
Playing With Fire:
Mutation and Quantified Types

CIS670, University of Pennsylvania
2 October 2002

Dan Grossman
Cornell University

Some context…

• You’ve been learning beautiful math about
the power of abstraction (e.g., soundness,
theorems-for-free)

• I’ve been using quantified types to design
Cyclone, a safe C-like language

• We both need to integrate mutable data very
carefully

Getting burned…

From: Dan Grossman
Sent: Thursday, August 02, 2001 8:32 PM
To: Gregory Morrisett
Subject: Unsoundness Discovered!

In the spirit of recent worms and
viruses, please compile the
code below and run it. Yet another
interesting combination
of polymorphism, mutation, and aliasing.
The best fix I can think of for now is
…

Getting burned… decent company

From: Xavier Leroy
Sent: Tue, 30 Jul 2002 09:58:33 +0200
To: John Prevost
Cc: Caml-list
Subject: Re: [Caml-list] Serious
typechecking error involving new
polymorphism (crash)
…
Yes, this is a serious bug with
polymorphic methods and fields. Expect a
3.06 release as soon as it is fixed.
…

The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity [Pierce]

Taming C

• Lack of memory safety means code cannot enforce
modularity/abstractions:

void f(){ *((int*)0xBAD) = 123; }

• What might address 0xBAD hold?

• Memory safety is crucial for your favorite policy

No desire to compile programs like this

Safety violations rarely local

void g(void**x,void*y);

int y = 0;
int *z = &y;
g(&z,0xBAD);
*z = 123;

• Might be safe, but not if g does *x=y

• Type of g enough for separate code generation

• Type of g not enough for separate safety checking

What to do?

• Stop using C
– YFHLL is usually a better choice

• Compile C more like Scheme
– type fields, size fields, live-pointer table, …
– fail-safe for legacy whole programs

• Static analysis
– very hard, less modular

• Restrict C
– not much left

A combination of techniques in a new language

Quantified types

• Must compensate for banning void*

• But represent data and access memory as in C
“If it looks like C, it acts like C”

• Type variables help a lot, but a bit different
than in ML

“Change void* to alpha”

struct L {
void* hd;
struct L* tl;

};
typedef
struct L* l_t;

l_t
map(void* f(void*),

l_t);

l_t
append(l_t,

l_t);

struct L<`a> {
`a hd;
struct L<`a>* tl;

};
typedef
struct L<`a>* l_t<`a>;

l_t<`b>
map<`a,`b>(`b f(`a),

l_t<`a>);

l_t<`a>
append<`a>(l_t<`a>,

l_t<`a>);

Not much new here
• struct Lst is a recursive type constructor:

L = λα. { α hd; (L α) * tl; }

• The functions are polymorphic:
map : ∀α, β. (α→β, L α) → (L β)

• Closer to C than ML
– less type inference allows first-class polymorphism

and polymorphic recursion
– data representation restricts `a to pointers, int

(why not structs? why not float? why int?)

• Not C++ templates

Existential types

• Programs need a way for “call-back” types:
struct T {

int (*f)(int,void*);
void* env;

};

• We use an existential type (simplified):
struct T { <`a>
int (*f)(int,`a);
`a env;

};

more C-level than baked-in closures/objects

Existential types cont’d

struct T { <`a>
int (*f)(int,`a);
`a env;

};

• `a is the witness type

• creation requires a
“consistent witness”

• type is just struct T

• use requires an explicit “unpack” or “open”:

int apply(struct T pkg, int arg) {
let T{<`b> .f=fp, .env=ev} = pkg;
return fp(arg,ev);

}

The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity [Pierce]

Mutation

•e1=e2 means:
–Left-evaluate e1 to a location
–Right-evaluate e2 to a value
–Change the location to hold the value

• Type-checks if:
–e1 is a well-typed left-expression
–e2 is a well-typed right-expression
–They have the same type

• A surprisingly good model…

Formalizing left vs. right

Polymorphic refs a la Cyclone

• Suppose NULL has type ∀α.(α*)
• e<> means “do not instantiate”

void f(int *p) {
(∀α.(α*)) x = NULL<>;
x<int> = p;
p = *(x<int*>);
*p = 0xBAD;

}

• Note: NULL is never used

A closer look...
void f(int *p) {
(∀α.(α*)) x = NULL<>;
x<int> = p;
p = *(x<int*>);
*p = 0xBAD;

}

• Locations x and p have contents’ type change
• p changes because x does not hold ∀α.(α*)
• x changes because x<int> has type int*
• But whoever said |–L e[τ] !?!

