Outline

Done:
• How to use **fork** and **join** to write a parallel algorithm
• Why using divide-and-conquer with lots of small tasks is best
 – Combines results in parallel
• Some Java and ForkJoin Framework specifics
 – More pragmatics (e.g., installation) in separate notes

Now:
• More examples of simple parallel programs
• Arrays & balanced trees support parallelism better than linked lists
• Asymptotic analysis for fork-join parallelism
• Amdahl’s Law
What else looks like this?

- Saw summing an array went from $O(n)$ sequential to $O(\log n)$ parallel \(\text{(assuming a lot of processors and very large } n!\text{)}\)
 - Exponential speed-up in theory \(\left(n / \log n \right.\text{ grows exponentially)}\)

 ![Diagram showing parallel computing](Image)

- Anything that can use results from two halves and merge them in $O(1)$ time has the same property…

Sophomoric Parallelism and Concurrency, Lecture 2
Examples

• Maximum or minimum element
• Is there an element satisfying some property (e.g., is there a 17)?
• Left-most element satisfying some property (e.g., first 17)
 – What should the recursive tasks return?
 – How should we merge the results?
• Corners of a rectangle containing all points (a “bounding box”)
• Counts, for example, number of strings that start with a vowel
 – This is just summing with a different base case
 – Many problems are!
Reductions

• Computations of this form are called reductions (or reduces?)

• Produce single answer from collection via an associative operator
 – Examples: max, count, leftmost, rightmost, sum, product, …
 – Non-examples: median, subtraction, exponentiation

• (Recursive) results don’t have to be single numbers or strings. They can be arrays or objects with multiple fields.
 – Example: Histogram of test results is a variant of sum

• But some things are inherently sequential
 – How we process \(\text{arr}[i] \) may depend entirely on the result of processing \(\text{arr}[i-1] \)
Even easier: Maps (Data Parallelism)

- A map operates on each element of a collection independently to create a new collection of the same size
 - No combining results
 - For arrays, this is so trivial some hardware has direct support

- Canonical example: Vector addition

```java
int[] vector_add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
    result = new int[arr1.length];
    FORALL (i=0; i < arr1.length; i++) {
        result[i] = arr1[i] + arr2[i];
    }
    return result;
}
```
Maps in ForkJoin Framework

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ ... }
 protected void compute(){
 if(hi - lo < SEQUENTIAL_CUTOFF) {
 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
 VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
 left.fork();
 right.compute();
 left.join();
 }
 }
}
int[] add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 ForkJoinPool.commonPool().invoke //needs Java 8+
 (new VecAdd(0,arr.length,ans,arr1,arr2);
 return ans;
}
Maps and reductions

Maps and reductions: the “workhorses” of parallel programming

- By far the two most important and common patterns
 - Two more-advanced patterns in next lecture

- Learn to recognize when an algorithm can be written in terms of maps and reductions

- Use maps and reductions to describe (parallel) algorithms

- Programming them becomes “trivial” with a little practice
 - Exactly like sequential for-loops seem second-nature
Digression: MapReduce on clusters

- You may have heard of Google’s “map/reduce”
 - Or the open-source version Hadoop

- Idea: Perform maps/reduces on data using many machines
 - The system takes care of distributing the data and managing fault tolerance
 - You just write code to map one element and reduce elements to a combined result

- Separates how to do recursive divide-and-conquer from what computation to perform
 - Old idea in higher-order functional programming transferred to large-scale distributed computing
 - Complementary approach to declarative queries for databases
Trees

• Maps and reductions work just fine on balanced trees
 – Divide-and-conquer each child rather than array subranges
 – Correct for unbalanced trees, but won’t get much speed-up

• Example: minimum element in an unsorted but balanced binary tree in $O(\log n)$ time given enough processors

• How to do the sequential cut-off?
 – Store number-of-descendants at each node (easy to maintain)
 – Or could approximate it with, e.g., AVL-tree height
Linked lists

• Can you parallelize maps or reduces over linked lists?
 – Example: Increment all elements of a linked list
 – Example: Sum all elements of a linked list
 – Parallelism still beneficial for expensive per-element operations

• Once again, data structures matter!

• For parallelism, balanced trees generally better than lists so that we can get to all the data exponentially faster $O(\log n)$ vs. $O(n)$
 – Trees have the same flexibility as lists compared to arrays
Analyzing algorithms

• Like all algorithms, parallel algorithms should be:
 – Correct
 – Efficient

• For our algorithms so far, correctness is “obvious” so we’ll focus on efficiency
 – Want asymptotic bounds
 – Want to analyze the algorithm without regard to a specific number of processors
 – The key “magic” of the ForkJoin Framework is getting expected run-time performance asymptotically optimal for the available number of processors
 • So we can analyze algorithms assuming this guarantee
Work and Span

Let T_P be the running time if there are P processors available.

Two key measures of run-time:

- **Work**: How long it would take 1 processor = T_1
 - Just “sequentialize” the recursive forking

- **Span**: How long it would take infinity processors = T_∞
 - The longest dependence-chain
 - Example: $O(\log n)$ for summing an array
 - Notice having $> n/2$ processors is no additional help
 - Also called “critical path length” or “computational depth”
The DAG

- A program execution using `fork` and `join` can be seen as a DAG
 - Nodes: Pieces of work
 - Edges: Source must finish before destination starts

- A `fork` “ends a node” and makes two outgoing edges
 - New thread
 - Continuation of current thread

- A `join` “ends a node” and makes a node with two incoming edges
 - Node just ended
 - Last node of thread joined on
Our simple examples

- **fork** and **join** are very flexible, but divide-and-conquer maps and reductions use them in a very basic way:
 - A tree on top of an upside-down tree
More interesting DAGs?

