
The Why, What, and How of
Software Transactions

for More Reliable Concurrency

Dan Grossman
University of Washington

17 November 2006

17 November 2006 Dan Grossman, Software Transactions 2

Atomic

An easier-to-use and harder-to-implement primitive

lock acquire/release (behave as if)
no interleaved computation;
no unfair starvation

void deposit(int x){
synchronized(this){

int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {
int tmp = balance;
tmp += x;
balance = tmp;

}}

17 November 2006 Dan Grossman, Software Transactions 3

Why now?

You are unleashing small-scale parallel computers on
the programming masses

Threads and shared memory remaining a key model
– Most common if not the best

Locks and condition variables not enough
– Cumbersome, error-prone, slow

Transactions should be a hot area, and it is…

17 November 2006 Dan Grossman, Software Transactions 4

A big deal

Software-transactions research broad…

• Programming languages
PLDI, POPL, ICFP, OOPSLA, ECOOP, HASKELL, …

• Architecture
ISCA, HPCA, ASPLOS, MSPC, …

• Parallel programming
PPoPP, PODC, …

… and coming together
TRANSACT (at PLDI06)

17 November 2006 Dan Grossman, Software Transactions 5

Viewpoints

Software transactions good for:
• Software engineering (avoid races & deadlocks)
• Performance (optimistic “no conflict” without locks)

Research should be guiding:
• New hardware with transactional support
• Inevitable software support

– Legacy/transition
– Semantic mismatch between a PL and an ISA
– May be fast enough

17 November 2006 Dan Grossman, Software Transactions 6

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

17 November 2006 Dan Grossman, Software Transactions 7

Atomic

An easier-to-use and harder-to-implement primitive

lock acquire/release (behave as if)
no interleaved computation;
no unfair starvation

void deposit(int x){
synchronized(this){

int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {
int tmp = balance;
tmp += x;
balance = tmp;

}}

17 November 2006 Dan Grossman, Software Transactions 8

Code evolution
Having chosen “self-locking” today, hard to add a

correct transfer method tomorrow
void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {

synchronized(this) {
//race
if(from.balance()>=amt && amt < maxXfer) {
from.withdraw(amt);
this.deposit(amt);

}
}

}

17 November 2006 Dan Grossman, Software Transactions 9

Code evolution
Having chosen “self-locking” today, hard to add a

correct transfer method tomorrow
void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {

synchronized(this) {
synchronized(from) { //deadlock (still)
if(from.balance()>=amt && amt < maxXfer) {
from.withdraw(amt);
this.deposit(amt);

}
}}

}

17 November 2006 Dan Grossman, Software Transactions 10

Code evolution
Having chosen “self-locking” today, hard to add a

correct transfer method tomorrow
void deposit(…) { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…) { atomic { … }}
void transfer(Acct from, int amt) {

//race
if(from.balance()>=amt && amt < maxXfer) {

from.withdraw(amt);
this.deposit(amt);

}

}

17 November 2006 Dan Grossman, Software Transactions 11

Code evolution
Having chosen “self-locking” today, hard to add a

correct transfer method tomorrow
void deposit(…) { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…) { atomic { … }}
void transfer(Acct from, int amt) {

atomic {
//correct (for any field maxXfer)
if(from.balance()>=amt && amt < maxXfer){

from.withdraw(amt);
this.deposit(amt);

}
}

}

17 November 2006 Dan Grossman, Software Transactions 12

Lesson

Locks do not compose; transactions do

17 November 2006 Dan Grossman, Software Transactions 13

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

17 November 2006 Dan Grossman, Software Transactions 14

“Weak” atomicity
Common belief:
• “Weak” means nontransactional code can interpose

reads/writes with transactions
• Same bugs arise with lock-based code
• Strict segregation of transactional vs.

non-transactional data sufficient to avoid races

atomic {
y = 1;
x = 3;
y = x;

}

x = 2;
print(y); //1? 2?

initially y==0

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 15

Segregation

Segregation is not necessary in lock-based code
– Even under relaxed memory models

(Example from [Rajwar/Larus]
and [Hudson et al])

sync(lk) {
r = ptr;
ptr = new C();

