
Strong Atomicity for Today's
Programming Languages

Dan Grossman
University of Washington

10 October 2005

Atomic

10 October 2005 Dan Grossman 2

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}
semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or
unfair scheduling (e.g., disabling interrupts)

Target

10 October 2005 Dan Grossman 3

Applications that use threads to:
• mask I/O latency
• provide GUI responsiveness
• handle multiple requests
• structure code with multiple control stacks
• …

Not:
• high-performance scientific computing
• backbone routers
• …

Overview

10 October 2005 Dan Grossman 4

• The case for atomic

• Previous approaches to atomic

• AtomCaml
– Logging-and-rollback
– Uniprocessor implementation
– Programming experience

• AtomJava
– Logging-and-rollback
– Source-to-source implementation (unchanged JVM)

• Condition variables via atomic (time permitting)

Locks in high-level languages

10 October 2005 Dan Grossman 5

Java a reasonable proxy for state-of-the-art

synchronized e { s }

Related features:
• Reentrant locks (no self-deadlock)
• Syntactic sugar for acquiring this for method call
• Condition variables (release lock while waiting)
• …
Java 1.5 features:
• Semaphores
• Atomic variables (compare-and-swap, etc.)
• Non-lexical locking

Common bugs

10 October 2005 Dan Grossman 6

• Races
– Unsynchronized access to shared data
– Higher-level races: multiple objects inconsistent

• Deadlocks (cycle of threads waiting on locks)
Example [JDK1.4, version 1.70, Flanagan/Qadeer PLDI2003]

synchronized append(StringBuffer sb) {
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(…);

sb.getChars(0,len,this.value,this.count);
…

}
// length and getChars are synchronized

Detecting locking errors

10 October 2005 Dan Grossman 7

• Data-race detectors
– Dynamic (e.g., what locks held when)
– Static (e.g., type systems for what locks to hold)
– Little work on higher-level races

• Deadlock detectors
– Static (e.g., program-wide partial-order on locks)

• Atomicity checkers
– Static (treat “atomic” as a type annotation)

Can catch bugs, but the tough programming
model remains!

[Savage97, Cheng98, von Praun01, Choi02,
Flanagan,Abadi,Freund,Qadeer99-05, Boyapati01-02,Grossman03, …]

Atomic

10 October 2005 Dan Grossman 8

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}
semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or
unfair scheduling (e.g., disabling interrupts)

6.5 ways atomic is better

10 October 2005 Dan Grossman 9

1. Atomic makes deadlock less common

• Deadlock with parallel
“untransfer”

• Trivial deadlock if locks
not re-entrant

• 1 lock at a time ⇒ race
with “total funds available”

transfer(Acct that,
int x){

synchronized(this){
synchronized(that){
this.withdraw(x);
that.deposit(x);

}}}

6.5 ways atomic is better

10 October 2005 Dan Grossman 10

2. Atomic allows modular code evolution
– Race avoidance: global object→lock mapping
– Deadlock avoidance: global lock-partial-order

• Want to write foo to be
race and deadlock free
– What locks should I

acquire? (Are y and z
immutable?)

– In what order?

// x, y, and z are
// globals
void foo() {
synchronized(???){
x.f1 = y.f2 + z.f3;

}}

6.5 ways atomic is better

10 October 2005 Dan Grossman 11

3. Atomic localizes errors
(Bad code messes up only the thread executing it)

void bad1(){
x.balance -= 100;

}

void bad2(){
synchronized(lk){
while(true) ;

}
}

• Unsynchronized actions by
other threads are invisible to
atomic

• Atomic blocks that are too
long may get starved, but
won’t starve others

– Can give longer time
slices

6.5 ways atomic is better

10 October 2005 Dan Grossman 12

4. Atomic makes abstractions thread-safe without
committing to serialization

class Set { // synchronization unknown
void insert(int x) {…}
bool member(int x) {…}
int size () {…}

}

To wrap this with synchronization:
Grab the same lock before any call. But:

– Unnecessary: no operations run in parallel
(even if member and size could)

