
Cyclone: A Memory-Safe C-Level
Programming Language

Dan Grossman
University of Washington

Joint work with: Trevor Jim AT&T Research
Greg Morrisett Harvard University
Michael Hicks University of Maryland

11 January 2005 Dan Grossman: Cyclone 2

A safe C-level language

Cyclone is a programming language and compiler
aimed at safe systems programming

• C is not memory safe:

void f(int* p, int i, int v) {
p[i] = v;

}

• Address p+i might hold important data or code

• Memory safety is crucial for reasoning about programs

11 January 2005 Dan Grossman: Cyclone 3

Caller’s problem?

void g(void**, void*);

int y = 0;
int *z = &y;
g(&z,0xBAD);
*z = 123;

• Might be safe, but not if g does *x=y

• Type of g enough for code generation

• Type of g not enough for safety checking

11 January 2005 Dan Grossman: Cyclone 4

Safe low-level systems

• For a safety guarantee today, use YFHLL
Your Favorite High Level Language

• YFHLL provides safety in part via:
– hidden data fields and run-time checks
– automatic memory management

• Data representation and resource management are
essential aspects of low-level systems

There are strong reasons for C-like languages

11 January 2005 Dan Grossman: Cyclone 5

Some insufficient approaches

• Compile C with extra information
– type fields, size fields, live-pointer table, …
– treats C as a higher-level language

• Use static analysis
– very difficult
– less modular

• Ban unsafe features
– there are many
– you need them

11 January 2005 Dan Grossman: Cyclone 6

Cyclone in brief

A safe, convenient, and modern language
at the C level of abstraction

• Safe: memory safety, abstract types, no core dumps

• C-level: user-controlled data representation and
resource management, easy interoperability,
“manifest cost”

• Convenient: may need more type annotations, but
work hard to avoid it

• Modern: add features to capture common idioms

“New code for legacy or inherently low-level systems”

11 January 2005 Dan Grossman: Cyclone 7

The plan from here

• Experience with Cyclone
– Benchmarks, ports, systems, compiler, …
– All on Earth so far ☺

• Not-NULL pointers
• Type-variable examples

– generics
– region-based memory management

• Brief view of “everything else”
• Related work

Really “just a taste” of Cyclone

11 January 2005 Dan Grossman: Cyclone 8

Status

Cyclone really exists (except memory-safe threads)

• >150K lines of Cyclone code, including the compiler

• gcc back-end (Linux, Cygwin, OSX, Mindstorm, …)

• User’s manual, mailing lists, …

• Still a research vehicle

11 January 2005 Dan Grossman: Cyclone 9

Evaluation

1. Is Cyclone like C?
– port code, measure source differences
– interface with C code (extend systems)

2. What is the performance cost?
– port code, measure slowdown

3. Is Cyclone good for low-level systems?
– write systems, ensure scalability

11 January 2005 Dan Grossman: Cyclone 10

Code differences

02 (32=5.5%)+ 34 (5.8%)
– 29

584ccured-
olden-mst
(1 of 4)

112 (261=8.7%)+ 273 (9.1%)
– 245

3005mini-httpd
(1 of 6)

1 (half of
examples)

41 (216=6.6%)+ 257 (7.9%)
– 190

3260grobner
(1 of 4)

bugs
found

incidentaldiff totalLines
of C

Example

• Porting not automatic, but quite similar
• Many changes identify arrays and lengths
• Some changes incidental (absent prototypes, new keywords)

11 January 2005 Dan Grossman: Cyclone 11

Run-time performance

+ 35
– 30
nogc

+ 336
– 196

faster

1.39x1.93x+ 34
– 29

584ccured-
olden-mst
(1 of 4)

1.02x+ 273
– 245

3005mini-httpd
(1 of 6)

1.51x1.94x+ 257
– 190

3260grobner
(1 of 4)

execution
time

execution
time

diff
total

Lines
of C

Example

RHLinux 7.1 (2.4.9), 1.0GHz PIII, 512MRAM, gcc2.96 -O3, glibc 2.2.4

• Comparable to other safe languages to start
• C level provides important optimization opportunities
• Understanding the applications could help

