Cyclone: A Memory-Safe C-Level
Programming Language

Dan Grossman
University of Washington

Joint work with: Trevor Jim AT&T Research
Greg Morrisett Harvard University
Michael Hicks University of Maryland

A safe C-level language

Cyclone is a programming language and compiler
aimed at safe systems programming

« C is not memory safe:

void f (int* p, int i, int v) {
pli] = v;
}

 Address p+i might hold important data or code

 Memory safety is crucial for reasoning about programs

11 January 2005 Dan Grossman: Cyclone 2

Caller’s problem?

void g(void**, void*);
int y = 0;
int *z = &y,
g(&z,0xBAD) ;
*z = 123;
« Might be safe, but not if g does *x=y

* Type of g enough for code generation

« Type of g not enough for safety checking

11 January 2005 Dan Grossman: Cyclone

Safe low-level systems

* For a safety guarantee today, use YFHLL
Your Favorite High Level Language

 YFHLL provides safety in part via:
— hidden data fields and run-time checks
— automatic memory management

« Data representation and resource management are
essential aspects of low-level systems

There are strong reasons for C-like languages

11 January 2005 Dan Grossman: Cyclone

Some insufficient approaches

« Compile C with extra information

— type fields, size fields, live-pointer table, ...

— treats C as a higher-level language

« Use static analysis
— very difficult
— less modular

« Ban unsafe features
— there are many
— you need them

11 January 2005 Dan Grossman: Cyclone

Cyclone in brief

A safe, convenient, and modern language
at the C level of abstraction
« Safe: memory safety, abstract types, no core dumps

« C-level: user-controlled data representation and
resource management, easy interoperabillity,
“manifest cost”

« Convenient: may need more type annotations, but
work hard to avoid it

* Modern: add features to capture common idioms

“New code for legacy or inherently low-level systems”

11 January 2005 Dan Grossman: Cyclone

The plan from here

Experience with Cyclone

— Benchmarks, ports, systems, compiler, ...

— All on Earth so far ©

Not-NULL pointers

Type-variable examples

— generics

— region-based memory management
Brief view of “everything else”

Related work

Really ‘just a taste” of Cyclone

11 January 2005 Dan Grossman: Cyclone

Status

Cyclone really exists (except memory-safe threads)

>150K lines of Cyclone code, including the compiler

gcc back-end (Linux, Cygwin, OSX, Mindstorm, ...)

User’'s manual, mailing lists, ...

Still a research vehicle

11 January 2005 Dan Grossman: Cyclone

Evaluation

1. Is Cyclone like C?
— port code, measure source differences
— interface with C code (extend systems)

2. What is the performance cost?
— port code, measure slowdown

3. Is Cyclone good for low-level systems?
— write systems, ensure scalability

11 January 2005 Dan Grossman: Cyclone

Code differences

Example |Lines |diff total incidental bugs

of C found
grobner 3260 |+ 257 (7.9%) |41 (216=6.6%) |1 (half of
(1 0f4) - 190 examples)
mini-httpd | 3005 |+ 273 (9.1%) |12 (261=8.7%) |1
(1 of 6) — 245
ccured- 584 |+ 34 (5.8%) | 2 (32=5.5%) |0
olden-mst - 29
(1 of 4)

« Porting not automatic, but quite similar
« Many changes identify arrays and lengths
« Some changes incidental (absent prototypes, new keywords)

11 January 2005

Dan Grossman: Cyclone

10

Run-time performance

Example |Lines | diff execution |faster | execution
of C |total |time time

grobner 3260 |+ 257 | 1.94x + 336 | 1.51x

(1 0f4) - 190 — 196

mini-httpd | 3005 |+ 273 | 1.02x

(1 of 6) — 245

ccured- 584 |+ 34 | 1.93x + 35 [1.39x

olden-mst - 29 - 30

(1 of 4) nogc

RHLinux 7.1 (2.4.9), 1.0GHz PIll, 512MRAM, gcc2.96 -O3, glibc 2.2.4

« Comparable to other safe languages to start
« C level provides important optimization opportunities
» Understanding the applications could help