One more time, slowly

• If e[τ] is a valid left-expression, then
assignment changes the type of a location’s
contents
– Heap-Type Preservation is false

• “Homework”: If e[τ] is not a valid left-
expression, the appropriate type system is
sound

• Distinguishing left vs. right led us to a very
simple solution that addresses the problem
directly

The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity (Pierce)

But first, Cyclone got “lucky”

• Hindsight is 20/20; here’s what we really did
• Restrict type syntax to “∀α.(τ → τ)”
• As in C, variables cannot have function types

(only pointers to function types)
• So only functions have function types
• Functions are immutable (not left-

expressions)
• So e [τ] can type-check only if e is immutable

Sometimes fact is stranger than fiction

Now for ML

let x = ref None in
x := Some 3;
let (Some y):string = !x in
y ^ “crash”

• Conventional wisdom blames type inference
for giving x the type ∀α.(α option ref)

• I blame the typing of references...

The references “ADT”

let x:(∀α...) = ref None in
x[int] := Some 3;
let (Some y):string = !(x[string]) in
y ^ “crash”

• The type-checker was told:
type α ref;
ref : ∀α. α → (α ref)
:= : ∀α. (α ref) → α → unit
! : ∀α. (α ref) → α

• Having masked left vs. right (for parsimony?), we
cannot restrict where type instantiation is allowed

What if refs were special?

• It does not suffice to ban instantiation for the
first argument of :=

let x:(∀α...) = ref None in
let z = x[int] in
z := Some 3;

• Conjecture: It does suffice to allow
instantiation of polymorphic refs only under !
(i.e., !(e[τ]))

• ML does not have implicit dereference like
Cyclone right-expressions

But refs aren’t special

• To prevent bad type instantiations, it suffices
to ban polymorphic references

• So it suffices to ban all polymorphic
expressions that aren’t values
(ref is a function)

• This “value restriction” is easy to implement
and is orthogonal to inference

Disclaimer: This justification of the value
restriction is revisionism, but I like it.

The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity (Pierce)

C Meets ∃

• Existential types in a safe low-level language
– why (again)
– features (mutation, aliasing)

• The problem

• The solutions

• Some non-problems

• Related work

Low-level languages want ∃

• Major goal: expose data representation (no hidden
fields, tags, environments, ...)

• Languages need data-hiding constructs
• Don’t provide closures/objects; give programmers a

powerful type system

struct T { <`a>.
int (*f)(int,`a);

`a env;
};

C “call-backs” use void*; we use ∃

Normal ∃ feature: Construction

int add (int a, int b) {return a+b; }
int addp(int a, char* b) {return a+*b;}
struct T x1 = T(add, 37);
struct T x2 = T(addp,"a");

• Compile-time: check for appropriate witness type
• Type is just struct T
• Run-time: create / initialize (no witness type)

struct T { <`a>.
int (*f)(int,`a);
`a env;

};

Normal ∃ feature: Destruction
struct T { <`a>.
int (*f)(int,`a);
`a env;

};

Destruction via pattern matching:

void apply(struct T x) {
let T{<`b> .f=fn, .env=ev} = x;
// ev : `b, fn : int(*f)(int,`b)
fn(42,ev);

}

Clients use the data without knowing the type

Low-level feature: Mutation

• Mutation, changing witness type

struct T fn1 = f();
struct T fn2 = g();
fn1 = fn2; // record-copy

• Orthogonality encourages this feature
• Useful for registering new call-backs without

allocating new memory
• Now memory is not type-invariant!