11 January 2005 Dan Grossman: Cyclone 12

Larger program: the compiler

• Scalable
– compiler + libraries (80K lines) build in < 30secs

• Generic libraries (e.g., lists, hashtables)
– clients have no syntactic/performance cost

• Static safety helps exploit the C-level
– I use &x more than in C

11 January 2005 Dan Grossman: Cyclone 13

Other projects

• Open Kernel Environment [Bos/Samwel, OPENARCH 02]

• MediaNet [Hicks et al, OPENARCH 03]:

• RBClick [Patel/Lepreau, OPENARCH 03]

• STP [Patel et al., SOSP 03]

• FPGA synthesis [Teifel/Manohar, ISACS 04]

• Maryland undergrad O/S course (geekOS) [2004]

• Windows device driver (6K lines)
– Only 100 lines left in C
– But unrecoverable failures & other kernel corruptions remain

11 January 2005 Dan Grossman: Cyclone 14

The plan from here

• Experience with Cyclone

• Not-NULL pointers

• Type-variable examples

– generics

– region-based memory management

• Brief view of “everything else”

• Related work

11 January 2005 Dan Grossman: Cyclone 15

Not-null pointers

pointer to a t valuet@

pointer to a t value or NULLt*

• Subtyping: t@ < t* but t@@ < t*@

but

• Downcast via run-time check, often avoided via flow
analysis

/

<
v

/
v

<
v

v

11 January 2005 Dan Grossman: Cyclone 16

Example

FILE* fopen(const char@, const char@);
int fgetc(FILE@);
int fclose(FILE@);
void g() {
FILE* f = fopen(“foo”, “r”);
int c;
while((c = fgetc(f)) != EOF) {…}
fclose(f);

}

• Gives warning and inserts one null-check
• Encourages a hoisted check

11 January 2005 Dan Grossman: Cyclone 17

A classic moral

FILE* fopen(const char@, const char@);
int fgetc(FILE@);
int fclose(FILE@);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)

11 January 2005 Dan Grossman: Cyclone 18

Key Design Principles in Action

• Types to express invariants
– Preconditions for arguments
– Properties of values in memory

• Flow analysis where helpful
– Lets users control explicit checks
– Soundness + aliasing limits usefulness

• Users control data representation
– Pointers are addresses unless user allows

otherwise
• Often can interoperate with C more safely just via

types

11 January 2005 Dan Grossman: Cyclone 19

It’s always aliasing

void f(int*@p) {
if(*p != NULL) {
g();
**p = 42;//inserted check even w/o g()

}
}

37
p

But can avoid checks when compiler knows all aliases.
Can know by:
• Types: precondition checked at call site
• Flow: new objects start unaliased
• Else user should use a temporary (the safe thing)

11 January 2005 Dan Grossman: Cyclone 20

It’s always aliasing

void f(int**p) {
int* x = *p;
if(x != NULL) {
g();
*x = 42;//no check

}
}

But can avoid checks when compiler knows all aliases.
Can know by:
• Types: precondition checked at call site
• Flow: new objects start unaliased
• Else user should use a temporary (the safe thing)

37
p

x

11 January 2005 Dan Grossman: Cyclone 21

The plan from here

• Experience with Cyclone

• Not-NULL pointers

• Type-variable examples

– generics

– region-based memory management

• Brief view of “everything else”

• Related work

11 January 2005 Dan Grossman: Cyclone 22

“Change void* to `a”
struct Lst {
void* hd;
struct Lst* tl;

};

struct Lst* map(
void* f(void*),
struct Lst*);

struct Lst* append(
struct Lst*,
struct Lst*);

struct Lst<`a> {
`a hd;
struct Lst<`a>* tl;

};

struct Lst<`b>* map(
`b f(`a),
struct Lst<`a> *);

struct Lst<`a>* append(
struct Lst<`a>*,
struct Lst<`a>*);

11 January 2005 Dan Grossman: Cyclone 23

Not much new here
Closer to C than C++, Java generics, ML, etc.

