–29

584mst

1.15x1.89x+21
–21

370treeadd

1.03x+11
– 9

514bisort

execution
time (C=1)

execution
time (C=1)

diff
total

LOCExample

RHLinux 7.1 (2.4.9), 1.0GHz PIII, 512MRAM, gcc2.96 -O3, glibc 2.2.4

Spring 2003 Dan Grossman Cyclone

CCured results

• As published in POPL02
• I have not run CCured

Cyclone time
(C=1)

Ccured time
(C=1)

Program

1.93x / 1.39x2.05xmst

1.11x1.15xtsp

1.89x / 1.15x1.47xtreeadd

1.03x1.03xbisort

Spring 2003 Dan Grossman Cyclone

“Incidental”

• new is a Cyclone keyword
• extraneous semicolons (void f() {...};)
• C missing prototypes (or omitting argument types)

• Nonincidental: distinguishing arrays of unknown
length from those of length 1 (majority of changes)
– other default would “improve” results

Spring 2003 Dan Grossman Cyclone

Why conservative GC?

• Would be inefficient because we:
– Don’t tag data
– Have full-width integers
– Allow instantiating `a with int

• We allow dangling pointers

• We have not noticed false-pointer problems (yet?)

• Could compact with a mostly-copying scheme

Spring 2003 Dan Grossman Cyclone

Enforcing thread-local

• A possible type for spawn: spawn(<f>,<p>,<sz>)
void spawn(void f(`a*loc ;{}), `a*`L,

sizeof_t<`a> ;{`L});

• But not any `a will do – local must stay local!

• We already have different kinds of types:
L for lock names
A for (conventional) types

• Examples: loc::L, int*`L::A, struct T :: A

Spring 2003 Dan Grossman Cyclone

Enforcing loc cont’d

• Enrich kinds with shareabilities, S or U
• loc::LU
• newlock() has type ∃`L::LS. lock_t<`L>
• A type is shareable only if every part is shareable
• Unshareable is the default (allows every type)

void spawn<`a::AS>(void f(`a*;{}),
`a*`L,
sizeof_t<`a>
;{`L});

// `a::AS means `a is a shareable type

Spring 2003 Dan Grossman Cyclone

Abstract Machine

Program state:
(H, L0, (L1,s1), ..., (Ln,sn))

• One heap H mapping variables to values
(local vs. shared not a run-time notion)

• Li are disjoint lock sets: a lock is available (L0) or
held by some thread

• A thread has held locks (Li) and control state (si)

Thread scheduling non-deterministic
– any thread can take the next primitive step

Spring 2003 Dan Grossman Cyclone

Dynamic semantics

• Single-thread steps can:
– change/create a heap location
– acquire/release/create a lock
– spawn a thread
– rewrite the thread’s statement (control-flow)

• Mutation takes two steps. Roughly:
H maps x to v, x=v’; s ⇒
H maps x to junk(v’), x=junk(v’); s ⇒
H maps x to v’, s

• Data races can lead to stuck threads

Spring 2003 Dan Grossman Cyclone

Type system – source

• Type-checking (right) expressions:
∆;Γ;ε | e : τ–

∆ : lock names and their shareabilities
Γ : term variables and their types & lock-names
ε : names of locks that we know must be held

• junk expressions never appear in source programs

• Largely conventional

Spring 2003 Dan Grossman Cyclone

Type system – program state

• Evaluation preserves implicit structure on the heap
• spawn preserves the invariant because of its

shareability restriction
• Lock acquire/release “recolors” the shared heap

L0

s1 L1

s2 L2

...
sn Ln

...

Shareable Unshareable

Spring 2003 Dan Grossman Cyclone

No data races
• Invariant on where junk(v) appears:

– Color has 1 junk if thread is mutating a location
– Else color has no junk

• So no thread gets stuck due to junk

L0

s1 L1

s2 L2

...
sn Ln

...

Shareable Unshareable

Spring 2003 Dan Grossman Cyclone

Formalism summary

• One “flat” run-time heap

• Machine models the data-race problem

• Straightforward type system for source programs
(graduate student does the proof once)

• Proof requires understanding how the type system
imposes structure on the heap...

• ... which helps explain “what’s really going on”

First proof for a system with thread-local data

Spring 2003 Dan Grossman Cyclone

Power via quantified types

void swap(int*`r1 x, int*`r2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int*`r newptr(region_t<`r> r, int x){
return rnew(r,x);

}

• Default: different region name for each omission
• Existential types and type constructors too

Spring 2003 Dan Grossman Cyclone

To learn more:
• Cyclone: http://www.research.att.com/projects/cyclone

• My work: http://www.cs.cornell.edu/home/danieljg

• Cyclone publications
– overview: USENIX 2002

[Jim,Morrisett,Grossman,Hicks,Cheney,Wang]
– existential types: ESOP 2002

[Grossman]
– regions: PLDI 2002

[Grossman,Morrisett,Jim,Hicks,Wang,Cheney]
– threads: TLDI 2003

[Grossman]

• Write some code

Spring 2003 Dan Grossman Cyclone

Related: ownership types
Boyapati et al. concurrently developed similar techniques
for locks, regions, and encapsulation in Java
• Cyclone

– nonlock
– no run-time type passing
– support for parametric polymorphism
– rigorous proof

• Ownership types
– deadlock prevention
– support for OO subtyping
– object migration
– “existentials” easier syntactically

	Cyclone: Safe Programming at the C Level of Abstraction
	A safe C-level language
	A question of trust
	Safe low-level systems
	Some insufficient approaches
	Cyclone: a combined approach
	Cyclone reality
	The plan from here
	Must be safe
	But not too restrictive
	Design goals
	The plan from here
	Safe multithreading: the problem
	Data-race example
	Data-race example
	Data-race example
	Preventing data races
	Lock types
	Lock-type contributions [TLDI 03]
	Cyclone multithreading
	Multithreading terms
	Examples, without types
	Types
	Types for locks
	Access rights
	Examples, with types
	Quantified lock types
	Lock types so far
	But...
	Shareability
	Cyclone multithreading
	Threads limitations
	Why it works
	Why it works, continued
	The plan from here
	Memory reuse: the problem
	Regions
	Region contributions [PLDI 02]
	Cyclone regions
	Region names
	Safety via scoping (almost)
	Power via quantified types
	A common framework
	The plan from here
	Status
	Evaluation
	Code differences
	Run-time performance
	Larger program: the compiler
	Other projects
	The plan from here
	Related work: higher and lower
	Related work: making C safer
	Plenty left to do
	Integrating more approaches
	Beyond C code
	Summary
	
	Our work cut out for us
	Example in Cyclone
	Using existential types – arrays
	Using existential types – locks
	Using locks
	Not-null pointers
	Example
	A classic moral
	Flow-Analysis Example
	Empirical results – numeric
	Empirical results – CCured-Olden
	CCured results
	“Incidental”
	Why conservative GC?
	Enforcing thread-local
	Enforcing loc cont’d
	Abstract Machine
	Dynamic semantics
	Type system – source
	Type system – program state
	No data races
	Formalism summary
	Power via quantified types
	To learn more:
	Related: ownership types