Low-level feature: Address-of field

• Let client update fields of an existential package
– access only through pattern-matching
– variable pattern copies fields

• A reference pattern binds to the field’s address:

void apply2(struct T x) {
let T{<`b> .f=fn, .env=*ev} = x;
// ev : `b*, fn : int(*f)(int,`b)
fn(42,*ev);

}

C uses &x.env; we use a reference pattern

More on reference patterns

• Orthogonality: already allowed in Cyclone’s
other patterns (e.g., tagged-union fields)

• Can be useful for existential types:

struct Pr {<`a> `a fst; `a snd; };

void swap<`a>(`a* x, `a* y);

void swapPr(struct Pr pr) {
let Pr{<`b> .fst=*a, .snd=*b} = pr;
swap(a,b);

}

Summary of features

• struct definition can bind existential type
variables

• construction, destruction traditional
• mutation via struct assignment
• reference patterns for aliasing

A nice adaptation to a “safe C” setting?

Explaining the problem

• Violation of type safety

• Two solutions (restrictions)

• Some non-problems

Oops!

struct T {<`a> void (*f)(int,`a); `a env;};

void ignore(int x, int y) {}
void assign(int x, int* p) { *p = x; }

void g(int* ptr) {
struct T pkg1 = T(ignore, 0xBAD); //α=int
struct T pkg2 = T(assign, ptr); //α=int*
let T{<`b> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xBAD

}

With pictures…

assignpkg1 pkg2ignore 0xABCD

let T{<`b> .f=fn, .env=*ev} = pkg2; //alias

assignpkg1 pkg2ignore 0xABCD

assignfn ev

With pictures…

assignpkg1 pkg2ignore 0xABCD

assignfn ev

pkg2 = pkg1; //mutation

pkg2 ignore 0xABCD

assign

pkg1 ignore 0xABCD

fn ev

With pictures…

pkg1 pkg2ignore 0xABCD ignore 0xABCD

assignfn ev

fn(37, *ev); //write 37 to 0xABCD

call assign with 0xABCD for p:

void assign(int x, int* p) {*p = x;}

What happened?

let T{<`b> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xABCD

1. Type`b establishes a compile-time equality relating
types of fn (void(*f)(int,`b)) and ev (`b*)

2. Mutation makes this equality false
3. Safety of call needs the equality

We must rule out this program…

Two solutions

• Solution #1:
Reference patterns do not match against fields of
existential packages
Note: Other reference patterns still allowed
⇒ cannot create the type equality

• Solution #2:
Type of assignment cannot be an existential type (or
have a field of existential type)

Note: pointers to existentials are no problem
⇒ restores memory type-invariance

Independent and easy

• Either solution is easy to implement

• They are independent: A language can have
two styles of existential types, one for each
restriction

• Cyclone takes solution #1 (no reference
patterns for existential fields), making it a safe
language without type-invariance of memory!

Are the solutions sufficient (correct)?

• I defined a small formal language and proved
type safety

• Highlights:
– Left vs. right distinction
– Both solutions
– C-style memory (flattened pairs)
– Memory invariant includes novel “if a

reference pattern is for a location, then that
location never changes type”

Nonproblem: Pointers to witnesses

struct T2 {<`a>
void (*f)(int, `a);
`a* env;

};
…
let T2{<`b> .f=fn, .env=ev} = pkg2;
pkg2 = pkg1;
…

pkg2 assign

assignfn ev

Nonproblem: Pointers to packages

struct T * p = &pkg1;
p = &pkg2;

assignpkg1 pkg2ignore 0xABCD

p

Aliases are fine.
Aliases of pkg1 at the “unpacked type” are not.

Problem appears new

• Existential types:
– seminal use [Mitchell/Plotkin 1988]
– closure/object encodings [Bruce et al, Minimade et al, …]
– first-class types in Haskell [Läufer]
None incorporate mutation

• Safe low-level languages with ∃
– Typed Assembly Language [Morrisett et al]
– Xanadu [Xi], uses ∃ over ints
None have reference patterns or similar

• Linear types, e.g. Vault [DeLine, Fähndrich]
No aliases, destruction destroys the package

Duals?

