Graduate Programming Languages:
Type Safety for STLC with Constants

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[e ::= c \mid \lambda x. \, e \mid x \mid e \, e \]
\[v ::= c \mid \lambda x. \, e \]
\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]
\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[e \rightarrow e' \]

\[
\frac{}{(\lambda x. \, e) \, v \rightarrow e[v/x]} \quad \frac{e_1 \rightarrow e'_1}{e_1 \, e_2 \rightarrow e'_1 \, e_2} \quad \frac{e_2 \rightarrow e'_2}{v \, e_2 \rightarrow v \, e'_2}
\]

Typing Rules (a.k.a. Static Semantics)

\[\Gamma \vdash e : \tau \]

\[
\frac{}{\text{T-Const}} \quad \frac{}{\text{T-Var}} \quad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \quad x \notin \text{Dom}(\Gamma)}{\Gamma \vdash \lambda x. \, e : \tau_1 \rightarrow \tau_2} \quad \frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \, e_2 : \tau_1}
\]

Type Soundness

Theorem (Type Soundness). If \(\cdot \vdash e : \tau \) and \(e \rightarrow^* e' \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow e'' \).
Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach \(e' \) from \(e \) establishes that \(\cdot \vdash e' : \tau \). Then the Progress Theorem ensures \(e' \) is a value or can step to some \(e'' \).

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If \(\cdot \vdash v : \tau \), then

i. If \(\tau \) is \(\text{int} \), then \(v \) is a constant, i.e., some \(c \).

ii. If \(\tau \) is \(\tau_1 \to \tau_2 \), then \(v \) is a lambda, i.e., \(\lambda x. e \) for some \(x \) and \(e \).

Canonical Forms. The proof is by inspection of the typing rules.

i. If \(\tau \) is \(\text{int} \), then the only rule which lets us give a value this type is T-Const.

ii. If \(\tau \) is \(\tau_1 \to \tau_2 \), then the only rule which lets us give a value this type is T-Fun.

Theorem (Progress). If \(\cdot \vdash e : \tau \), then either \(e \) is a value or there exists some \(e' \) such that \(e \to e' \).

Progress. The proof is by induction on (the height of) the derivation of \(\cdot \vdash e : \tau \), proceeding by cases on the bottommost rule used in the derivation.

- **T-Const** \(e \) is a constant, which is a value, so we are done.

- **T-Var** Impossible, as \(\Gamma \) is \(\cdot \).

- **T-Fun** \(e \) is \(\lambda x. e' \), which is a value, so we are done.

- **T-App** \(e \) is \(e_1 \) \(e_2 \).

 By inversion, \(\cdot \vdash e_1 : \tau' \to \tau \) and \(\cdot \vdash e_2 : \tau' \) for some \(\tau' \).

 If \(e_1 \) is not a value, then \(\cdot \vdash e_1 : \tau' \to \tau \) and the induction hypothesis ensures \(e_1 \to e'_1 \) for some \(e'_1 \). Therefore, by E-App1, \(e_1 \) \(e_2 \to e'_1 \) \(e_2 \).

 Else \(e_1 \) is a value. If \(e_2 \) is not a value, then \(\cdot \vdash e_2 : \tau' \) and our induction hypothesis ensures \(e_2 \to e'_2 \) for some \(e'_2 \). Therefore, by E-App2, \(e_1 \) \(e_2 \to e_1 \) \(e'_2 \).

 Else \(e_1 \) and \(e_2 \) are values. Then \(\cdot \vdash e_1 : \tau' \to \tau \) and the Canonical Forms Lemma ensures \(e_1 \) is some \(\lambda x. e' \). And \((\lambda x. e') \) \(e_2 \to e'[e_2/x] \) by E-Apply, so \(e_1 \) \(e_2 \) can take a step.

\[\square \]
We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where Γ is \cdot, but proving the Substitution Lemma itself requires the stronger induction hypothesis using any Γ.

Lemma (Substitution). If $\Gamma, x:\tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$, then $\Gamma \vdash e[e'/x] : \tau$.

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they're not that difficult).

Lemma (Weakening). If $\Gamma \vdash e : \tau$ and $x \notin \text{Dom}(\Gamma)$, then $\Gamma, x:\tau' \vdash e : \tau$.

Lemma (Exchange). If $\Gamma, x:\tau_1, y:\tau_2 \vdash e : \tau$ and $y \neq x$, then $\Gamma, y:\tau_2, x:\tau_1 \vdash e : \tau$.

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of $\Gamma, x:\tau' \vdash e : \tau$. There are four cases. In all cases, we know $\Gamma \vdash e' : \tau'$ by assumption.

T-Const e is c, so $e[e'/x]$ is c. By **T-Const**, $\Gamma \vdash c : \text{int}$.

T-Var e is y and $\Gamma, x:\tau' \vdash y : \tau$.

