
Design and Implementation
Issues for Atomicity

Dan Grossman
University of Washington

Workshop on Declarative Programming Languages for
Multicore Architectures

15 January 2006

Atomicity Overview

2

• Atomicity: what, why, and why relevant

• Implementation approaches (hw & sw, me & others)

• 3 semi-controversial language-design claims

• 3 semi-controversial language-implementation claims

• Summary and discussion (experts are lurking)

Atomic

3

An easier-to-use and harder-to-implement primitive:
withLock:
lock->(unit->α)->α

let dep acct amt =
withLock acct.lk
(fun()->
let tmp=acct.bal in
acct.bal <- tmp+amt)

atomic:
(unit->α)->α

let dep acct amt =
atomic
(fun()->
let tmp=acct.bal in
acct.bal <- tmp+amt)

lock acquire/release (behave as if)
no interleaved execution

No deadlock or unfair scheduling (e.g., disabling interrupts)

Why better

4

1. No whole-program locking protocols
– As code evolves, use atomic with “any data”
– Instead of “what locks to get” (races) and

“in what order” (deadlock)
2. Bad code doesn’t break good atomic blocks:

With atomic, “the protocol” is now the runtime’s problem
(c.f. garbage collection for memory management)

let bad1() =
acct.bal <- 123

let bad2() =
atomic
(fun()->«diverge»)

let good() =
atomic
(fun()->
let tmp=acct.bal in
acct.bal <- tmp+amt)

Declarative control

5

For programmers who will see:

threads & shared-memory & parallelism

atomic directly declares what schedules are allowed

(without sacrificing pre-emption and fairness)

Moreover, implementations perform better with
immutable data, encouraging a functional style

Implementing atomic

6

Two basic approaches:

1. Compute using “shadow memory” then commit
• Fancy optimistic-concurrency protocols for

parallel commits with progress (STMs)
[Harris et al. OOPSLA03, PPoPP05, ...]

2. Lock data before access, log changes, rollback and
back-off on contention
• My research focus
• Key performance issues: locking granularity,

avoiding unneeded locking
• Non-issue: any granularity is correct

An extreme case

7

One extreme:
• One lock for all data
• Acquire lock on context-switch-in
• Release lock only on context-switch-out

– (after rollback if necessary)
Per data-access overhead:

Not in atomic In atomic
Read none none

Write none logging

Ideal on uniprocessors [ICFP05, Manson et al. RTSS05]

In general

8

Naively, locking approach with parallelism looks bad
(but note: no communication if already hold lock)

Not in atomic In atomic
Read lock lock, maybe rollback

Write lock lock, maybe rollback, logging

Active research:
1. Hardware: lock = cache-line ownership

[Kozyrakis, Rajwar, Leiserson, …]

2. Software (my work-in-progress for Java):
• Static analysis to avoid locking
• Dynamic lock coarsening/splitting

Atomicity Overview

9

• Atomicity: what, why, and why relevant

• Implementation approaches (hw & sw, me & others)

• 3 semi-controversial language-design claims

• 3 semi-controversial language-implementation claims

• Summary and discussion

Claim #1

10

“Strong” atomicity is worth the cost

“Weak” says only atomics not interleaved with each other
– Says nothing about interleaving with non-atomic

So:
Not in atomic In atomic

Read none lock, maybe rollback

Write none lock, maybe rollback, logging

But back to bad synchronization breaking good code!

Caveat: Weak=strong if all thread-shared data accessed
within atomic (other ways to enforce this)

Claim #2

11

Adding atomic shouldn’t change “sequential meaning”

That is, e and atomic (fun()-> e) should be
equivalent in a single-threaded program

But it means exceptions must commit, not rollback!
– Can have “two kinds of exceptions”

Caveats:
• Tough case is “input after output”
• Not a goal in Haskell (already a separate monad for

“transaction variables”)

Claim #3

12

Nested transactions are worth the cost

Allows parallelism within atomic
– “Participating” threads see uncommitted effects

Currently most prototypes (mine included) punt here,
but I think many-many-core will drive its need

Else programmers will hack up buggy workarounds

Claim #4

13

Hardware implementations are too low-level and opaque

Extreme case: ISA of “start_atomic” and “end_atomic”

Rollback does not require RAM-level rollback!
– Example: logging a garbage collection
– Example: rolling back thunk evaluation

All I want from hardware: fast conflict detection

Caveats:
– Situation improving fast (we’re talking!)
– Focus has been on chip design (orthogonal?)

Claim #5

14

Simple whole-program optimizations can give strong
atomicity for close to the price of weak

Lots of data doesn’t need locking:
(2/3 of diagram well-known)

Thread local

Immutable

Not used in atomic

Caveat: unproven; hopefully numbers in a few weeks

Claim #6

15

Serialization and locking are key tools
for implementing atomicity

• Particularly in low-contention situations

• STMs are great too
– I predict best systems will be hybrids
– Just as great garbage collectors do some copying,

some mark-sweep, and some reference-counting

Summary

16

1. Strong atomicity is worth the cost
2. Atomic shouldn’t change sequential meaning
3. Nested transactions are worth the cost

4. Hardware is too low-level and opaque
5. Program analysis for “strong for the price of weak”
6. Serialization and locks are key implementation tools

Lots omitted: Alternative composition, wait/notify idioms,
logging techniques, …

www.cs.washington.edu/homes/djg

Plug

17

Relevant workshop before PLDI 2006:

TRANSACT:
First ACM SIGPLAN Workshop on Languages,

Compilers, and Hardware Support for
Transactional Computing

www.cs.purdue.edu/homes/jv/events/TRANSACT/

	Design and Implementation Issues for Atomicity
	Atomicity Overview
	Atomic
	Why better
	Declarative control
	Implementing atomic
	An extreme case
	In general
	Atomicity Overview
	Claim #1
	Claim #2
	Claim #3
	Claim #4
	Claim #5
	Claim #6
	Summary
	Plug