}
r.f == r.g;//true

sync(lk) {
++ptr.f;
++ptr.g;

}

initially ptr.f == ptr.g ptr

f g

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 16

“Weak” atomicity redux

“Weak” really means nontransactional code bypasses
the transaction mechanism…

Weak STMs violate isolation on example:
• Eager-updates (one update visible before abort)
• Lazy-updates (one update visible after commit)

Imposes correctness burdens on programmers that
locks do not

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 17

Lesson

“Weak” is worse than most think; it can require
segregation where locks do not

Corollary: “Strong” has easier semantics
– especially for a safe language

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 18

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

17 November 2006 Dan Grossman, Software Transactions 19

Relaxed memory models

Modern languages don’t provide sequential consistency
1. Lack of hardware support
2. Prevents otherwise sensible & ubiquitous compiler

transformations (e.g., copy propagation)

So safe languages need two complicated definitions
1. What is “properly synchronized”?
2. What can compiler and hardware do with “bad code”?
(Unsafe languages need (1))

A flavor of simplistic ideas and the consequences…

Joint work with Manson,Pugh

17 November 2006 Dan Grossman, Software Transactions 20

Simplistic ideas

“Properly synchronized” All thread-shared mutable
memory accessed in transactions

Consequence: Data-handoff code deemed “bad”

//Producer
tmp1=new C();
tmp1.x=42;
atomic {
q.put(tmp1);

}

//Consumer
atomic {
tmp2=q.get();
}
tmp2.x++;

Joint work with Manson,Pugh

17 November 2006 Dan Grossman, Software Transactions 21

Simplistic ideas

There exists a total “happens-before” order among all
transactions

Consequence: atomic has barrier semantics, making
dubious code correct

x = 1;

y = 1;

r = y;

s = x;
assert(s>=r);//invalid

initially x==y==0

Joint work with Manson,Pugh

17 November 2006 Dan Grossman, Software Transactions 22

Simplistic ideas

There exists a total “happens-before” order among all
transactions

Consequence: atomic has barrier semantics, making
dubious code correct and real implementations wrong

x = 1;
atomic { }
y = 1;

r = y;
atomic { }
s = x;
assert(s>=r);//valid?

initially x==y==0

Joint work with Manson,Pugh

17 November 2006 Dan Grossman, Software Transactions 23

Simplistic ideas

There exists a total “happens-before” order among
transactions with conflicting memory accesses

Consequence: “memory access” now in the language
definition; dead-code elim must be careful

x = 1;
atomic {z=1;}
y = 1;

r = y;
atomic {tmp=0*z;}
s = x;
assert(s>=r);//valid?

initially x==y==0

Joint work with Manson,Pugh

17 November 2006 Dan Grossman, Software Transactions 24

Lesson

It is not clear when transactions are ordered, but
languages need memory models

Corollary: This could/should delay adoption of
transactions in well-specified languages

Shameless provocation:
architectures need memory models too! (Please?!)

Joint work with Manson,Pugh

17 November 2006 Dan Grossman, Software Transactions 25

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

17 November 2006 Dan Grossman, Software Transactions 26

Interleaved execution

The “uniprocessor (and then some)” assumption:
Threads communicating via shared memory don't

execute in “true parallel”

Important special case:
• Uniprocessors still exist
• Multicore may assign one core to an app
• Many concurrent apps don’t need a multiprocessor

(e.g., a document editor)
• Many language implementations assume it

(e.g., OCaml, DrScheme)

17 November 2006 Dan Grossman, Software Transactions 27

Implementing atomic

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in atomic, rollback
the thread

• Duplicate code so non-atomic code is not slowed by
logging

• Smooth interaction with GC

17 November 2006 Dan Grossman, Software Transactions 28

Logging example

Executing atomic block:
• build LIFO log of old values:

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and

stack to beginning of atomic
On exit from atomic:
• drop log

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {

atomic {
y = 2;
f();
g();

}
}

17 November 2006 Dan Grossman, Software Transactions 29

Logging efficiency

Keep the log small:
• Don’t log reads (key uniprocessor advantage)
• Need not log memory allocated after atomic entered

