
The Why, What, and How of
Software Transactions

for More Reliable Concurrency

Dan Grossman
University of Washington

8 September 2006

Atomic

8 September 2006 Dan Grossman, Software Transactions 2

An easier-to-use and harder-to-implement primitive

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}

lock acquire/release (behave as if)
no interleaved computation
(but no starvation)

Why now?

8 September 2006 Dan Grossman, Software Transactions 3

Multicore unleashing small-scale parallel computers on
the programming masses

Threads and shared memory a key model
– Most common if not the best

Locks and condition variables not enough
– Cumbersome, error-prone, slow

Transactions should be a hot area. It is…

A big deal

8 September 2006 Dan Grossman, Software Transactions 4

Software-transactions research broad…

• Programming languages
PLDI, POPL, ICFP, OOPSLA, ECOOP, HASKELL, …

• Architecture
ISCA, HPCA, ASPLOS, MSPC, …

• Parallel programming
PPoPP, PODC, …

… and coming together
TRANSACT (at PLDI06)

Viewpoints

8 September 2006 Dan Grossman, Software Transactions 5

Software transactions good for:
• Software engineering (avoid races & deadlocks)
• Performance (optimistic “no conflict” without locks)

key semantic decisions may depend on emphasis

Research should be guiding:
• New hardware support
• Language implementation with existing ISAs

“is this a hardware or software question or both”

Our view

8 September 2006 Dan Grossman, Software Transactions 6

SCAT (*) project at UW is motivated by
“reliable concurrent software without new hardware”

Theses:

1. Atomicity is better than locks, much as garbage
collection is better than malloc/free

2. “Strong” atomicity is key
3. If 1 thread runs at a time, strong atomicity is easy & fast
4. Else static analysis can improve performance

* (Scalable Concurrency Abstractions via Transactions)

Non-outline

8 September 2006 Dan Grossman, Software Transactions 7

Paper trail:

• Added to OCaml [ICFP05; Ringenburg]
• Added to Java via source-to-source [MSPC06; Hindman]
• Memory-model issues [MSPC06; Manson, Pugh]
• Garbage-collection analogy [TechRpt, Apr06]
• Static-analysis for barrier-removal

[TBA; Balensiefer, Moore, Intel PSL]

Focus on UW work, happy to point to great work at
Sun, Intel, Microsoft, Stanford, Purdue, UMass, Rochester, Brown,
MIT, Penn, Maryland, Berkeley, Wisconsin, …

Outline

8 September 2006 Dan Grossman, Software Transactions 8

• Why (local reasoning)
– Example
– Case for strong atomicity
– The GC analogy

• What (tough semantic “details”)
– Interaction with exceptions
– Memory-model questions

• How (usually the focus)
– In a uniprocessor model
– Static analysis for removing barriers on an SMP

Atomic

8 September 2006 Dan Grossman, Software Transactions 9

An easier-to-use and harder-to-implement primitive

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}

lock acquire/release (behave as if)
no interleaved computation
(but no starvation)

Code evolution

8 September 2006 Dan Grossman, Software Transactions 10

Having chosen “self-locking” yesterday,
hard to add a correct transfer method tomorrow

void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {

//race
if(from.balance()>=amt) {
from.withdraw(amt);
this.deposit(amt);

}

}

Code evolution

8 September 2006 Dan Grossman, Software Transactions 11

Having chosen “self-locking” yesterday,
hard to add a correct transfer method tomorrow

void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {
synchronized(this) {
//race
if(from.balance()>=amt) {
from.withdraw(amt);
this.deposit(amt);

}
}

}

Code evolution

8 September 2006 Dan Grossman, Software Transactions 12

Having chosen “self-locking” yesterday,
hard to add a correct transfer method tomorrow

void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {
synchronized(this) {
synchronized(from) { //deadlock(still)
if(from.balance()>=amt) {
from.withdraw(amt);
this.deposit(amt);