11 January 2005 Dan Grossman: Cyclone

Larger program: the compiler

e Scalable
— compiler + libraries (80K lines) build in < 30secs

« Generic libraries (e.g., lists, hashtables)
— clients have no syntactic/performance cost

« Static safety helps exploit the C-level
— | use &x more than in C

11 January 2005 Dan Grossman: Cyclone

12

Other projects

* Open Kernel Environment [Bos/Samwel, OPENARCH 02]
« MediaNet [Hicks et al, OPENARCH 03]:

* RBClick [Patel/Lepreau, OPENARCH 03]

o« STP [Patel et al., SOSP 03]

 FPGA synthesis [Teifel/Manohar, ISACS 04]

« Maryland undergrad O/S course (geekOS) [2004]

* Windows device driver (6K lines)
— Only 100 lines leftin C
— But unrecoverable failures & other kernel corruptions remain

11 January 2005 Dan Grossman: Cyclone 13

The plan from here

Experience with Cyclone

Not-NULL pointers

Type-variable examples
— generics

— region-based memory management

Brief view of “everything else”

Related work

11 January 2005 Dan Grossman: Cyclone

14

Not-null pointers

t* |pointer to a t value or NULL

t@ |pointerto a t value

« Subtyping: t@ < t* but te@ < t*@

o e ——> T—> v

< but <

IO ——» -F--»vV

 Downcast via run-time check, often avoided via flow
analysis

11 January 2005 Dan Grossman: Cyclone

Example

FILE* fopen(const char@, const char@);
int fgetc (FILEQ) ;
int fclose (FILEQ) ;

void g()
FILE* f = fopen(“foo”, “r”);
int c;
while((c = fgetc(f)) != EOF) {..}

fclose (£f) ;

« Gives warning and inserts one null-check
 Encourages a hoisted check

11 January 2005 Dan Grossman: Cyclone

16

A classic moral

FILE* fopen(const char@, const charQ@);
int fgetc (FILEQ) ;
int fclose (FILEQ) ;

 Richer types make interface stricter
« Stricter interface make implementation easier/faster
* Exposing checks to user lets them optimize

« Can’t check everything statically (e.g., close-once)

11 January 2005 Dan Grossman: Cyclone

17

Key Design Principles in Action

Types to express invariants

— Preconditions for arguments

— Properties of values in memory

Flow analysis where helpful

— Lets users control explicit checks

— Soundness + aliasing limits usefulness
Users control data representation

— Pointers are addresses unless user allows
otherwise

Often can interoperate with C more safely just via
types

11 January 2005 Dan Grossman: Cyclone 18

It's always aliasing

void f (int*@p) {
if (*p !'= NULL) {
g();
**p = 42;//inserted check even w/o g()
}
}

——> -F--»{37

p

But can avoid checks when compiler knows all aliases.
Can know by:

« Types: precondition checked at call site

* Flow: new objects start unaliased

« Else user should use a temporary (the safe thing)

11 January 2005 Dan Grossman: Cyclone

It's always aliasing

void f (int**p) {

int* x = *p; —1—>» -r--»37
if(x !'= NULL) ({ p '
g(); !
*x = 42;//no check x
}
}
But can avoid checks when compiler knows all aliases.
Can know by:

« Types: precondition checked at call site
* Flow: new objects start unaliased
» Else user should use a temporary (the safe thing)

11 January 2005 Dan Grossman: Cyclone 20

The plan from here

Experience with Cyclone

Not-NULL pointers

Type-variable examples
— generics

— region-based memory management

Brief view of “everything else”

Related work

11 January 2005 Dan Grossman: Cyclone

21

“‘Change void* to "a”

struct Lst { struct Lst< a> {
void* hd; "a hd;
struct Lst* tl; struct Lst< a>* tl;
}; };
struct Lst* map (struct Lst< b>* map (
void* f (void¥), ‘b £(a),
struct Lst¥*); struct Lst< a> ¥*);
struct Lst* append(| struct Lst< a>* append (
struct Lst¥*, struct Lst< a>¥*,
struct Lst¥*); struct Lst< a>¥%);

11 January 2005 Dan Grossman: Cyclone 22

Not much new here

Closer to C than C++, Java generics, ML, etc.

