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Some context…

• You’ve been learning beautiful math about 
the power of abstraction (e.g., soundness, 
theorems-for-free)

• I’ve been using quantified types to design 
Cyclone, a safe C-like language

• We both need to integrate mutable data very 
carefully



Getting burned…

From: Dan Grossman
Sent: Thursday, August 02, 2001 8:32 PM
To: Gregory Morrisett
Subject: Unsoundness Discovered!

In the spirit of recent worms and
viruses, please compile the 
code below and run it.  Yet another 
interesting combination 
of polymorphism, mutation, and aliasing.  
The best fix I can  think of for now is
…



Getting burned… decent company

From: Xavier Leroy
Sent: Tue, 30 Jul 2002 09:58:33 +0200 
To: John Prevost
Cc: Caml-list 
Subject: Re: [Caml-list] Serious 
typechecking error involving new 
polymorphism (crash)
…
Yes, this is a serious bug with 
polymorphic methods and fields. Expect a 
3.06 release as soon as it is fixed. 
…



The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity [Pierce]



Taming C

• Lack of memory safety means code cannot enforce 
modularity/abstractions:

void f(){ *((int*)0xBAD) = 123; }

• What might address 0xBAD hold?

• Memory safety is crucial for your favorite policy

No desire to compile programs like this



Safety violations rarely local

void g(void**x,void*y);

int  y = 0;
int *z = &y;
g(&z,0xBAD);
*z = 123;

• Might be safe, but not if g does *x=y

• Type of g enough for separate code generation

• Type of g not enough for separate safety checking



What to do?

• Stop using C
– YFHLL is usually a better choice

• Compile C more like Scheme
– type fields, size fields, live-pointer table, …
– fail-safe for legacy whole programs

• Static analysis
– very hard, less modular

• Restrict C
– not much left

A combination of techniques in a new language



Quantified types

• Must compensate for banning void*

• But represent data and access memory as in C
“If it looks like C, it acts like C”

• Type variables help a lot, but a bit different 
than in ML



“Change void* to alpha”

struct L {
void* hd;
struct L* tl;

};
typedef 
struct L* l_t;

l_t 
map(void* f(void*),

l_t);

l_t 
append(l_t,

l_t);

struct L<`a> {
`a hd;
struct L<`a>* tl;

};
typedef 
struct L<`a>* l_t<`a>;

l_t<`b>
map<`a,`b>(`b f(`a),

l_t<`a>);

l_t<`a>
append<`a>(l_t<`a>,      

l_t<`a>);



Not much new here
• struct Lst is a recursive type constructor:

L = λα. { α hd;   (L α) *  tl; }

• The functions are polymorphic:
map : ∀α, β. (α→β, L α) → (L β)

• Closer to C than ML
– less type inference allows first-class polymorphism 

and polymorphic recursion
– data representation restricts `a to pointers, int

(why not structs? why not float? why int?)

• Not C++ templates



Existential types

• Programs need a way for “call-back” types:
struct T {

int (*f)(int,void*);
void* env;

};

• We use an existential type (simplified): 
struct T { <`a>
int (*f)(int,`a);
`a env;

};

more C-level than baked-in closures/objects



Existential types cont’d

struct T { <`a>
int (*f)(int,`a);
`a env;

};

• `a is the witness type

• creation requires a 
“consistent witness”

• type is just struct T

• use requires an explicit “unpack” or “open”:

int apply(struct T pkg, int arg) {
let T{<`b> .f=fp, .env=ev} = pkg;
return fp(arg,ev);

}



The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity [Pierce]



Mutation

•e1=e2 means:
–Left-evaluate e1 to a location
–Right-evaluate e2 to a value
–Change the location to hold the value

• Type-checks if:
–e1 is a well-typed left-expression
–e2 is a well-typed right-expression
–They have the same type 

• A surprisingly good model…



Formalizing left vs. right



Polymorphic refs a la Cyclone

• Suppose NULL has type ∀α.(α*)
• e<> means “do not instantiate”

void f(int *p) {
(∀α.(α*)) x = NULL<>;
x<int> = p;
p  = *(x<int*>);
*p = 0xBAD;

}

• Note: NULL is never used



A closer look...
void f(int *p) {
(∀α.(α*)) x = NULL<>;
x<int> = p;
p  = *(x<int*>);
*p = 0xBAD;

}

• Locations x and p have contents’ type change
• p changes because x does not hold ∀α.(α*)
• x changes because x<int> has type int*
• But whoever said |–L e[τ]  !?!



One more time, slowly

• If e[τ] is a valid left-expression, then 
assignment changes the type of a location’s 
contents
– Heap-Type Preservation is false

• “Homework”: If e[τ] is not a valid left-
expression, the appropriate type system is 
sound

• Distinguishing left vs. right led us to a very
simple solution that addresses the problem 
directly



The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity (Pierce)



But first, Cyclone got “lucky”

• Hindsight is 20/20; here’s what we really did
• Restrict type syntax to “∀α.(τ → τ)”
• As in C, variables cannot have function types 

(only pointers to function types)
• So only functions have function types
• Functions are immutable (not left-

expressions)
• So e [τ] can type-check only if e is immutable

Sometimes fact is stranger than fiction



Now for ML

let x = ref None in
x := Some 3;
let (Some y):string = !x in
y ^ “crash”

• Conventional wisdom blames type inference 
for giving x the type ∀α.(α option ref)

• I blame the typing of references...