}
}}

}

Code evolution

8 September 2006 Dan Grossman, Software Transactions 13

Having chosen “self-locking” yesterday,
hard to add a correct transfer method tomorrow

void deposit(…) { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…) { atomic { … }}
void transfer(Acct from, int amt) {

//race
if(from.balance()>=amt) {
from.withdraw(amt);
this.deposit(amt);

}

}

Code evolution

8 September 2006 Dan Grossman, Software Transactions 14

Having chosen “self-locking” yesterday,
hard to add a correct transfer method tomorrow

void deposit(…) { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…) { atomic { … }}
void transfer(Acct from, int amt) {
atomic {
//correct
if(from.balance()>=amt) {
from.withdraw(amt);
this.deposit(amt);

}
}

}

Moral

8 September 2006 Dan Grossman, Software Transactions 15

• Locks do not compose
– Leads to hard-to-change design decisions
– Real-life example: Java’s StringBuffer

• Transactions have other advantages

• But we assumed “wrapping transfer in atomic”
prohibited all interleavings…
– transfer implemented with local knowledge

Strong atomicity

8 September 2006 Dan Grossman, Software Transactions 16

(behave as if) no interleaved computation
• Before a transaction “commits”

– Other threads don’t “read its writes”
– It doesn’t “read other threads’ writes”

• This is just the semantics
– Can interleave more unobservably

Weak atomicity

8 September 2006 Dan Grossman, Software Transactions 17

(behave as if) no interleaved transactions
• Before a transaction “commits”

– Other threads’ transactions don’t “read its writes”
– It doesn’t “read other threads’ transactions’ writes”

• This is just the semantics
– Can interleave more unobservably

Wanting strong

8 September 2006 Dan Grossman, Software Transactions 18

Software-engineering advantages of strong atomicity
1. Local (sequential) reasoning in transaction

• Strong: sound
• Weak: only if all (mutable) data is not

simultaneously accessed outside transaction

2. Transactional data-access a local code decision
• Strong: new transaction “just works”
• Weak: what data “is transactional” is global

Caveat

8 September 2006 Dan Grossman, Software Transactions 19

Need not implement strong atomicity to get it, given weak

For example:
Sufficient (but unnecessary) to ensure all mutable
thread-shared data accesses are in transactions

Doable via:
– “Programmer discipline”
– Monads [Harris, Peyton Jones, et al]

– Program analysis [Flanagan, Freund et al]

– “Transactions everywhere” [Leiserson et al]

Outline

8 September 2006 Dan Grossman, Software Transactions 20

• Why (local reasoning)
– Example
– Case for strong atomicity
– The GC analogy

• What (tough semantic “details”)
– Interaction with exceptions
– Memory-model questions

• How (usually the focus)
– In a uniprocessor model
– Static analysis for removing barriers on an SMP

Why an analogy

8 September 2006 Dan Grossman, Software Transactions 21

• Already hinted at crisp technical reasons why atomic
is better than locks
– Locks weaker than weak atomicity

• Analogies aren’t logically valid, but can be
– Convincing
– Memorable
– Research-guiding

Software transactions are to concurrency as
garbage collection is to memory management

Hard balancing acts

8 September 2006 Dan Grossman, Software Transactions 22

memory management
correct, small footprint?
• free too much:

dangling ptr
• free too little:

leak, exhaust memory
non-modular
• deallocation needs

“whole-program is
done with data”

concurrency
correct, fast synchronization?
• lock too little:

race
• lock too much:

sequentialize, deadlock
non-modular
• access needs

“whole-program uses
same lock”

Move to the run-time

8 September 2006 Dan Grossman, Software Transactions 23

• Correct [manual memory management / lock-based
synchronization] needs subtle whole-program
invariants

• So does [Garbage-collection / software-transactions]
but they are localized in the run-time system
– Complexity doesn’t increase with size of program
– Can use compiler and/or hardware cooperation