« Unlike functional languages, data representation
may restrict "a to pointers, int

— why not structs? why not £loat? why int?

* Unlike templates, no code duplication or leaking
Implementations

» Unlike objects, no need to tag data

11 January 2005 Dan Grossman: Cyclone 23

Existential types

* Programs need a way for “call-back” types:

struct T {
void (*f) (void*, int);
void* env;

};

« We use an existential type (simplified):

struct T { < a>
void (Qf) (a, int);
‘a env;

};
more C-level than baked-in closures/objects

11 January 2005 Dan Grossman: Cyclone

24

Regions

a.k.a. zones, arenas, ...
« Every object is in exactly one region

* Allocation via a region handle

* Deallocate an entire region
simultaneously
(cannot £ree an object)

Old idea with recent support in languages (e.g., RC, RTSJ)
and implementations (e.q., ML Kit)

11 January 2005 Dan Grossman: Cyclone 25

Cyclone regions [PLDI 02]

« heap region: one, lives forever, conservatively GC'd
 stack regions: correspond to local-declaration blocks:
{int x; int vy, s}

« growable regions: scoped lifetime, but growable:
{region r; s}

 allocation routines take a region handle
* handles are first-class

— caller decides where, callee decides how much
— no handles for stack regions

11 January 2005 Dan Grossman: Cyclone 26

That's the easy part

The implementation is really simple because the type
system statically prevents dangling pointers

void £() {
int* x;
{
int yv = 0;
x = &y; // x not dangling
} // x dangling
{
int* z = NULL;
*x = 123;

}
}

11 January 2005 Dan Grossman: Cyclone 27

The big restriction

* Annotate all pointer types with a region name (a type
variable of region kind)

« int@ r means “pointer into the region created by the
construct that introduces "¢’

— heap introduces "H

— L:.. Introduces "L

— {region r; s} introduces "r
r has type region t< r>

« compile-time check: only live regions are accessed
— by default, function arguments point to live regions

11 January 2005 Dan Grossman: Cyclone 28

Region polymorphism

Apply what we did for type variables to region names
(only it's more important and could be more onerous)

void swap(int @ rl x, int @ r2 y) {
int tmp = *x;
*x — *y;
*y = tmp;

}

int@ r sumptr(region t< r> r,int x,int y) {
return rnew(r) (x+y):

}

11 January 2005 Dan Grossman: Cyclone 29

Type definitions

struct ILst< rl, r2> {

int@ rl hd;

struct ILst< rl, r2> * r2 tl;
}s

11 January 2005 Dan Grossman: Cyclone

30

Region subtyping

If p points to an int in a region with name "r1, is it
ever sound to give p type int* r2?

o Ifso,let int* ' rl < int* r2

« Region subtyping is the outlives relationship
{region rl; .. {region r2; ..} ..}

* LIFO makes subtyping common

11 January 2005 Dan Grossman: Cyclone

31

Regions evaluation

LIFO regions good for some idioms awkward in C
Regions generalize stack variables and the heap
Defaults and inference make it surprisingly palatable

— Worst part: defining region-allocated data
structures

Cyclone actually has much more [ISMM 04]
— Non-LIFO regions

— “Unique pointers”

— Explicitly reference-counted pointers

— A “unified system”, not n sublangages

11 January 2005 Dan Grossman: Cyclone

32

The plan from here

Experience with Cyclone

Not-NULL pointers

Type-variable examples
— generics

— region-based memory management

Brief view of “everything else”

Related work

11 January 2005 Dan Grossman: Cyclone

33

Other safety holes

Arrays (what or where is the size)

— Options: dynamic bound, in a field/variable, compile-time
bound, special string support

 Threads (avoiding races)
— vaporware type system to enforce lock-based mutual exclusion
 Casts
— Allow only “up casts” and casts to numbers
 Unions
— Checked tags or bits-only fields
* Uninitialized data
— Flow analysis (safer and easier than default initializers)
« Varargs (safe via changed calling convention)

11 January 2005 Dan Grossman: Cyclone 34

And modern conveniences

30 years after C, some things are worth adding...