– Insufficient: implementation may have races

6.5 ways atomic is better

10 October 2005 Dan Grossman 13

5. Atomic is usually what programmers want
[Flanagan, Qadeer, Freund]

• Many synchronized Java methods are actually
atomic

• Of those that aren’t, many races are application-
level bugs

• synchronized is an implementation detail
– does not belong in interfaces (atomic does)

interface I { /* thread-safe? */ int m(); }

class A { synchronized int m() { «race» }}
class B { int m() { return 3; }}

6.5 ways atomic is better

10 October 2005 Dan Grossman 14

6. Atomic can efficiently implement locks
class SpinLock {
bool b = false;
void acquire() {
while(true) {
while(b) /*spin*/;
atomic {
if(b) continue;
b = true;
return; }

}
}
void release() {
b = false;
}

}

• Cute O/S homework
problem

• In practice,
implement locks like
you always have?

• Atomic and locks
peacefully co-exist
– Use both if you

want

6.5 ways atomic is better

10 October 2005 Dan Grossman 15

6.5 Concurrent programs have the granularity problem:

• Too little synchronization:
non-determinism, races, bugs

• Too much synchronization:
poor performance, sequentialization

Example: Should a chaining hashtable have one lock
per table, per bucket, or per entry?

atomic doesn’t solve the problem, but makes it easier
to mix coarse- and fine-grained operations

Overview

10 October 2005 Dan Grossman 16

• The case for atomic

• Previous approaches to atomic

• AtomCaml
– Logging-and-rollback
– Uniprocessor implementation
– Programming experience

• AtomJava
– Logging-and-rollback
– Source-to-source implementation (unchanged JVM)

• Condition variables via atomic

A classic idea

10 October 2005 Dan Grossman 17

• Transactions in databases and distributed systems
– Different trade-offs and flexibilities
– Limited (not a general-purpose language)

• Hoare-style monitors and conditional critical regions

• Restartable atomic sequences to implement locks
– Implements locks w/o hardware support [Bershad]

• Atomicity for individual persistent objects [ARGUS]

• Rollback for various recoverability needs

• Disable interrupts

STMs

10 October 2005 Dan Grossman 18

• Software Transactional Memory
– Compute using private version of memory
– Commit via sophisticated protocols (version #s, etc)

• Java [OOPSLA03]:
– Guard expressions: atomic(e){s}
– Weak guarantee: only atomic w.r.t. other atomics!

• Haskell [PPoPP05]:
– Composition: “if s1 aborts, try s2”
– Strong guarantee via purely functional language

• C#:
– Just a library
– Thread-shared data has many restrictions, must be

created by factories, …
[Herlihy, Harris, Fraser, Marlow, Peyton-Jones,…]

10 October 2005 Dan Grossman 19

Warning:
Next slide criticizes the work of the audience.

Why?
Provoke good conversation (later?)

Strong belief:
Long-term solutions will be hw + sw, but we’re still
learning the pure hw and pure sw solutions

HTMs

10 October 2005 Dan Grossman 20

Hardware Transactional Memory
• extend ISA with “xstart” and “xend”
• cache for logging-and-rollback
• contention similar to cache-coherence (pay once!)
• long-running transactions lock the bus [ASPLOS04] or

use hardware to log in RAM [HPCA05]

I am skeptical (and biased):
• need a software answer too (legacy chips, etc.)
• logs things that need not be logged

– immutable fields
– a garbage collection triggered in atomic

• ISA’s semantics won’t match a language’s atomic
– compilers want building blocks

Claim

10 October 2005 Dan Grossman 21

We can realize suitable implementations of strong
atomicity on today's hardware using a purely
software approach to logging-and-rollback

• Alternate approach to STMs; potentially:
– better guarantees
– faster common case

• No need to wait for new hardware
– A solution for today
– Not yet clear what hardware should provide

Overview

10 October 2005 Dan Grossman 22

• The case for atomic

• Previous approaches to atomic

• AtomCaml
– Logging-and-rollback
– Uniprocessor implementation
– Programming experience

• AtomJava
– Logging-and-rollback
– Source-to-source implementation (unchanged JVM)

• Condition variables via atomic

Interleaved execution

10 October 2005 Dan Grossman 23

The “uniprocessor” assumption:
Threads communicating via shared memory don't

execute in “true parallel”

More general than uniprocessor: threads on different
processors can pass messages

An important special case:
• Many language implementations make this

assumption
• Many concurrent apps don’t need a multiprocessor

(e.g., a document editor)
• Uniprocessors are dead? Where’s the funeral?