• Two problems with α, mutation, and aliasing
• One used ∀, one used ∃

• So are they the same problem?
struct T pkg1=T(f1,0xBAD);
struct T pkg2=T(f2,ptr);
let T{<`b>.f=fn,

.env=*ev} =pkg2;
pkg2 = pkg1;
fn(37, *ev);

(∀α.(α*)) x = NULL<>;
x<int> = p;
p = *(x<int*>);
*p = 0xBAD;

• Conjecture: Similar, but not true duals

• Fact: Thinking dually hasn’t helped me

The plan…

• C meets α
– It’s not about syntax
– There’s much more to Cyclone

• Polymorphic references
– As seen from Cyclone (unusual view?)
– Applied to ML (solved since early 90s)

• Mutable existentials
– The original part
– April 2002

• Breaking parametricity [Pierce]

Parametricity is cool

• In the polymorphic lambda calculus, we get
results so cool they have slogans
– “related arguments produce related results”
– “theorems for free”

• Do these results extend to Cyclone or ML?
– Is `a f(`a); the identity function?
– Is int f(`a); a constant function?
– Given int g(`a,int), does
g(0,3)==g(“x”,3)?

Some easy counterexamples

• Is int f(`a); a constant function?
• No:

int f(`a x){while(true) ; }
int f(`a x){throw new Failure(“!”);}
int f(`a x){return g++;/*global g*/}
int f(`a x){return getc(stdin);}

• ML has divergence, exceptions, free refs, and input.

• Okay, so if int f(`a); is a closed, terminating,
function that doesn’t raise exceptions, is it a constant
function? With enough caveats, yes, the result does
not depend on x.

Another example

• Given closed int g(`a* x,int* y), can the
result of g(e1,e2) depend on e1?

• Hint: void f(int *p) { g<int>(p,p); }

Aliases break parametricity

int g(`a* x,int* y) {
*y = 0;
`a z = *x;
*y = 1;
*x = z;
return *y==0;

}
• Returns 1 iff x==y, so first argument does matter
• Sufficient to code up ad hoc polymorphism (given the

right aliases, g can determine `a)
• Does not compromise safety
• Works in ML
• Works for any type with two distinguishable values

More observations

int g(`a* x,int* y) {
*y = 0;
`a z = *x;
*y = 1;
*x = z;
return *y==0;

}

• Relies on atomicity and semantics of assignment

• Can prevent by strengthening type system so callers
must specify the type at which they pass references
to g

Conclusions

If you see an α near an assignment statement:

• Do your homework
• Remain vigilant
• Do not expect parametricity
• Do not be afraid of C-level thinking

For related work, see Section 2.7 of my
forthcoming dissertation (draft available)

[The presentation ends here. Some auxiliary
slides follow.]

Less obvious occurrences

struct T { <`i::I>
tag_t<`i> tag;
union U {
`i==1: int* p;
`i==2: int x;
} u;

};

• Tagged unions (ML datatypes) are existentials

• If they’re mutable and you can alias their fields, the
problem is identical

Cyclone in brief

A safe, convenient, and modern language
at the C level of abstraction

• Safe: memory safety, abstract types, no core dumps

• C-level: user-controlled data representation and
resource management, easy interoperability,
“manifest cost”

• Convenient: may need more type annotations, but
work hard to avoid it

• Modern: add features to capture common idioms

“New code for legacy or inherently low-level systems”

	Playing With Fire: Mutation and Quantified Types
	Some context…
	Getting burned…
	Getting burned… decent company
	The plan…
	Taming C
	Safety violations rarely local
	What to do?
	Quantified types
	“Change void* to alpha”
	Not much new here
	Existential types
	Existential types cont’d
	The plan…
	Mutation
	Formalizing left vs. right
	Polymorphic refs a la Cyclone
	A closer look...
	One more time, slowly
	The plan…
	But first, Cyclone got “lucky”
	Now for ML
	The references “ADT”
	What if refs were special?
	But refs aren’t special
	The plan…
	C Meets ?
	Low-level languages want ?
	Normal ? feature: Construction
	Normal ? feature: Destruction
	Low-level feature: Mutation
	Low-level feature: Address-of field
	More on reference patterns
	Summary of features
	Explaining the problem
	Oops!
	With pictures…
	With pictures…
	With pictures…
	What happened?
	Two solutions
	Independent and easy
	Are the solutions sufficient (correct)?
	Nonproblem: Pointers to witnesses
	Nonproblem: Pointers to packages
	Problem appears new
	Duals?
	The plan…
	Parametricity is cool
	Some easy counterexamples
	Another example
	Aliases break parametricity
	More observations
	Conclusions
	
	Less obvious occurrences
	Cyclone in brief

