Where we are

- Done: OCaml tutorial, "IMP" syntax, structural induction
- Now: Operational semantics for our little "IMP" language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)

Outline

- Semantics for expressions
 1. Informal idea; the need for heaps
 2. Definition of heaps
 3. The evaluation judgment (a relation form)
 4. The evaluation inference rules (the relation definition)
 5. Using inference rules
 - Derivation trees as interpreters
 - Or as proofs about expressions
 6. Metatheory: Proofs about the semantics
- Then semantics for statements
- ...

Heaps

\[H ::= \cdot \mid H, x \mapsto c \]

A lookup-function for heaps:

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}
\]

- Last case avoids "errors" (makes function total)

“What heap to use” will arise in the semantics of statements
- For expression evaluation, “we are given an H”

Review

IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
 s & ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ } s \mid \text{while } e \text{ } s \\
 e & ::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

\(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}\) \(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\}\)

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow

Informal idea

Given \(e\), what \(c\) does \(e\) evaluate to?

\[
1 + 2 \quad x + 2
\]

It depends on the values of variables (of course)

Use a heap \(H\) for a total function from variables to constants

- Could use partial functions, but then \(\exists \ H\) and \(e\) for which there is no \(c\)

We’ll define a relation over triples of \(H, e,\) and \(c\)

- Will turn out to be function if we view \(H\) and \(e\) as inputs and \(c\) as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)
The judgment

We will write: \[H \ell c \]

to mean, "\(e \) evaluates to \(c \) under heap \(H \)"

It is just a relation on triples of the form \((H, e, c)\)

We just made up metasyntax \(H \ell c \) to follow PL convention
and to distinguish it from other relations

We can write:\[\ell x \rightarrow 3 ; x + y \rightarrow 3, \]

which will turn out to be true
(this triple will be in the relation we define)

Or: \[\ell x \rightarrow 3 ; x + y \rightarrow 6, \]

which will turn out to be false
(this triple will not be in the relation we define)

Instantiating rules

Example instantiation:

\[
\begin{align*}
\ell y \rightarrow 4 & ; 3 + y \rightarrow 7 \quad \ell y \rightarrow 4 & ; 5 \rightarrow 5 \\
\ell y \rightarrow 4 & ; (3 + y) + 5 \rightarrow 12
\end{align*}
\]

Instantiates:

\[
\begin{align*}
\text{ADD} & \quad H : e_1 \ell c_1, \quad H : e_2 \ell c_2 \\
& \quad H : e_1 + e_2 \ell c_1 + c_2
\end{align*}
\]

with

\[
\begin{align*}
H &= \ell y \rightarrow 4 \\
e_1 &= (3 + y) \\
c_1 &= 7 \\
e_2 &= 5 \\
c_2 &= 5
\end{align*}
\]

Back to relations

So what relation do our inference rules define?

- Start with empty relation (no triples) \(R_0 \)
- Let \(R_i \) be \(R_{i-1} \) union all \(H : e \ell c \) such that we can instantiate some inference rule to have conclusion \(H : e \ell c \) and all hypotheses in \(R_{i-1} \)
 - So \(R_i \) is all triples at the bottom of height-\(j \) complete derivations for \(j \leq i \)
- \(R_\infty \) is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: \(R_\infty \) is the smallest relation closed under the inference rules

Derivations

A \textit{(complete) derivation} is a tree of instantiations with \textit{axioms} at the leaves

Example:

\[
\begin{align*}
\ell y \rightarrow 4 & ; 3 \leftrightarrow 3 \quad \ell y \rightarrow 4 & ; y \rightarrow 4 \\
\ell y \rightarrow 4 & ; 3 + y \rightarrow 7 & \ell y \rightarrow 4 & ; 5 \rightarrow 5 \\
\ell y \rightarrow 4 & ; (3 + y) + 5 \rightarrow 12
\end{align*}
\]

By definition, \(H : e \ell c \) if there exists a derivation with \(H : e \ell c \) at the root

What are these things?

We can view the inference rules as defining an \textit{interpreter}

- Complete derivation shows recursive calls to the "evaluate expression" function
 - Recursive calls from conclusion to hypotheses
 - Syntax-directed means the interpreter need not "search"
- See OCaml code in Homework 1

Or we can view the inference rules as defining a \textit{proof system}

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions
Some theorems

- Progress: For all \(H \) and \(e \), there exists a \(c \) such that
 \[H ; e \downarrow c \]
- Determinacy: For all \(H \) and \(e \), there is at most one \(c \) such that
 \[H ; e \downarrow c \]

We rigged it that way…

What would division, undefined-variables, or `gettime()` do?

