
SIGCSE Workshop 19, March 11, 2011
Multithreading Pretty Early for Everyone

Exercises

Parallelism and The Fork-Join Framework

I recommend starting with the first two exercises. You are unlikely to have time to code up more during the
workshop, but you could skip ahead or sketch the ideas for the more challenging exercises (next page).

1. Use a parallel reduction to compute the leftmost String that starts with an ’S’ in a String[]

(or null if there is none).

Details: In WorkshopReductions.java complete the class LeftmostStartsWith definition that starts
on line 76. The code template immediately above this in the file will be extremely useful. Running
ReductionUtils.main will test your code; a correct solution will produce:

Testing Reductions

Test LeftmostStartsWith

test1 SUCH0

test2 S

test3 null

test4 Salamander

test5 Swan

2. Use a parallel map to update a String[] such that every entry containing a string starting
with ’S’ is replaced with "[redacted]".

Details: In WorkshopMaps.java complete the class RedactSWords definition that starts on line 74. The
code template immediately above this in the file will be extremely useful. Running MapUtils.main will test
your code; a correct solution will produce:

Testing Maps

Test RedactSWords

test1 redacted 38 words

test2 redacted 3865 words

test3 redacted 0 words

test4 redacted 1 words

test5 redacted 2 words

1



The remaining ForkJoin exercises are similar, with 3–5 using WorkshopReductions.java and 6 using
WorkshopMaps.java. To test your solutions, uncomment appropriate lines in ReductionUtils.main or
MapUtils.main. The correct test output for all exercises is posted at:
www.cs.washington.edu/homes/djg/teachingMaterials/grossmanSPAC sigcse workshop 2011/reductionResults.txt

www.cs.washington.edu/homes/djg/teachingMaterials/grossmanSPAC sigcse workshop 2011/mapResults.txt

3. Use a parallel reduction to compute the index of the leftmost String that starts with an ’S’

in a String[] (or -1 if there is none). (Use class LeftmostStartsWithIndex.)

4. Use a parallel reduction to compute the second leftmost String that starts with an ’S’ in a
String[] (or null if there is none). (Use class SecondLeftmost.)

5. Use a parallel reduction to compute the kth leftmost String that starts with an ’S’ in a
String[] (or null if there is none). k is passed as a parameter and you can assume it is fairly
small. (Use class KthLeftmost.)

6. Use a parallel map to write a generic string-replacement algorithm: Take in a Changer

object (defined in WorkshopMaps.java) and apply its m method to every element of a String[],
replacing each String with the result of the call to m. (Use class Redact.)

2



Concurrency

Consider this code skeleton (as on the slides), which has no data races.

class Stack<E> {

... // private state used by isEmpty, push, pop

synchronized boolean isEmpty() { ... }

synchronized void push(E val) { ... }

synchronized E pop() {

if(isEmpty())

throw new StackEmptyException();

...

}

E peek() { // this is wrong

E ans = pop();

push(ans);

return ans;

}

}

1. Show an interleaving where:

• Thread 1 executes (the statements in) peek

• Thread 2 does two pushes then a pop

• The result of the pop is not the most recently pushed value

2. Show an interleaving where:

• Two threads both execute (the statements in) peek

• One thread throws an exception indicating the stack is empty

• (Also describe the state of the stack before these operations that leads to an exception.)

3. (More Challenging?) Argue that N threads executing simultaneous peek operations could leave the N
shallowest elements on the stack in any order.

3



4. (Unrelated to stacks) Why is this code skeleton wrong? Assume f and g are called by different threads.

class C {

boolean stop = false;

boolean done = false;

Result bestSoFar = ... ;

void f() {

while(!stop) {

... // keep iteratively improving a result

bestSoFar = ... ;

}

done = true;

}

Result g() {

while(!didUserAskToStop()) { /* spin */ }

stop = true;

while(!done) { /* spin */ }

return bestSoFar;

}

}

4


