
Sample Exam Problems For the Material in “A Sophomoric Introduction to
Shared-Memory Parallelism and Concurrency”

Solution:
Solutions Included

For more information, see http://www.cs.washington.edu/homes/djg/teachingMaterials.

1

Name:

1. In Java using the ForkJoin Framework, write code to solve the following problem:

• Input: A String[]

• Output: A Pair of (a) the number of words starting with the letter ’c’ and (b) the length of the
longest word starting with the letter ’c’. (If no words start with ’c’, the length is irrelevant.)

Your solution should have O(n) work and O(log n) span where n is the array length. Do not employ
a sequential cut-off: the base case should process one String.

We have provided some of the code for you. You only need to provide one class definition:

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

class Pair {

int count;

int longest;

Pair(int c, int l) { count = c; longest = l; }

}

class Main{

static final ForkJoinPool fjPool = new ForkJoinPool();

Pair processCWords(String[] array) {

return fjPool.invoke(new ProcessCWords(array,0,array.length));

}

}

Solution:

class ProcessCWords extends RecursiveTask<Pair> {

String[] arr;

int lo;

int hi;

ProcessCWords(String[] a, int l, int h) { arr=a; lo=l; hi=h; }

public Pair compute() {

if(hi==lo+1) {

if(arr[lo].charAt(0)==’c’)

return new Pair(1,arr[lo].length());

else

return new Pair(0,0); // length < any word starting with ’c’

} else {

ProcessCWords left = new ProcessCWords(arr,lo,(hi+lo)/2);

ProcessCWords right = new ProcessCWords(arr,(hi+lo)/2,hi);

left.fork();

Pair ans1 = right.compute();

Pair ans2 = left.join();

return new Pair(ans1.count+ans2.count,

Math.max(ans1.longest,ans2.longest));

}

}

}

2

It’s also fine to mutate one Pair from a subproblem and return it. The code above will throw an
exception if the array contains empty strings. We didn’t take off for not noticing this, but we did give
+0.5 for explicitly checking this case, without allowing more than a total of 10 points for the problem.

3

Name:

2. You are at a summer internship working on a program that currently takes 10 minutes to run on a
4-processor machine. Half the execution time (5 minutes) is spent running sequential code on one
processor and the other half is spent running parallel code on all 4 processors. Assume the parallel
code enjoys perfectly linear speedup for any number of processors.

Note/hint/warning: This does not mean half the work is sequential. Half the running time is spent
on sequential code.

Your manager has a budget of $6,000 to speed up the program. She figures that is enough money to
do only one of the following:

• Buy a 16-processor machine.

• Hire a graduate of this course to parallelize more of the program under the highly dubious as-
sumptions that:

– Doing so introduces no additional overhead

– Afterwards, there will be 1 minute of sequential work to do and the rest will enjoy perfect
linear speedup.

Which approach will produce a faster program? Show your calculations, including the total work done
by the program and the expected running time for both approaches.

Solution:
This is an application of Amdahl’s Law. Let S be the running time for the sequential portion, L be
the running time for the parallel portion on 1 processor and P be the number of processors. Then
Tp = S +L/P . Initially TP is 10 minutes, S is 5 minutes and P = 4, which means L is 20 minutes. So
the total work is 20+5=25 minutes.

Therefore, T16 = 5 + 20/16 is 6.25 minutes and that’s the “buy a 16-processor” option.

Under the “hire an intern” option S becomes 1 and L becomes 24 minutes. So the total time is 1+24/4
which is 7 minutes.

So the better choice is to buy the computer — apologies to those of you hoping for the job.

4

Name:

3. In Java using the ForkJoin Framework, write code to solve the following problem:

• Input: An int[] (though the element type happens to be irrelevant)

• Output: A new int[] where the elements are in the reverse order. For example, the element in
the last array index of the input will be at index 0 in the output.

Your solution should have O(n) work and O(log n) span where n is the array length. Do not employ
a sequential cut-off: the base case should process one array element.

We have provided some of the code for you.