Implementing atomic

10 October 2005 Dan Grossman 24

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in atomic, rollback
the thread

• Duplicate code so non-atomic code is not slowed by
logging

• In an atomic block, buffer output and log input
– Necessary for rollback but may be inconvenient
– A general native-code API

Note: Similar idea for RTSJ by Manson et al. [Purdue TR 05]

Logging example

10 October 2005 Dan Grossman 25

• Executing atomic block
in h builds a LIFO log of
old values:

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and

stack to beginning of atomic
On exit from atomic: drop log

Logging efficiency

10 October 2005 Dan Grossman 26

y:0 z:? x:0 y:2

Keeping the log small:
• Don’t log reads (key uniprocessor optimization)
• Don’t log memory allocated after atomic was entered

(in particular, local variables like z)
• No need to log an address after the first time

– To keep logging fast, switch from an array to a
hashtable only after “many” (50) log entries

– Tell programmers non-local writes cost more

Duplicating code

10 October 2005 Dan Grossman 27

Duplicate code so callees know
to log or not:
• For each function f, compile
f_atomic and f_normal

• Atomic blocks and atomic
functions call atomic functions

• Function pointers (e.g.,
vtables) compile to pair of
code pointers

Cute detail: compiler erases any
atomic block in f_atomic

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

Representing closures/objects

10 October 2005 Dan Grossman 28

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCaml:

header code ptr free variables…

add 3, push, …

Representing closures/objects

10 October 2005 Dan Grossman 29

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml:
bigger closures (and related GC changes)

header code ptr1 free variables…

add 3, push, …

code ptr2

add 3, push, …

Representing closures/objects

10 October 2005 Dan Grossman 30

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml alternative:
(slower calls in atomic)

header code ptr1 free variables…

add 3, push, …code ptr2

Representing closures/objects

10 October 2005 Dan Grossman 31

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OO already pays the overhead atomic needs
(interfaces, multiple inheritance, … no problem)

header class ptr fields…

… code ptrs…

Qualitative evaluation

10 October 2005 Dan Grossman 32

• Non-atomic code executes unchanged
• Writes in atomic block are logged (2 extra writes)
• Worst case code bloat of 2x

• Thread scheduler and code generator must conspire

• Still have to deal with I/O
– Atomic blocks probably shouldn’t do much

Handling I/O

10 October 2005 Dan Grossman 33

• Buffering sends (output) is easy and necessary
• Logging receives (input) is easy and necessary

• But may miss subtle non-determinism:

void f() {
write_file_foo(); // flushed?
read_file_foo();

}
void g() {
atomic {f();} // read won’t see write
f(); // read may see write

}

Native mechanism

10 October 2005 Dan Grossman 34

• Previous approaches: disallow native calls in atomic
– raise an exception
– atomic no longer meaning preserving!

• We let the C library decide:
– Provide two functions (in-atomic, not-in-atomic)
– in-atomic can call not-in-atomic, raise-exception,

or do something else
– in-atomic can register commit-actions and

rollback-actions (sufficient for buffering)
– problem: if commit-action has an error “too late”

Overview

10 October 2005 Dan Grossman 35

• The case for atomic

• Previous approaches to atomic

• AtomCaml
– Logging-and-rollback
– Uniprocessor implementation
– Programming experience

• AtomJava
– Logging-and-rollback
– Source-to-source implementation (unchanged JVM)

• Condition variables via atomic

Prototype

10 October 2005 Dan Grossman 36

• AtomCaml: modified OCaml bytecode compiler
• Advantages of mostly functional language

– Fewer writes (don’t log object initialization)
– To the front-end, atomic is just a function

atomic : (unit -> ’a) -> ’a

• Using atomic to implement locks, CML, …
• Planet active network [Hicks et al, INFOCOM99, ICFP98]

“ported” from locks to atomic

Critical sections

10 October 2005 Dan Grossman 37

• Most code looks like this:
try
lock m;
let result = e in
unlock m;
result

with ex -> (unlock m; raise ex)