Old way still there

8 September 2006 Dan Grossman, Software Transactions 24

Alas:
“stubborn” programmers can nullify many advantages

• GC: application-level object buffers
• Transactions: application-level locks…

class SpinLock {
private boolean b = false;
void acquire() {

while(true)
atomic {
if(b) continue;
b = true;
return;

}
}
void release() { atomic { b = false; }}

}

Much more

8 September 2006 Dan Grossman, Software Transactions 25

• Basic trade-offs
– Mark-sweep vs. copy
– Rollback vs. private-memory

• I/O (writing pointers / mid-transaction data)

• …

I now think “analogically” about each new idea

Outline

8 September 2006 Dan Grossman, Software Transactions 26

• Why (local reasoning)
– Example
– Case for strong atomicity
– The GC analogy

• What (tough semantic “details”)
– Interaction with exceptions
– Memory-model questions

• How (usually the focus)
– In a uniprocessor model
– Static analysis for removing barriers on an SMP

Basic design

8 September 2006 Dan Grossman, Software Transactions 27

With higher-order functions, no need to change to
parser and type-checker
– atomic a first-class function
– Argument evaluated without interleaving

external atomic : (unit->α)->α = “atomic”

In atomic (dynamically):
• retry : unit->unit causes abort-and-retry
• No point retrying until relevant state changes

– Can view as an implementation issue

Exceptions

8 September 2006 Dan Grossman, Software Transactions 28

What if code in atomic raises an exception?

Options:
1. Commit
2. Abort-and-retry
3. Abort-and-continue

Claim:
“Commit” makes the most semantic sense…

atomic { … f(); /* throws */ …}

Abort-and-retry

8 September 2006 Dan Grossman, Software Transactions 29

Abort-and-retry does not preserve sequential behavior
– Atomic should be about restricting interleaving
– Exceptions are just an “alternate return”

atomic {throw new E();} //infinite loop?

Violates this design goal:
In a single-threaded program,

adding atomic has no observable behavior

“But I want abort-and-retry”

8 September 2006 Dan Grossman, Software Transactions 30

The abort-and-retry lobby says:
“in good code, exceptions indicate bad situations”

• That is not the semantics
• Can build abort-and-retry from commit, not vice-versa

• Commit is the primitive; sugar for abort-and-retry fine

atomic {
try { … }
catch(Throwable e) { retry; }

}

Abort-and-continue

8 September 2006 Dan Grossman, Software Transactions 31

Abort-and-continue has even more semantic problems
• “Abort is a blunt hammer, rolling back all state”
• Continuation needs “why it failed”, but cannot see

state that got rolled back (integer error codes?)

Foo obj = new Foo();
atomic {
obj.x = 42;
f();//exception undoes unreachable state
}
assert(obj.x==42);

Outline

8 September 2006 Dan Grossman, Software Transactions 32

• Why (local reasoning)
– Example
– Case for strong atomicity
– The GC analogy

• What (tough semantic “details”)
– Interaction with exceptions
– Memory-model questions

• How (usually the focus)
– In a uniprocessor model
– Static analysis for removing barriers on an SMP

Relaxed memory models

8 September 2006 Dan Grossman, Software Transactions 33

Modern languages don’t provide sequential consistency
• Lack of hardware support
• Prevents otherwise sensible & ubiquitous compiler

transformations (e.g., common-subexpression elim)

So safe languages need complicated definitions:
1. What is “properly synchronized”?
2. What “happens-before events” must compiler obey?

A flavor of simplistic ideas and the consequences…

Data-handoff okay?

8 September 2006 Dan Grossman, Software Transactions 34

“Properly synchronized” All thread-shared mutable
memory accessed in transactions

Consequence: Data-handoff code deemed “bad”

//Producer
tmp1=new C();
tmp1.x=42;
atomic {
q.put(tmp1);

}

//Consumer
atomic {
tmp2=q.get();

}
tmp2.x++;

//Consumer
atomic {
tmp2=q.get();
tmp2.x++;

}

Happens-before

8 September 2006 Dan Grossman, Software Transactions 35

A total “happens-before” order among all transactions?