• Unlike functional languages, data representation
may restrict `a to pointers, int
– why not structs? why not float? why int?

• Unlike templates, no code duplication or leaking
implementations

• Unlike objects, no need to tag data

11 January 2005 Dan Grossman: Cyclone 24

Existential types

• Programs need a way for “call-back” types:
struct T {

void (*f)(void*, int);
void* env;

};

• We use an existential type (simplified):
struct T { <`a>
void (@f)(`a, int);
`a env;

};

more C-level than baked-in closures/objects

11 January 2005 Dan Grossman: Cyclone 25

Regions

• a.k.a. zones, arenas, …

• Every object is in exactly one region

• Allocation via a region handle

• Deallocate an entire region
simultaneously
(cannot free an object)

Old idea with recent support in languages (e.g., RC, RTSJ)
and implementations (e.g., ML Kit)

11 January 2005 Dan Grossman: Cyclone 26

Cyclone regions [PLDI 02]

• heap region: one, lives forever, conservatively GC’d
• stack regions: correspond to local-declaration blocks:

{int x; int y; s}
• growable regions: scoped lifetime, but growable:

{region r; s}

• allocation routines take a region handle
• handles are first-class

– caller decides where, callee decides how much
– no handles for stack regions

11 January 2005 Dan Grossman: Cyclone 27

That’s the easy part

The implementation is really simple because the type
system statically prevents dangling pointers

void f() {
int* x;
{
int y = 0;
x = &y; // x not dangling

} // x dangling
{
int* z = NULL;
*x = 123;
...

}
}

11 January 2005 Dan Grossman: Cyclone 28

The big restriction
• Annotate all pointer types with a region name (a type

variable of region kind)

• int@`r means “pointer into the region created by the
construct that introduces `r”
– heap introduces `H
– L:… introduces `L
– {region r; s} introduces `r

r has type region_t<`r>

• compile-time check: only live regions are accessed
– by default, function arguments point to live regions

11 January 2005 Dan Grossman: Cyclone 29

Region polymorphism

Apply what we did for type variables to region names
(only it’s more important and could be more onerous)

void swap(int @`r1 x, int @`r2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int@`r sumptr(region_t<`r> r,int x,int y){
return rnew(r) (x+y);

}

11 January 2005 Dan Grossman: Cyclone 30

Type definitions

10

81

11

0

struct ILst<`r1,`r2> {
int@`r1 hd;
struct ILst<`r1,`r2> *`r2 tl;

};

11 January 2005 Dan Grossman: Cyclone 31

Region subtyping

If p points to an int in a region with name `r1, is it
ever sound to give p type int*`r2?

• If so, let int*`r1 < int*`r2

• Region subtyping is the outlives relationship

{region r1; … {region r2; …} … }

• LIFO makes subtyping common

11 January 2005 Dan Grossman: Cyclone 32

Regions evaluation

• LIFO regions good for some idioms awkward in C
• Regions generalize stack variables and the heap
• Defaults and inference make it surprisingly palatable

– Worst part: defining region-allocated data
structures

• Cyclone actually has much more [ISMM 04]

– Non-LIFO regions
– “Unique pointers”
– Explicitly reference-counted pointers
– A “unified system”, not n sublangages

11 January 2005 Dan Grossman: Cyclone 33

The plan from here

• Experience with Cyclone

• Not-NULL pointers

• Type-variable examples

– generics

– region-based memory management

• Brief view of “everything else”

• Related work

11 January 2005 Dan Grossman: Cyclone 34

Other safety holes

• Arrays (what or where is the size)
– Options: dynamic bound, in a field/variable, compile-time

bound, special string support
• Threads (avoiding races)

– vaporware type system to enforce lock-based mutual exclusion
• Casts

– Allow only “up casts” and casts to numbers
• Unions

– Checked tags or bits-only fields
• Uninitialized data

– Flow analysis (safer and easier than default initializers)
• Varargs (safe via changed calling convention)