• And often this is easier and equivalent:
atomic(fun()-> e)

• But not always…

Non-atomic locking

10 October 2005 Dan Grossman 38

Changing a lock acquire/release to atomic is wrong if it:
• Does something and “waits for a response”
• Calls native code
• Releases and reacquires the lock:

lock m;
s1;
let rec loop () =
if e
then (wait cv m; s2; loop())
else s3

in loop ();
unlock m

Porting Planet

10 October 2005 Dan Grossman 39

• Found bugs
– Reader-writer locks unsound due to typo
– Clock library deadlocks if callback registers

another callback
• Most lock uses trivial to change
• Condition-variable uses need only local restructuring
• 6 “native calls in atomic”

– 2 pure (so hoist before atomic)
– 1 a clean-up action (so move after atomic)
– 3 we wrote new C versions that buffered

• Note: could have left some locks in but didn’t
• Synchronization performance all in the noise

Overview

10 October 2005 Dan Grossman 40

• The case for atomic

• Previous approaches to atomic

• AtomCaml
– Logging-and-rollback
– Uniprocessor implementation
– Programming experience

• AtomJava
– Logging-and-rollback
– Source-to-source implementation (unchanged JVM)

• Condition variables via atomic

A multiprocessor approach

10 October 2005 Dan Grossman 41

Strategy: Use locks to implement atomic
• Each shared object guarded by a lock

– Key: many objects can share a lock
• Logging and rollback to prevent deadlock

Less efficient straight-line code:
• All (even non-atomic) code must hold the correct lock

to write or read a thread-shared object

But try to minimize inter-thread communication
• “Acquiring” a lock you hold needs no synchronization

Acquiring locks

10 October 2005 Dan Grossman 42

Translate from AtomJava to Java:
• add getter/setter methods for each field
• code duplication and logging like in AtomCaml

• e.f becomes e.get_f()
– acquire lock for e, then return e.f

• e1.f = e2 similar (and atomic version logs)
• Every object’s lock has a current-holder field

– If the Thread “is me”, continue.
– Else ask the holder to release the lock and wait

Releasing locks

10 October 2005 Dan Grossman 43

• Threads poll to see if they hold requested locks
– Rewrite source code to insert polling calls
– To avoid deadlock, satisfy requests
– If in atomic and you release a lock, rollback first

• Exponential backoff to avoid livelock

• For correctness, the rest is in the (many) details:
arrays, primitive types, java.lang, class-loading,
native calls, constructors, static fields, …

Optimizations

10 October 2005 Dan Grossman 44

• Access does not need a lock if any of the following:
– Data is thread-local
– Data is immutable
– Data is never accessed within an atomic block
– You definitely hold the lock already

• Static and dynamic tricks to reduce polling costs
• … much, much more (make it a compiler problem!)

Only one problem… what is the object-to-lock mapping?

What locks what?

10 October 2005 Dan Grossman 45

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism

What locks what?

10 October 2005 Dan Grossman 46

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism
– Programmers can’t do it well either, though we

make them try

What locks what?

10 October 2005 Dan Grossman 47

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

When stuck in computer science, use 1 of the following:
a. Divide-and-conquer
b. Locality
c. Level of indirection
d. Encode computation as data
e. An abstract data-type

Locality

10 October 2005 Dan Grossman 48

Hunch: Objects accessed in the same atomic block will
likely be accessed in the same atomic block again

• So while holding their locks, change the object-to-lock
mapping to share locks
– Conversely, detect false contention and break

sharing

• If hunch is right, future atomics acquire fewer locks
– Less inter-thread communication
– And many papers on heuristics and policies ☺

• Challenge is cheap profiling (future work)

Overview

10 October 2005 Dan Grossman 49

• The case for atomic

• Previous approaches to atomic

• AtomCaml
– Logging-and-rollback
– Uniprocessor implementation
– Programming experience

• AtomJava
– Logging-and-rollback
– Source-to-source implementation (unchanged JVM)

• Condition variables via atomic

Summary

10 October 2005 Dan Grossman 50

• (Strong) atomic is a big win for reliable concurrency
• Key is implementation techniques and properties

– Disabling interrupts
– Software Transactional Memory
– Hardware Transactional Memory
– Uniprocessor logging-rollback
– Multiprocessor logging-rollback

An analogy

10 October 2005 Dan Grossman 51

Garbage collection is a big win for reliable memory
management

• Programmers can usually ignore the implementation
• For 3 decades, perceived as “too slow”

(and we tried hardware support)
• Manual memory management requires subtle, whole-

program invariants

Is “TMs vs. rollback” like “copying vs. mark-sweep” (will
the best systems be a hybrid)?