• The DAGs are not always this simple

• Example:
 – Suppose combining two results might be expensive enough that we want to parallelize each one
 – Then each node in the inverted tree on the previous slide would itself expand into another set of nodes for that parallel computation
Connecting to performance

- Recall: $T_P =$ running time if there are P processors available

- Work = $T_1 =$ sum of run-time of all nodes in the DAG
 - That lonely processor does everything
 - Any topological sort is a legal execution
 - $O(n)$ for simple maps and reductions

- Span = $T_\infty =$ sum of run-time of all nodes on the most-expensive path in the DAG
 - Note: costs are on the nodes not the edges
 - Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
 - $O(\log n)$ for simple maps and reductions
Definitions

A couple more terms:

- **Speed-up** on P processors: T_1 / T_P

- If speed-up is P as we vary P, we call it **perfect linear speed-up**
 - Perfect linear speed-up means doubling P halves running time
 - Usually our goal; hard to get in practice

- **Parallelism** is the maximum possible speed-up: T_1 / T_∞
 - At some point, adding processors won’t help
 - What that point is depends on the span

Parallel algorithms is about decreasing span without increasing work too much
Optimal T_P: Thanks ForkJoin library!

- So we know T_1 and T_∞ but we want T_P (e.g., $P=4$)

- Ignoring memory-hierarchy issues (caching), T_P can’t beat
 - T_1 / P why not?
 - T_∞ why not?

- So an asymptotically optimal execution would be:
 \[
 T_P = O\left(\frac{T_1}{P} + T_\infty\right)
 \]
 - First term dominates for small P, second for large P

- The ForkJoin Framework gives an expected-time guarantee of asymptotically optimal!
 - Expected time because it flips coins when scheduling
 - How? For an advanced course (few need to know)
 - Guarantee requires a few assumptions about your code…
Division of responsibility

• Our job as ForkJoin Framework users:
 – Pick a good algorithm, write a program
 – When run, program creates a DAG of things to do
 – *Make all the nodes a small-ish and approximately equal amount of work*

• The framework-writer’s job:
 – Assign work to available processors to avoid *idling*
 • Let framework-user ignore all *scheduling* issues
 – Keep constant factors low
 – Give the *expected-time optimal guarantee* assuming framework-user did his/her job

\[T_P = O\left(\frac{T_1}{P} + T_\infty\right) \]
Examples

\[T_P = O((T_1 / P) + T_\infty) \]

- In the algorithms seen so far (e.g., sum an array):
 - \(T_1 = O(n) \)
 - \(T_\infty = O(\log n) \)
 - So expect (ignoring overheads): \(T_P = O(n/P + \log n) \)

- Suppose instead:
 - \(T_1 = O(n^2) \)
 - \(T_\infty = O(n) \)
 - So expect (ignoring overheads): \(T_P = O(n^2/P + n) \)
Amdahl’s Law (mostly bad news)

• So far: analyze parallel programs in terms of work and span

• In practice, typically have parts of programs that parallelize well…
 – Such as maps/reductions over arrays and trees

 …and parts that don’t parallelize at all

 – Such as reading a linked list, getting input, doing computations where each needs the previous step, etc.

 “Nine women can’t make a baby in one month”
Amdahl’s Law (mostly bad news)

Let the \textit{work} (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: \[T_1 = S + (1-S) = 1 \]

Suppose we get perfect linear speedup \textit{on the parallel portion}

Then: \[T_P = S + (1-S)/P \]

So the overall speedup with P processors is (Amdahl’s Law):

\[\frac{T_1}{T_P} = 1 / (S + (1-S)/P) \]

And the parallelism (infinite processors) is:

\[\frac{T_1}{T_\infty} = 1 / S \]
Why such bad news

\[
\frac{T_1}{T_P} = \frac{1}{S + \frac{(1-S)}{P}} \quad \quad \quad \frac{T_1}{T_\infty} = \frac{1}{S}
\]

- Suppose 33% of a program’s execution is sequential
 - Then a billion processors won’t give a speedup over 3

- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - For 256 processors to get at least 100x speedup, we need
 \[
 100 \leq \frac{1}{S + \frac{(1-S)}{256}}
 \]
 Which means \(S \leq 0.0061 \) (i.e., 99.4% perfectly parallelizable)
Plots you have to see

1. Assume 256 processors
 - x-axis: sequential portion S, ranging from .01 to .25
 - y-axis: speedup T_1 / T_P (will go down as S increases)

2. Assume $S = .01$ or .1 or .25 (three separate lines)
 - x-axis: number of processors P, ranging from 2 to 32
 - y-axis: speedup T_1 / T_P (will go up as P increases)

Do this as a homework problem!
 - Chance to use a spreadsheet or other graphing program
 - Compare against your intuition
 - A picture is worth 1000 words, especially if you made it
All is not lost

Amdahl’s Law is a bummer!
 – Unparallelized parts become a bottleneck very quickly
 – But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms
 – Some things that seem sequential are actually parallelizable

• We can change the problem or do new things
 – Example: Video games use tons of parallel processors
 • They are not rendering 10-year-old graphics faster
 • They are rendering more beautiful(?) monsters
Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the semiconductor industry
 – Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem
 – Diminishing returns of adding more processors

• Both are incredibly important in designing computer systems