11 January 2005 Dan Grossman: Cyclone 35

And modern conveniences

30 years after C, some things are worth adding…

• Tagged unions and pattern matching on them
• Intraprocedural type inference
• Tuples (like anonymous structs)
• Exceptions
• Struct and array initializers
• Namespaces
• new for allocation + initialization

11 January 2005 Dan Grossman: Cyclone 36

Plenty of work remains

Common limitations:
• Aliasing
• Arithmetic
• Unportable assumptions

(But interoperating with C is much simpler than in a HLL)

Big challenge for next generation:
guarantees beyond fail-safe (i.e., graceful abort)

11 January 2005 Dan Grossman: Cyclone 37

Related work: making C safer

• Compile to make dynamic checks possible
– Safe-C [Austin et al.], RTC [Yong/Horwitz], ...
– Purify, Stackguard, Electric Fence, …
– CCured [Necula et al.]

• performance via whole-program analysis
• less user burden
• less memory management, single-threaded

• Control-C [Adve et al.] weaker guaranty, less burden

• SFI [Wahbe, Small, ...]: sandboxing via binary rewriting

11 January 2005 Dan Grossman: Cyclone 38

Related Work: Checking C code

• Model-checking C code (SLAM, BLAST, …)
– Leverages scalability of MC
– Key is automatic building and refining of model
– Assumes (weak) memory safety

• Lint-like tools (Splint, Metal, PreFIX, …)
– Good at reducing false positives
– Cannot ensure absence of bugs
– Metal particularly good for user-defined checks

• Cqual (user-defined qualifiers, lots of inference)

Better for unchangeable code or user-defined checks
(i.e., they’re complementary)

11 January 2005 Dan Grossman: Cyclone 39

Related work: higher and lower

• Adapted/extended ideas:
– polymorphism [ML, Haskell, …]
– regions [Tofte/Talpin, Walker et al., …]
– safety via dataflow [Java, …]
– existential types [Mitchell/Plotkin, …]
– controlling data representation [Ada, Modula-3, …]

• Safe lower-level languages [TAL, PCC, …]
– engineered for machine-generated code

• Vault: stronger properties via restricted aliasing

11 January 2005 Dan Grossman: Cyclone 40

Summary

• Cyclone: a safe language at the C-level of abstraction

• Synergistic combination of types, flow analysis, and
run-time checks

• A real compiler and prototype applications

• Properties like “not NULL”, “has longer lifetime”, “has
array length”… now in the language and checked

• Easy interoperability with C allow smooth and
incremental move toward memory safety
– in theory at least

11 January 2005 Dan Grossman: Cyclone 41

Availability

Like any language, you have to “kick the tires”:
www.research.att.com/projects/cyclone

Also see:
– Jan. 2005 C/C++ User’s Journal
– USENIX 2002

Conversely, I want to know NASA’s C-level code needs
• Maybe ideas from Cyclone will help
• Maybe not
Either way would be fascinating

	Cyclone: A Memory-Safe C-Level Programming Language
	A safe C-level language
	Caller’s problem?
	Safe low-level systems
	Some insufficient approaches
	Cyclone in brief
	The plan from here
	Status
	Evaluation
	Code differences
	Run-time performance
	Larger program: the compiler
	Other projects
	The plan from here
	Not-null pointers
	Example
	A classic moral
	Key Design Principles in Action
	It’s always aliasing
	It’s always aliasing
	The plan from here
	“Change void* to `a”
	Not much new here
	Existential types
	Regions
	Cyclone regions [PLDI 02]
	That’s the easy part
	The big restriction
	Region polymorphism
	Type definitions
	Region subtyping
	Regions evaluation
	The plan from here
	Other safety holes
	And modern conveniences
	Plenty of work remains
	Related work: making C safer
	Related Work: Checking C code
	Related work: higher and lower
	Summary
	Availability