Hopefully < 30 years to find out

Acknowledgments

10 October 2005 Dan Grossman 52

• Joint work with students Michael Ringenburg and
Ben Hindman

• For updates and other projects:
www.cs.washington.edu/research/progsys/wasp/

10 October 2005 Dan Grossman 53

[end of presentation; auxiliary slides follow]

Condition variables: canonical use

10 October 2005 Dan Grossman 54

lock(m);
s1;
while(e){

wait(m,cv);
s2;

}
s3;
unlock(m);

• wait blocks until another thread signals cv
• signalling thread must hold m

10 October 2005 Dan Grossman 55

Atomic w.r.t. code holding m:

lock(m);
s1;
while(e){

wait(m,cv);
s2;

}
s3;
unlock(m);

s1;
s3

s1;
wait

s2;
wait

s2;
s3

Wrong approach #1

10 October 2005 Dan Grossman 56

atomic {
s1;
if(e) wait(cv);
else {s3;return;}

}
while(true){
atomic{
s2;
if(e) wait(cv);
else {s3;return;}

}}

s1;
s3

s1;
wait

s2;
wait

s2;
s3Cannot wait in atomic!

• Other threads can’t see what you did
• You block and can’t see signal

Wrong approach #2

10 October 2005 Dan Grossman 57

b=false;
atomic {
s1;
if(e) b=true;
else {s3;return;}

}
if(b) wait(cv);
while(true){
atomic{
s2;
if(!e){s3;return;}
}
wait(cv);
}

s1;
s3

s1;
wait

s2;
wait

s2;
s3

Cannot wait after atomic: you can miss the signal!

Solution: listen!

10 October 2005 Dan Grossman 58

s1;
s3

s1;listen
wait

s2;listen
wait

s2;
s3

b=false;
atomic {
s1;
if(e) {
ch=listen(cv);
b=true;

}
else {s3;return;}

}
if(b) wait(ch);
…

You wait on a channel and can listen before blocking
(signal chooses any channel)

The interfaces

10 October 2005 Dan Grossman 59

With locks:
condvar new_condvar();
void wait(lock,condvar);
void signal(condvar);

With atomic:
condvar new_condvar();
channel listen(condvar);
void wait(channel);
void signal(condvar);

A 20-line implemention uses only atomic and lists of
mutable booleans

back

10 October 2005 Dan Grossman 60

[really, really auxiliary slides follow]

Detecting concurrency errors

10 October 2005 Dan Grossman 61

Dynamic approaches
• Lock-sets: Warn if:

– An object’s accesses come from > 1 thread
– Common locks held on accesses = empty-set

• Happens-before: Warn if an object’s accesses are
reorderable without
– Changing a thread’s execution
– Changing memory-barrier order

neither sound nor complete
(happens-before more complete)

[Savage97, Cheng98, von Praun 01, Choi02]

Detecting concurrency errors

10 October 2005 Dan Grossman 62

Static approaches: lock types
• Type system ensures:

For each shared data object, there exists a lock that
a thread must hold to access the object

• Polymorphism essential
– fields holding locks, arguments as locks, …

• Lots of add-ons essential
– read-only, thread-local, unique-pointers, …

• Deadlock avoiding partial-order possible
incomplete, sound only for single objects

[Flanagan,Abadi,Freund,Qadeer99-02, Boyapati01-02,Grossman03]

Enforcing Atomicity

10 October 2005 Dan Grossman 63

• Lock-based code often enforces atomicity (or tries to)
• Building on lock types, can use Lipton’s theory of

movers to detect [non]atomicity in locking code
• atomic becomes a checked type annotation
• Detects StringBuffer race (but not deadlock)