The references “ADT”

let x:(∀α...) = ref None in
x[int] := Some 3;
let (Some y):string = !(x[string]) in
y ^ “crash”

• The type-checker was told:
type α ref;
ref : ∀α. α → (α ref)
:=  : ∀α. (α ref) → α → unit
!   : ∀α. (α ref) → α

• Having masked left vs. right (for parsimony?), we 
cannot restrict where type instantiation is allowed



What if refs were special?

• It does not suffice to ban instantiation for the 
first argument of :=

let x:(∀α...) = ref None in
let z = x[int] in
z := Some 3;

• Conjecture: It does suffice to allow 
instantiation of polymorphic refs only under ! 
(i.e., !(e[τ]))

• ML does not have implicit dereference like 
Cyclone right-expressions



But refs aren’t special

• To prevent bad type instantiations, it suffices 
to ban polymorphic references

• So it suffices to ban all polymorphic 
expressions that aren’t values 
(ref is a function)

• This “value restriction” is easy to implement 
and is orthogonal to inference

Disclaimer: This justification of the value 
restriction is revisionism, but I like it.
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C Meets ∃

• Existential types in a  safe low-level language
– why (again)
– features (mutation, aliasing)

• The problem

• The solutions

• Some non-problems

• Related work



Low-level languages want ∃

• Major goal: expose data representation (no hidden 
fields, tags, environments, ...)

• Languages need data-hiding constructs
• Don’t provide closures/objects; give programmers a 

powerful type system

struct T { <`a>.
int (*f)(int,`a);

`a env;
};

C “call-backs” use void*; we use ∃



Normal ∃ feature: Construction

int add (int a, int   b) {return a+b; }
int addp(int a, char* b) {return a+*b;}
struct T x1 = T(add, 37);
struct T x2 = T(addp,"a");

• Compile-time: check for appropriate witness type
• Type is just struct T
• Run-time: create / initialize (no witness type)

struct T { <`a>.      
int (*f)(int,`a);
`a env;

};



Normal ∃ feature: Destruction
struct T { <`a>.      
int (*f)(int,`a);
`a env;

};

Destruction via pattern matching:

void apply(struct T x) {
let T{<`b> .f=fn, .env=ev} = x;
// ev : `b,  fn : int(*f)(int,`b)
fn(42,ev); 

}

Clients use the data without knowing the type



Low-level feature: Mutation

• Mutation, changing witness type

struct T fn1 = f();
struct T fn2 = g();
fn1 = fn2; // record-copy

• Orthogonality encourages this feature
• Useful for registering new call-backs without 

allocating new memory
• Now memory is not type-invariant!



Low-level feature: Address-of field

• Let client update fields of an existential package
– access only through pattern-matching
– variable pattern copies fields

• A reference pattern binds to the field’s address:

void apply2(struct T x) {
let T{<`b> .f=fn, .env=*ev} = x;
// ev : `b*,  fn : int(*f)(int,`b)
fn(42,*ev); 

}

C uses  &x.env; we use a reference pattern



More on reference patterns

• Orthogonality: already allowed in Cyclone’s 
other patterns (e.g., tagged-union fields)

• Can be useful for existential types:

struct Pr {<`a> `a fst; `a snd; };

void swap<`a>(`a* x, `a* y);

void swapPr(struct Pr pr) {
let Pr{<`b> .fst=*a, .snd=*b} = pr;
swap(a,b);

}



Summary of features

• struct definition can bind existential type 
variables

• construction, destruction traditional
• mutation via struct assignment
• reference patterns for aliasing

A nice adaptation to a “safe C” setting?



Explaining the problem

• Violation of type safety

• Two solutions (restrictions)

• Some non-problems



Oops!

struct T {<`a> void (*f)(int,`a); `a env;};

void ignore(int x, int  y) {}
void assign(int x, int* p) { *p = x; }

void g(int* ptr) {
struct T pkg1 = T(ignore, 0xBAD); //α=int
struct T pkg2 = T(assign, ptr);   //α=int*
let T{<`b> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xBAD

}



With pictures…

assignpkg1 pkg2ignore 0xABCD

let T{<`b> .f=fn, .env=*ev} = pkg2; //alias

assignpkg1 pkg2ignore 0xABCD

assignfn ev



With pictures…

assignpkg1 pkg2ignore 0xABCD

assignfn ev

pkg2 = pkg1; //mutation

pkg2 ignore 0xABCD

assign

pkg1 ignore 0xABCD

fn ev



With pictures…

pkg1 pkg2ignore 0xABCD ignore 0xABCD

assignfn ev

fn(37, *ev); //write 37 to 0xABCD

call assign with  0xABCD for  p:

void assign(int x, int* p) {*p = x;}



What happened?

let T{<`b> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xABCD

1. Type`b establishes a compile-time equality relating 
types of fn (void(*f)(int,`b)) and ev (`b*)

2. Mutation makes this equality false
3. Safety of call needs the equality

We must rule out this program…



Two solutions

• Solution #1:
Reference patterns do not match against fields of 
existential packages
Note: Other reference patterns still allowed
⇒ cannot create the type equality

• Solution #2:
Type of assignment cannot be an existential type (or 
have a field of existential type)

Note: pointers to existentials are no problem
⇒ restores memory type-invariance



Independent and easy

• Either solution is easy to implement

• They are independent: A language can have 
two styles of existential types, one for each 
restriction

• Cyclone takes solution #1 (no reference 
patterns for existential fields), making it a safe 
language without type-invariance of memory!