– Particularly initialization writes
• Need not log an address more than once

– To keep logging fast, switch from array to
hashtable after “many” (50) log entries

y:0 z:? x:0 y:2

17 November 2006 Dan Grossman, Software Transactions 30

Duplicating code

Duplicate code so callees know
to log or not:
• For each function f, compile
f_atomic and f_normal

• Atomic blocks and atomic
functions call atomic functions

• Function pointers compile to
pair of code pointers

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {

atomic {
y = 2;
f();
g();

}
}

17 November 2006 Dan Grossman, Software Transactions 31

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCaml:

header code ptr free variables…

add 3, push, …

17 November 2006 Dan Grossman, Software Transactions 32

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

One approach: bigger closures

header code ptr1 free variables…

add 3, push, …

code ptr2

add 3, push, …

Note: atomic is first-class, so it is just one of these too!

17 November 2006 Dan Grossman, Software Transactions 33

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

Alternate approach: slower calls in atomic

header code ptr1 free variables…

add 3, push, …code ptr2

add 3, push, …

Note: Same overhead as OO dynamic dispatch

17 November 2006 Dan Grossman, Software Transactions 34

Interaction with GC

What if GC occurs mid-transaction?
• The log is a root (in case of rollback)
• Moving objects is fine

– Rollback produces equivalent state
– Naïve hardware solutions may log/rollback GC!

What about rolling back the allocator?
• Don’t bother: after rollback, objects allocated in

transaction are unreachable
– Naïve hardware solutions may log/rollback

initialization writes!

17 November 2006 Dan Grossman, Software Transactions 35

Evaluation

Strong atomicity for Caml at little cost
– Already assumes a uniprocessor
– See the paper for “in the noise” performance

• Mutable data overhead

• Rare rollback

log (2 more writes)nonewrite
nonenoneread

in atomicnot in atomic

17 November 2006 Dan Grossman, Software Transactions 36

Lesson

Implementing (strong) atomicity in software for a
uniprocessor is so efficient it deserves special-casing

Note: Don’t run other multicore services on a uni either

17 November 2006 Dan Grossman, Software Transactions 37

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

17 November 2006 Dan Grossman, Software Transactions 38

……

System Architecture

foo.ajavafoo.ajava
Polyglot

Our
compiler

javac

class files

AThread.
java
AThread.
java

Our
“run-time”

Note: Preserves separate
compilation

17 November 2006 Dan Grossman, Software Transactions 39

Key pieces

• A field read/write first acquires ownership of object

– In transaction, a write also logs the old value

– No synchronization if already own object

• Polling for releasing ownership

– Transactions rollback before releasing

• Some Java cleverness for efficient logging

• Lots of details for other Java features

17 November 2006 Dan Grossman, Software Transactions 40

Acquiring ownership

All objects have an owner field

class AObject extends Object {
Thread owner; //who owns the object
void acq(){…} //owner=caller (blocking)

}

Field accesses become method calls
• Read/write barriers that acquire ownership

– Then do the read or write
– In transaction, log between acquire and write

• Calls simplify/centralize code (JIT will inline)

17 November 2006 Dan Grossman, Software Transactions 41

Read-barrier

D x;
static D get_x(C o){
o.acq();
return o.x;

}
//also two setters

//some field-read
e.x

//field in class C
D x;

C.get_x(e)

17 November 2006 Dan Grossman, Software Transactions 42

Important fast-path

If thread already owns an object, no synchronization

• Does not require sequential consistency
• With “owner=currentThread()” in constructor, thread-

local objects never incur synchronization

Else add object to owner’s “to release” set and wait
– Synchronization on owner field and “to release” set
– Also fanciness if owner is dead or blocked

void acq(){
if(owner==currentThread()) return;
…

}

17 November 2006 Dan Grossman, Software Transactions 43

Releasing ownership
• Must “periodically” check “to release” set

– If in transaction, first rollback
• Retry later (backoff to avoid livelock)

– Set owners to null
• Source-level “periodically”

– Insert call to check() on loops and non-leaf calls
– Trade-off synchronization and responsiveness:

int count = 1000; //thread-local
void check(){
if(--count >= 0) return;
count=1000; really_check();
}

17 November 2006 Dan Grossman, Software Transactions 44

But what about…?