• Support for an inherently difficult task
– the programming model remains tough

[Flanagan,Qadeer,Freund03-05]

Condition Variables

10 October 2005 Dan Grossman 64

• Idiom releasing/reacquiring a lock: Condition variable
lock m;
let rec loop () =
if e1 then e3
else (wait cv m; e2; loop())

in loop ();
unlock m;

• This almost works
let f() = if e1 then Some e3 else None
let rec loop x =
match x with
Some y -> y

| None -> wait’ cv;
loop(atomic(fun()-> e2; f()))

in loop(atomic f)

Condition Variables

10 October 2005 Dan Grossman 65

• This almost works
let f() = if e1 then Some e3 else None
let rec loop x =
match x with
Some y -> y

| None -> wait’ cv;
loop(atomic(fun()-> e2; f()))

in loop(atomic(fun()-> f()))

• Unsynchronized wait’ is a race:
we could miss the signal (notify)

• Solution: split wait’ into
– “start listening” (called in f(), returns a “channel”)
– “wait on channel” (yields unless/until the signal)

Condition Variables

10 October 2005 Dan Grossman 66

• This really works
type 'a attempt = Go of 'a

| Wait of channel
let f() = if e1

then Go e3
else Wait (listen cv)

let rec loop x =
match x with
Go y -> y

| Wait ch ->
wait’ ch; loop(atomic(fun()->e2;f()))

in loop(atomic f)

• Note: These condition variables are implemented in
AtomCaml on top of atomic
– (in 20 lines, including broadcast)

Condition variables

10 October 2005 Dan Grossman 67

type channel = bool ref
type condvar = channel list ref
let create () = ref []
let signal cv =

atomic(fun()->
match !cv with

[] -> ()
| hd::tl -> (cv := tl; hd := false))

let listen cv =
atomic(fun()->
let r = ref true in
cv := r :: !cv;
r)

let wait ch =
atomic(fun()->
if !ch then yield_r ch else ())

Example redux

10 October 2005 Dan Grossman 68

• Atomic code acquires lock(s)
for x and y (1 or 2 locks)

• Release locks on rollback or
completion

• Avoid deadlock automatically.
Possibilities:
– Rollback on lock-unavailable
– Scheduler detects deadlock,

initiates rollback

• Only 1 problem…

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

Cheap Profiling

10 October 2005 Dan Grossman 69

Can cheaply monitor the lock assignment
• Per shared object:

“my current lock”
• Per lock (i.e., objects ever used for locking):

“number of objects I lock”:
optional: “how much recent contention on me?”

• Also: atomic log of objects accessed

Revisit STMs

10 October 2005 Dan Grossman 70

• STMs or lock-based logging-rollback?
– It’s time to try out all the basics
– What would hybrids look like?
– Analogy: 1960s garbage-collectors

• STM advantage: more optimistic, …

• Locks advantage: spatial locality; less wasted
computation, …

	Strong Atomicity for Today's Programming Languages
	Atomic
	Target
	Overview
	Locks in high-level languages
	Common bugs
	Detecting locking errors
	Atomic
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	Overview
	A classic idea
	STMs
	
	HTMs
	Claim
	Overview
	Interleaved execution
	Implementing atomic
	Logging example
	Logging efficiency
	Duplicating code
	Representing closures/objects
	Representing closures/objects
	Representing closures/objects
	Representing closures/objects
	Qualitative evaluation
	Handling I/O
	Native mechanism
	Overview
	Prototype
	Critical sections
	Non-atomic locking
	Porting Planet
	Overview
	A multiprocessor approach
	Acquiring locks
	Releasing locks
	Optimizations
	What locks what?
	What locks what?
	What locks what?
	Locality
	Overview
	Summary
	An analogy
	Acknowledgments
	
	Condition variables: canonical use
	Atomic w.r.t. code holding m:
	Wrong approach #1
	Wrong approach #2
	Solution: listen!
	The interfaces
	
	Detecting concurrency errors
	Detecting concurrency errors
	Enforcing Atomicity
	Condition Variables
	Condition Variables
	Condition Variables
	Condition variables
	Example redux
	Cheap Profiling
	Revisit STMs