Proofs are by induction on the the structure (i.e., height) of the expression \(e \)

On to statements

A statement does not produce a constant

It produces a new, possibly-different heap.

- If it terminates

We could define \(H_1 ; s \downarrow H_2 \)

- Would be a partial function from \(H_1 \) and \(s \) to \(H_2 \)
- Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

\[
H_1 ; s_1 \rightarrow H_2 ; s_2
\]

Statement semantics

\[
H_1 ; s_1 \rightarrow H_2 ; s_2
\]

ASSIGN

\[
H ; e \downarrow c
\]

\[
H ; x := e \rightarrow H ; x := c ; \text{skip}
\]

SEQ1

\[
H ; \text{skip} ; s \rightarrow H ; s
\]

SEQ2

\[
H ; s_1 \rightarrow H' ; s_1'
\]

\[
H ; s_1 ; s_2 \rightarrow H' ; s_1' ; s_2
\]

IF1

\[
H ; e \downarrow c ; c > 0
\]

\[
H ; \text{if } s_1 s_2 \rightarrow H ; s_1
\]

IF2

\[
H ; e \downarrow c ; c < 0
\]

\[
H ; \text{if } s_1 s_2 \rightarrow H ; s_2
\]

Program semantics

Defined \(H ; s \rightarrow H' ; s' \), but what does “\(s \)” mean/do?

Our machine iterates: \(H_1 ; s_1 \rightarrow H_2 ; s_2 \rightarrow H_3 ; s_3 \ldots \),
with each step justified by a complete derivation using our single-step statement semantics

Let \(H_1 ; s_1 \rightarrow^n H_2 ; s_2 \) mean “becomes after \(n \) steps”

Let \(H_1 ; s_1 \rightarrow^* H_2 ; s_2 \) mean “becomes after 0 or more steps”

Pick a special “answer” variable \(\text{ans} \)

The program \(s \) produces \(c \) if \(\cdot ; s \rightarrow^* H ; \text{skip} \) and \(H(\text{ans}) = c \)

Does every \(s \) produce a \(c \)?

Example program execution

\[
x := 3; (y := 1; \text{while } x (y := y * x; x := x - 1))
\]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y * x; x := x - 1) \).

\[
\cdot ; x := 3; y := 1; \text{while } x s
\]

\[
\rightarrow \cdot ; x := 3; \text{skip}; y := 1; \text{while } x s
\]

\[
\rightarrow \cdot ; x := 3; y := 1; \text{while } x s
\]

\[
\rightarrow 2 \cdot ; x := 3; y := 1; \text{while } x s
\]

\[
\rightarrow \cdot ; x := 3; y := 1; \text{if } x (s; \text{while } x s) \text{ skip}
\]

\[
\rightarrow \cdot ; x := 3; y := 1; x := y * x; x := x - 1; \text{while } x s
\]
Continued...

\[\rightarrow^2 \; \cdots, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x - 1; \text{while } x \; s \]
\[\rightarrow^2 \; \cdots, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \text{while } x \; s \]
\[\rightarrow \; \cdots, y \mapsto 3, x \mapsto 2; \text{if } x (s; \text{while } x \; s) \text{ skip} \]
\[\cdots \]
\[\rightarrow \; \cdots, y \mapsto 6, x \mapsto 0; \text{skip} \]

Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding 0.

We can prove a program diverges, i.e., for all \(H \) and \(n \),
\[\cdots; s \rightarrow^n \; H \; \text{skip} \] cannot be derived.

Example: \text{while } 1 \; \text{skip}.

By induction on \(n \), but requires a stronger induction hypothesis.

Where we are

Defined \(H \; e \downarrow c \) and \(H \; s \rightarrow H' \; s' \) and extended the latter to give \(s \) a meaning.

- The way we did expressions is “large-step operational semantics”
- The way we did statements is “small-step operational semantics”
- So now you have seen both.

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means.

- Interpreter represents a (very) abstract machine that runs code.

Large-step does not distinguish errors and divergence.
- But we defined IMP to have no errors.
- And expressions never diverge.

More General Proofs

We can prove properties of executing all programs (satisfying another property).

Example: If \(H \) and \(s \) have no negative constants and
\[H \; s \rightarrow^* \; H' \; s' \], then \(H' \) and \(s' \) have no negative constants.

Example: If for all \(H \), we know \(s_1 \) and \(s_2 \) terminate, then for all \(H \), we know \(H; (s_1; s_2) \) terminates.