Finally, some formal PL content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

"A program is a statement \(s\), which is defined as follows"

\[
s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ } s \mid \text{while } e\ s
\]

\[
e ::= c \mid x \mid e + e \mid e \times e
\]

\[
(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\})
\]

\[
(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \})
\]

▶ Blue is metanotation: ::= for “can be a” and | for “or”

▶ Metavariables represent “anything in the syntax class”

▶ By abstract syntax, we mean that this defines a set of trees
 ▶ Node has some label for “which alternative”
 ▶ Children are more abstract syntax (subtrees) from the appropriate syntax class

Examples

\[
s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ } s \mid \text{while } e\ s
\]

\[
e ::= c \mid x \mid e + e \mid e \times e
\]

\[
\begin{align*}
\text{if} & \quad x \text{ skip} ; \\
\text{if} & \quad x \text{ skip} := \\
& \quad \text{skip} \quad \text{Skip} \\
& \quad x \quad x y \\
& \quad y 42 x y
\end{align*}
\]

Comparison to ML

\[
\begin{align*}
type \ exp & = \text{Const of int} \mid \text{Var of string} \\
& \mid \text{Add of exp * exp} \mid \text{Mult of exp * exp}
\end{align*}
\]

\[
\begin{align*}
type \ stmt & = \text{Skip} \mid \text{Assign of string * exp} \mid \text{Seq of stmt * stmt} \\
& \mid \text{If of exp * stmt * stmt} \mid \text{While of exp * stmt}
\end{align*}
\]

\[
\text{If}(\text{Var}("x"),\text{Skip},\text{Seq}(\text{Assign}("y",\text{Const 42}),\text{Assign}("x",\text{Var }"y")))
\]

\[
\text{Seq}(\text{If}(\text{Var}("x"),\text{Skip,Assign}("y",\text{Const 42}),\text{Assign}("x",\text{Var }"y")))
\]

Very similar to trees built with ML datatypes

▶ ML needs “extra nodes” for, e.g., “\(e\) can be a \(c\)”

▶ Also pretending ML’s int is an integer

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: if \(x\) \(\text{skip} \ y := 42 \ ; x := y\)

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

▶ Trees are our “truth” with strings as a “convenient notation”

if \(x\) \(\text{skip} \ (y := 42 \ ; x := y)\) versus \(\text{if } x \text{ skip } (y := 42) \ ; x := y\)
Last word on concrete syntax

Converting a string into a tree is parsing

Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design

- Always trivial if you require enough parentheses or keywords
- Extreme case: LISP, 1960s; Scheme, 1970s
- Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean

Inductive definition

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
 e &::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

This grammar is a finite description of an infinite set of trees

- The apparent self-reference is not a problem, provided the definition uses well-founded induction
 - Just like an always-terminating recursive function uses self-reference but is not a circular definition!
- Can give precise meaning to our metanotation & avoid circularity:
 - Let \(E_0 = \emptyset \)
 - For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2, \) or \(e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)”
 - Let \(E = \bigcup_{i \geq 0} E_i \)
 - The set \(E \) is what we mean by our compact metanotation

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

| Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...
| PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.

| Pedantic proof: By induction on \(i \), for all \(e \in E_i \), \(e \) has \(\geq 1 \) constant or variable.
| Base: \(i = 0 \) implies \(E_0 = \emptyset \)
| Inductive: \(i > 0 \). Consider arbitrary \(e \in E_i \) by cases:
 | \(e \in E_{i-1} \) ...
 | \(e = c \) ...
 | \(e = x \) ...
 | \(e = e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)...
 | \(e = e_1 + e_2 \) where \(e_1, e_2 \in E_{i-1} \)...

Our Second Theorem

All expressions have at least one constant or variable.
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an expression) \(e \). Cases:

- \(c \ldots \)
- \(x \ldots \)
- \(e_1 + e_2 \ldots \)
- \(e_1 \ast e_2 \ldots \)

Structural induction invokes the induction hypothesis on smaller terms. It is equivalent to the pedantic proof, and more convenient in PL.