Consequence: atomic has barrier semantics, making
dubious code correct

initially x=y=0

x = 1;

y = 1;

r = y;

s = x;
assert(s>=r);//invalid

Happens-before

8 September 2006 Dan Grossman, Software Transactions 36

A total “happens-before” order among all transactions

Consequence: atomic has barrier semantics, making
dubious code correct

initially x=y=0

x = 1;
atomic { }
y = 1;

r = y;
atomic { }
s = x;
assert(s>=r);//valid?

Happens-before

8 September 2006 Dan Grossman, Software Transactions 37

A total “happens-before” order among transactions with
conflicting memory accesses

Consequence: “memory access” now in the language
definition; affects dead-code elimination

initially x=y=0

x = 1;
atomic {z=1;}
y = 1;

r = y;
atomic {tmp=0*z;}
s = x;
assert(s>=r);//valid?

Outline

8 September 2006 Dan Grossman, Software Transactions 38

• Why (local reasoning)
– Example
– Case for strong atomicity
– The GC analogy

• What (tough semantic “details”)
– Interaction with exceptions
– Memory-model questions

• How (usually the focus)
– In a uniprocessor model
– Static analysis for removing barriers on an SMP

Interleaved execution

8 September 2006 Dan Grossman, Software Transactions 39

The “uniprocessor (and then some)” assumption:
Threads communicating via shared memory don't

execute in “true parallel”

Important special case:
• Many language implementations assume it

(e.g., OCaml, DrScheme)
• Many concurrent apps don’t need a multiprocessor

(e.g., many user-interfaces)
• Uniprocessors still exist

Implementing atomic

8 September 2006 Dan Grossman, Software Transactions 40

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in atomic, rollback
the thread

• Duplicate code so non-atomic code is not slowed by
logging

• Smooth interaction with GC

Logging example

8 September 2006 Dan Grossman, Software Transactions 41

Executing atomic block:
• build LIFO log of old values:

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and

stack to beginning of atomic
On exit from atomic:
• Drop log

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

Logging efficiency

8 September 2006 Dan Grossman, Software Transactions 42

y:0 z:? x:0 y:2

Keep the log small:
• Don’t log reads (key uniprocessor advantage)
• Need not log memory allocated after atomic entered

– Particularly initialization writes
• Need not log an address more than once

– To keep logging fast, switch from array to
hashtable when log has “many” (50) entries

Code duplication

8 September 2006 Dan Grossman, Software Transactions 43

Duplicate code so callees know
to log or not:
• For each function f, compile
f_atomic and f_normal

• Atomic blocks and atomic
functions call atomic functions

• Function pointers compile to
pair of code pointers

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

Representing closures

8 September 2006 Dan Grossman, Software Transactions 44

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCaml:

header code ptr free variables…

add 3, push, …

Representing closures

8 September 2006 Dan Grossman, Software Transactions 45

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

One approach: bigger closures

header code ptr1 free variables…

add 3, push, …

code ptr2

add 3, push, …

Note: atomic is first-class, so it is one of these too!

Representing closures

8 September 2006 Dan Grossman, Software Transactions 46

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

Alternate approach: slower calls in atomic

header code ptr1 free variables…

add 3, push, …code ptr2

add 3, push, …

Note: Same overhead as OO dynamic dispatch

GC Interaction

8 September 2006 Dan Grossman, Software Transactions 47

What if GC occurs mid-transaction?
• The log is a root (in case of rollback)
• Moving objects is fine

– Rollback produces equivalent state
– Naïve hardware solutions may log/rollback GC!

What about rolling back the allocator?
• Don’t bother: after rollback, objects allocated in

transaction are unreachable!
– Naïve hardware solutions may log/rollback

initialization writes!