Tagged unions and pattern matching on them
Intraprocedural type inference

Tuples (like anonymous structs)

Exceptions

Struct and array initializers

Namespaces

new for allocation + initialization

11 January 2005 Dan Grossman: Cyclone

35

Plenty of work remains

Common limitations:

» Aliasing

* Arithmetic

« Unportable assumptions

(But interoperating with C is much simpler than in a HLL)

Big challenge for next generation:
guarantees beyond fail-safe (i.e., graceful abort)

11 January 2005 Dan Grossman: Cyclone 36

Related work: making C safer

« Compile to make dynamic checks possible
— Safe-C [Austin et al.], RTC [Yong/Horwitz], ...
— Purify, Stackguard, Electric Fence, ...
— CCured [Necula et al]
« performance via whole-program analysis
* less user burden
* less memory management, single-threaded

« Control-C [Adve et al.] weaker guaranty, less burden

« SFI [Wahbe, Small, ...]: sandboxing via binary rewriting

11 January 2005 Dan Grossman: Cyclone

37

Related Work: Checking C code

* Model-checking C code (SLAM, BLAST, ...)
— Leverages scalability of MC
— Key is automatic building and refining of model
— Assumes (weak) memory safety
 Lint-like tools (Splint, Metal, PreFIX, ...)
— Good at reducing false positives
— Cannot ensure absence of bugs
— Metal particularly good for user-defined checks
« Cqual (user-defined qualifiers, lots of inference)

Better for unchangeable code or user-defined checks
(i.e., they’re complementary)

11 January 2005 Dan Grossman: Cyclone

38

Related work: higher and lower

» Adapted/extended ideas:
— polymorphism [ML, Haskell, ...]
— regions [Tofte/Talpin, Walker et al., ...]
— safety via dataflow [Java, ...]
— existential types [Mitchell/Plotkin, ...]
— controlling data representation [Ada, Modula-3, ...]

« Safe lower-level languages [TAL, PCC, ...]
— engineered for machine-generated code

« Vault: stronger properties via restricted aliasing

11 January 2005 Dan Grossman: Cyclone 39

Summary

« Cyclone: a safe language at the C-level of abstraction

« Synergistic combination of types, flow analysis, and
run-time checks

* A real compiler and prototype applications

L 11

* Properties like “not NULL", “has longer lifetime”, “has
array length”... now in the language and checked

« Easy interoperability with C allow smooth and
incremental move toward memory safety

— In theory at least

11 January 2005 Dan Grossman: Cyclone 40

Availability

Like any language, you have to “kick the tires”:
www.research.att.com/projects/cyclone
Also see:
— Jan. 2005 C/C++ User’s Journal
— USENIX 2002

Conversely, | want to know NASA'’s C-level code needs
« Maybe ideas from Cyclone will help

« Maybe not

Either way would be fascinating

11 January 2005 Dan Grossman: Cyclone 41

	Cyclone: A Memory-Safe C-Level Programming Language
	A safe C-level language
	Caller’s problem?
	Safe low-level systems
	Some insufficient approaches
	Cyclone in brief
	The plan from here
	Status
	Evaluation
	Code differences
	Run-time performance
	Larger program: the compiler
	Other projects
	The plan from here
	Not-null pointers
	Example
	A classic moral
	Key Design Principles in Action
	It’s always aliasing
	It’s always aliasing
	The plan from here
	“Change void* to `a”
	Not much new here
	Existential types
	Regions
	Cyclone regions [PLDI 02]
	That’s the easy part
	The big restriction
	Region polymorphism
	Type definitions
	Region subtyping
	Regions evaluation
	The plan from here
	Other safety holes
	And modern conveniences
	Plenty of work remains
	Related work: making C safer
	Related Work: Checking C code
	Related work: higher and lower
	Summary
	Availability