Are the solutions sufficient (correct)? 

• I defined a small formal language and proved 
type safety

• Highlights:
– Left vs. right distinction
– Both solutions
– C-style memory (flattened pairs)
– Memory invariant includes novel “if a 

reference pattern is for a location, then that 
location never changes type”



Nonproblem: Pointers to witnesses

struct T2 {<`a>
void (*f)(int, `a); 
`a* env;

};
…
let T2{<`b> .f=fn, .env=ev} = pkg2;
pkg2 = pkg1; 
…

pkg2 assign

assignfn ev



Nonproblem: Pointers to packages

struct T * p = &pkg1;
p = &pkg2;

assignpkg1 pkg2ignore 0xABCD

p

Aliases are fine.  
Aliases of pkg1 at the “unpacked type” are not.



Problem appears new

• Existential types:
– seminal use [Mitchell/Plotkin 1988]
– closure/object encodings [Bruce et al, Minimade et al, …]
– first-class types in Haskell [Läufer]
None incorporate mutation

• Safe low-level languages with ∃
– Typed Assembly Language [Morrisett et al]
– Xanadu [Xi], uses ∃ over ints
None have reference patterns or similar

• Linear types, e.g. Vault [DeLine, Fähndrich]
No aliases, destruction destroys the package



Duals?

• Two problems with α, mutation, and aliasing
• One used ∀, one used ∃

• So are they the same problem?
struct T pkg1=T(f1,0xBAD); 
struct T pkg2=T(f2,ptr); 
let T{<`b>.f=fn,

.env=*ev} =pkg2; 
pkg2 = pkg1; 
fn(37, *ev); 

(∀α.(α*)) x = NULL<>;
x<int> = p;
p  = *(x<int*>);
*p = 0xBAD;

• Conjecture: Similar, but not true duals

• Fact: Thinking dually hasn’t helped me



The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity [Pierce]



Parametricity is cool

• In the polymorphic lambda calculus, we get 
results so cool they have slogans
– “related arguments produce related results”
– “theorems for free”

• Do these results extend to Cyclone or ML?
– Is `a f(`a); the identity function?
– Is int f(`a); a constant function?
– Given int g(`a,int), does 
g(0,3)==g(“x”,3)?



Some easy counterexamples

• Is int f(`a); a constant function?
• No: 

int f(`a x){while(true) ; }
int f(`a x){throw new Failure(“!”);}
int f(`a x){return g++;/*global g*/}
int f(`a x){return getc(stdin);}

• ML has divergence, exceptions, free refs, and input.

• Okay, so if int f(`a); is a closed, terminating, 
function that doesn’t raise exceptions, is it a constant 
function?  With enough caveats, yes, the result does 
not depend on x.



Another example

• Given closed int g(`a* x,int* y), can the 
result of g(e1,e2) depend on e1?

• Hint: void f(int *p) { g<int>(p,p); }



Aliases break parametricity

int g(`a* x,int* y) {
*y = 0;
`a z = *x;
*y = 1;
*x = z;
return *y==0;

}
• Returns 1 iff x==y, so first argument does matter
• Sufficient to code up ad hoc polymorphism (given the 

right aliases, g can determine `a)
• Does not compromise safety
• Works in ML
• Works for any type with two distinguishable values



More observations

int g(`a* x,int* y) {
*y = 0;
`a z = *x;
*y = 1;
*x = z;
return *y==0;

}

• Relies on atomicity and semantics of assignment

• Can prevent by strengthening type system so callers 
must specify the type at which they pass references 
to g



Conclusions

If you see an α near an assignment statement:

• Do your homework
• Remain vigilant
• Do not expect parametricity
• Do not be afraid of C-level thinking

For related work, see Section 2.7 of my 
forthcoming dissertation (draft available)



[The presentation ends here.  Some auxiliary 
slides follow.]



Less obvious occurrences

struct T { <`i::I>
tag_t<`i> tag;
union U {
`i==1: int* p;
`i==2: int  x;
} u;

};

• Tagged unions (ML datatypes) are existentials

• If they’re mutable and you can alias their fields, the 
problem is identical



Cyclone in brief

A safe, convenient, and modern language
at the C level of abstraction

• Safe: memory safety, abstract types, no core dumps

• C-level: user-controlled data representation and 
resource management, easy interoperability, 
“manifest cost”

• Convenient: may need more type annotations, but 
work hard to avoid it

• Modern: add features to capture common idioms

“New code for legacy or inherently low-level systems”
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