Evaluation

8 September 2006 Dan Grossman, Software Transactions 48

Strong atomicity for Caml at little cost
– Already assumes a uniprocessor
– See the paper for “in the noise” performance

• Mutable data overhead

• Choice: larger closures or slower calls in transactions
• Code bloat (worst-case 2x, easy to do better)
• Rare rollback

not in atomic in atomic
read none none
write none log (2 more writes)

Outline

8 September 2006 Dan Grossman, Software Transactions 49

• Why (local reasoning)
– Example
– Case for strong atomicity
– The GC analogy

• What (tough semantic “details”)
– Interaction with exceptions
– Memory-model questions

• How (usually the focus)
– In a uniprocessor model
– Static analysis for removing barriers on an SMP

Performance problem

8 September 2006 Dan Grossman, Software Transactions 50

Recall uniprocessor overhead:
not in atomic in atomic

read none none
write none some

With parallelism:
not in atomic in atomic

read none iff weak some
write none iff weak some

Start way behind in performance, especially in
imperative languages (cf. concurrent GC)

8 September 2006 Dan Grossman, Software Transactions 51

Optimizing away barriers

Thread local Not used in atomic

Immutable

New: static analysis for not-used-in-atomic…

Not-used-in-atomic

8 September 2006 Dan Grossman, Software Transactions 52

Revisit overhead of not-in-atomic for strong atomicity,
given how data is used in atomic

in atomic
no atomic

access
none
none

no atomic
write
none
some

atomic
write

read some some
write some some

not in atomic

• Yet another client of pointer-analysis
• Preliminary numbers very encouraging (with Intel)

– Simple whole-program pointer-analysis suffices

Our view

8 September 2006 Dan Grossman, Software Transactions 53

SCAT (*) project at UW is motivated by
“reliable concurrent software without new hardware”

Theses:

1. Atomicity is better than locks, much as garbage
collection is better than malloc/free

2. “Strong” atomicity is key
3. If 1 thread runs at a time, strong atomicity is easy & fast
4. Else static analysis can improve performance

* (Scalable Concurrency Abstractions via Transactions)

Credit and other

8 September 2006 Dan Grossman, Software Transactions 54

OCaml: Michael Ringenburg
Java via source-to-source: Benjamin Hindman (B.S., Dec06)
Static barrier-removal: Steven Balensiefer, Katherine Moore

Transactions 1/n of my current research
– Semi-portable low-level code: Marius Nita, Sam Guarnieri
– Better type-error messages for ML: Benjamin Lerner
– Cyclone (safe C-level programming)

More in the WASP group: wasp.cs.washington.edu

8 September 2006 Dan Grossman, Software Transactions 55

[Presentation ends here; additional slides follow]

Blame analysis

8 September 2006 Dan Grossman, Software Transactions 56

Atomic localizes errors
(Bad code messes up only the thread executing it)

void bad1(){
x.balance += 42;

}

void bad2(){
synchronized(lk){
while(true) ;

}
}

• Unsynchronized actions by
other threads are invisible to
atomic

• Atomic blocks that are too
long may get starved, but
won’t starve others

– Can give longer time
slices

Non-motivation

8 September 2006 Dan Grossman, Software Transactions 57

Several things make shared-memory concurrency hard
1. Critical-section granularity

– Fundamental application-level issue?
– Transactions no help beyond easier evolution?

2. Application-level progress
– Strictly speaking, transactions avoid deadlock
– But they can livelock
– And the application can deadlock

Handling I/O

8 September 2006 Dan Grossman, Software Transactions 58

let f () =
write_file_foo();
…
read_file_foo()

let g () =
atomic f; (* read won’t see write *)
f() (* read may see write *)

• Buffering sends (output) easy and necessary
• Logging receives (input) easy and necessary

• But input-after-output does not work

• I/O one instance of native code …

Native mechanism

8 September 2006 Dan Grossman, Software Transactions 59

• Previous approaches: no native calls in atomic
– raise an exception
– atomic no longer preserves meaning