Modern, safe languages are big…

See paper & tech. report for:
constructors, primitive types, static fields,
class initializers, arrays, native calls,
exceptions, condition variables, library classes,
…

17 November 2006 Dan Grossman, Software Transactions 45

Lesson

Transactions for high-level programming languages do
not need low-level implementations

But good performance does tend to need parallel
readers, which is future work.

17 November 2006 Dan Grossman, Software Transactions 46

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

17 November 2006 Dan Grossman, Software Transactions 47

Strong performance problem
Recall uniprocessor overhead:

somenonewrite
nonenoneread

in atomicnot in atomic

With parallelism:

somenone iff weakwrite
somenone iff weakread

in atomicnot in atomic

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 48

Optimizing away barriers

Thread local

Immutable

Not accessed
in transaction

New: static analysis for not-accessed-in-transaction …

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 49

Not-accessed-in-transaction

Revisit overhead of not-in-atomic for strong atomicity,
given information about how data is used in atomic

Yet another client of pointer-analysis

none
none

no atomic
access

some
none

no atomic
write

in atomic

somesomewrite
somesomeread

atomic
write

not in atomic

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 50

Analysis details

• Whole-program, context-insensitive, flow-insensitive
– Scalable, but needs whole program

• Can be done before method duplication
– Keep lazy code generation without losing precision

• Given pointer information, just two more passes
1. How is an “abstract object” accessed

transactionally?
2. What “abstract objects” might a non-transactional

access use?

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 51

Static counts
Not the point, but good evidence
• Usually better than thread-local analysis

344131575621Write
24364798804ReadJBB
0 161736Write
08993106ReadTsp
0796198859885Write
0 87961267112671ReadSpecJVM98

TL onlyNAIT onlyNAIT or TLTotalAccessApp
Barrier removed by

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 52

Experimental Setup

High-performance strong STM from Intel PSL

• StarJIT
– IR and optimizations for transactions and isolation

barriers
– Inlined isolation barriers

• ORP
– Transactional method cloning
– Run-time optimizations for strong isolation

• McRT
– Run-time for weak and strong STM

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 53

Benchmarks

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 16

Threads

Ti
m

e
(s

)

Synch W eak Atom Strong Atom No Opts +JIT Opts +DEA +Static Opts

Tsp

Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 54

Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16

Threads

A
ve

ra
ge

 ti
m

e
pe

r 1
0,

00
0

op
s

(s
)

Synch Weak Atom Strong Atom No Opts +JIT Opts +DEA +Static Opts

JBB
Joint work with Intel PSL

17 November 2006 Dan Grossman, Software Transactions 55

Lesson

The cost of strong isolation is in nontransactional barriers
and compiler optimizations help a lot

17 November 2006 Dan Grossman, Software Transactions 56

Lessons

1. Locks do not compose; transactions do
2. “Weak” is worse than most think; can require

segregation where locks do not
3. Unclear when transactions are ordered, but

languages need memory models

4. Strong atomicity in software for a uniprocessor is so
efficient it deserves special-casing

5. Transactions for high-level programming languages
do not need low-level implementations

6. The cost of strong isolation is in nontransactional
barriers and compiler optimizations help a lot

17 November 2006 Dan Grossman, Software Transactions 57

Related work

Work at UW complements other pieces of the puzzle…

• Efficient transaction “engines” in hw, sw, hybrid

• Semantics of closed, open, parallel nesting

• Irrevocable actions (e.g., I/O)
– We provide and use a pragmatic transaction-

aware foreign-function interface [ICFP05]

17 November 2006 Dan Grossman, Software Transactions 58

Credit

Uniprocessor: Michael Ringenburg
Source-to-source: Benjamin Hindman
Barrier-removal: Steven Balensiefer, Kate Moore

Memory-model issues: Jeremy Manson, Bill Pugh
High-performance strong STM: Tatiana Shpeisman,

Vijay Menon, Ali-Reza Adl-Tabatabai, Richard
Hudson, Bratin Saha

wasp.cs.washington.edu