If $y \neq x$, then $y[e'/x]$ is y. By inversion on the typing rule, we know that $(\Gamma, x:\tau')(y) = \tau$. Since $y \neq x$, we know that $\Gamma(y) = \tau$. So by **T-Var**, $\Gamma \vdash y : \tau$.

If $y = x$, then $y[e'/x]$ is e'. $\Gamma, x:\tau' \vdash x : \tau$, so by inversion, $(\Gamma, x:\tau')(x) = \tau$, so $\tau = \tau'$.

We know $\Gamma \vdash e' : \tau'$, which is exactly what we need.

T-App e is $e_1 e_2$, so $e[e'/x]$ is $(e_1[e'/x])(e_2[e'/x])$.

We know $\Gamma, x:\tau' \vdash e_1 e_2 : \tau_1$, so, by inversion on the typing rule, we know $\Gamma, x:\tau' \vdash e_1 : \tau_2 \rightarrow \tau_1$ and $\Gamma, x:\tau' \vdash e_2 : \tau_2$ for some τ_2.

Therefore, by induction, $\Gamma \vdash e_1[e'/x] : \tau_2 \rightarrow \tau_1$ and $\Gamma \vdash e_2[e'/x] : \tau_2$.

Given these, **T-App** lets us derive $\Gamma \vdash (e_1[e'/x])(e_2[e'/x]) : \tau_1$.

So by the definition of substitution $\Gamma \vdash (e_1 e_2)[e'/x] : \tau_1$.

T-Fun e is $\lambda y. e_b$, so $e[e'/x]$ is $\lambda y. (e_b[e'/x])$.

We can α-convert $\lambda y. e_b$ to ensure $y \notin \text{Dom}(\Gamma)$ and $y \neq x$.

We know $\Gamma, x:\tau' \vdash \lambda y. e_b : \tau_1 \rightarrow \tau_2$, so, by inversion on the typing rule, we know $\Gamma, x:\tau', y:\tau_1 \vdash e_b : \tau_2$.

By Exchange, we know that $\Gamma, y:\tau_1, x:\tau' \vdash e_b : \tau_2$.

By Weakening, we know that $\Gamma, y:\tau_1 \vdash e' : \tau'$.

We have rearranged the two typing judgments so that our induction hypothesis applies (using $\Gamma, y:\tau_1$ for the typing context called Γ in the statement of the lemma), so, by induction, $\Gamma, y:\tau_1 \vdash e_b[e'/x] : \tau_2$.

Given this, **T-Fun** lets us derive $\Gamma \vdash \lambda y. e_b[e'/x] : \tau_1 \rightarrow \tau_2$.

So by the definition of substitution, $\Gamma \vdash (\lambda y. e_b)[e'/x] : \tau_1 \rightarrow \tau_2$.

3
Theorem (Preservation). If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \).

Preservation. The proof is by induction on the derivation of \(\cdot \vdash e : \tau \). There are four cases.

T-Const \(e \) is \(c \). This case is impossible, as there is no \(e' \) such that \(c \rightarrow e' \).

T-Var \(e \) is \(x \). This case is impossible, as \(x \) cannot be typechecked under the empty context.

T-Fun \(e \) is \(\lambda x. e_b \). This case is impossible, as there is no \(e' \) such that \(\lambda x. e_b \rightarrow e' \).

T-App \(e \) is \(e_1 e_2 \), so \(\cdot \vdash e_1 e_2 : \tau \).

By inversion on the typing rule, \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \) and \(\cdot \vdash e_2 : \tau_2 \) for some \(\tau_2 \).

There are three possible rules for deriving \(e_1 e_2 \rightarrow e' \).

E-App1 Then \(e' = e'_1 e_2 \) and \(e_1 \rightarrow e'_1 \).

By \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), \(e_1 \rightarrow e'_1 \), and induction, \(\cdot \vdash e'_1 : \tau_2 \rightarrow \tau \).

Using this and \(\cdot \vdash e_2 : \tau_2 \), T-App lets us derive \(\cdot \vdash e'_1 e_2 : \tau \).

E-App2 Then \(e' = e_1 e'_2 \) and \(e_2 \rightarrow e'_2 \).

By \(\cdot \vdash e_2 : \tau_2 \), \(e_2 \rightarrow e'_2 \), and induction \(\cdot \vdash e'_2 : \tau_2 \).

Using this and \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), T-App lets us derive \(\cdot \vdash e_1 e'_2 : \tau \).

E-Apply Then \(e_1 \) is \(\lambda x. e_b \) for some \(x \) and \(e_b \), and \(e' = e_b[e_2/x] \).

By inversion of the typing of \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), we have \(\cdot, x : \tau_2 \vdash e_b : \tau \).

This and \(\cdot \vdash e_2 : \tau_2 \) lets us use the Substitution Lemma to conclude \(\cdot \vdash e_b[e_2/x] : \tau \).