• We let the C code decide:
– Provide 2 functions (in-atomic, not-in-atomic)
– in-atomic can call not-in-atomic, raise exception,

or do something else
– in-atomic can register commit- & abort- actions

(sufficient for buffering)
– a pragmatic, imperfect solution (necessarily)

Granularity

8 September 2006 Dan Grossman, Software Transactions 60

Perhaps assume “object-based” ownership
• Granularity may be too coarse (especially arrays)

– False sharing
• Granularity may be too fine (object affinity)

– Too much time acquiring/releasing ownership

Conjecture: Profile-guided optimization can help

Note: Issue orthogonal to weak vs. strong

Representing closures/objects

8 September 2006 Dan Grossman, Software Transactions 61

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OO already pays the overhead atomic needs
(interfaces, multiple inheritance, … no problem)

header class ptr fields…

… code ptrs…

Digression

8 September 2006 Dan Grossman, Software Transactions 62

Recall atomic a first-class function
– Probably not useful
– Very elegant

A Caml closure implemented in C
• Code ptr1: calls into run-time, then call thunk, then

more calls into run-time
• Code ptr2: just call thunk

Code evolution

8 September 2006 Dan Grossman, Software Transactions 63

Suppose StringBuffers are “self-locked” and you want to
write append (JDK1.4, thanks to Flanagan et al)

int length() { synchronized(this) { … }}
void getChars(…) { synchronized(this) { … }}
void append(StringBuffer sb) {
synchronized(this) {
// race
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(…);

sb.getChars(0,len,this.value,this.count);
}

}

Code evolution

8 September 2006 Dan Grossman, Software Transactions 64

Suppose StringBuffers are “self-locked” and you want to
write append (JDK1.4, thanks to Flanagan et al)

int length() { synchronized(this) { … }}
void getChars(…) { synchronized(this) { … }}
void append(StringBuffer sb) {
synchronized(this) {
synchronized(sb) { // deadlock (still)
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(…);

sb.getChars(0,len,this.value,this.count);
}}

}

Code evolution

8 September 2006 Dan Grossman, Software Transactions 65

Suppose StringBuffers are “self-locked” and you want to
write append (JDK1.4, thanks to Flanagan et al)

int length() { atomic { … }}
void getChars(…) { atomic { … }}
void append(StringBuffer sb) {

// race
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(…);

sb.getChars(0,len,this.value,this.count);

}

Code evolution

8 September 2006 Dan Grossman, Software Transactions 66

Suppose StringBuffers are “self-locked” and you want to
write append (JDK1.4, thanks to Flanagan et al)

int length() { atomic { … }}
void getChars(…) { atomic { … }}
void append(StringBuffer sb) {
atomic {
// correct
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(…);

sb.getChars(0,len,this.value,this.count);
}

}

	The Why, What, and How of Software Transactions for More Reliable Concurrency
	Atomic
	Why now?
	A big deal
	Viewpoints
	Our view
	Non-outline
	Outline
	Atomic
	Code evolution
	Code evolution
	Code evolution
	Code evolution
	Code evolution
	Moral
	Strong atomicity
	Weak atomicity
	Wanting strong
	Caveat
	Outline
	Why an analogy
	Hard balancing acts
	Move to the run-time
	Old way still there
	Much more
	Outline
	Basic design
	Exceptions
	Abort-and-retry
	“But I want abort-and-retry”
	Abort-and-continue
	Outline
	Relaxed memory models
	Data-handoff okay?
	Happens-before
	Happens-before
	Happens-before
	Outline
	Interleaved execution
	Implementing atomic
	Logging example
	Logging efficiency
	Code duplication
	Representing closures
	Representing closures
	Representing closures
	GC Interaction
	Evaluation
	Outline
	Performance problem
	Optimizing away barriers
	Not-used-in-atomic
	Our view
	Credit and other
	
	Blame analysis
	Non-motivation
	Handling I/O
	Native mechanism
	Granularity
	Representing closures/objects
	Digression
	Code evolution
	Code evolution
	Code evolution
	Code evolution