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveAction;

public class Main {

static final ForkJoinPool fjPool = new ForkJoinPool();

static int[] reverse(int[] array) {

// ADD A LINE HERE

fjPool.invoke(new Reverse(answer,array,0,array.length)); // DO NOT CHANGE

// ADD A LINE HERE

}

}

// DEFINE A CLASS HERE

Solution:

static int[] reverse(int[] array) {

int [] answer = new int[array.length];

fjPool.invoke(new Reverse(answer,array,0,array.length));

return answer;

}

class Reverse extends RecursiveAction {

int[] out;

int[] in;

int lo;

int hi;

Reverse(int[] o, int[] i, int l, int h) {

out = o; in = i; lo = l; hi = h;

}

public void compute() {

if(hi==lo+1) {

out[in.length-lo-1] = in[lo];

} else {

Reverse left = new Reverse(out,in,lo,(hi+lo)/2);

Reverse right = new Reverse(out,in,(hi+lo)/2,hi);

left.fork();

right.compute();

left.join();

}

}

}

5

Name:

4. Suppose a program uses your solution to the previous problem to reverse an array containing 227

elements.

(a) In English, about how big is 227? For example, “one thousand” is an answer in the right form,
but is the wrong answer.

(b) When the program executes, how many fork-join threads will your solution to the previous problem
create? Give both an exact answer and an approximate English answer.

(c) Suppose you modify your solution to use a sequential cut-off of 1000. When this modified pro-
gram executes, how many fork-join threads will it create? Give both an exact answer and an
approximate English answer.

Solution:

(a) one hundred million (or one hundred twenty-eight million)

(b) 227, one hundred million (If your answer to the previous question calls right.fork instead of
right.compute, then the answer is 228 − 1, which is about two hundred fifty (six) million.)

(c) 218, two hundred fifty (six) thousand (Note a very common mistake is answer twice as small,
diving by 210 instead of 29. Since 1000 is a bit less than 210, the code will solve problems of size
512 sequentially. This “off by 2x” error is a fairly minor error.)

6

Name:

5. In class we learned an algorithm for parallel prefix sum with O(n) work and O(log n) span. In this
problem, you will develop similar algorithms for parallel suffix sum, where element i of the output
array holds the sum of the elements in indices greater than or equal to i in the input.

(a) Describe in English or high-level pseudocode a two-pass algorithm to solve the parallel suffix sum
problem. Assume the reader is familiar with the parallel prefix sum problem, so for any parts
that are exactly the same, you can just say they are the same. Any parts that are different need
a full explanation.

(b) Suppose you needed an implementation of parallel suffix sum, but you already had available a
library for parallel prefix sum. Describe an easier-to-implement algorithm for parallel suffix sum
that uses parallel prefix sum and one or more other algorithms as subroutines while maintaining
O(n) work and O(log n) span.

Solution:

(a) Use an “up pass” and a “down pass” just like for parallel prefix. The “up pass” is identical,
creating a binary tree with the sum for a range of the array at each node. For the “down pass”
we pass a “fromRight” argument to each node. For the root, this value is 0. An internal node
passes this value to its children as follows: The right child gets the same fromRight value and the
left child gets the sum of the same fromRight value and the stored sum at the right child. At the
leaf for range [lo,hi+1) (a one-element range), the fromRight value is the output for index lo.

(b) Use three steps. First, reverse the array using your solution to problem 4. Second, perform
parallel prefix sum on this array. Third, reverse the output of the second step and use this as the
result. Each step is O(n) work and O(log n) span, so the overall asymptotic work and span is the
same.

There is an alternate unanticipated solution for which we gave full credit if explained well: First
do parallel prefix sum. Now perform a parallel map over the result where we take the total sum
of the array and subtract from it the value in the array from the prefix sum (and then add back
the value in the original input to produce an inclusive suffix sum). Note the total sum can be
computed via its own reduce operation or just as the rightmost value from the prefix sum. Also
note that for the map step, we can produce an inclusive sum by subtracting just the item one to
the left (with a special case for index 0).

7

Name:

6. (a) Suppose we have an algorithm for finding the second-smallest element in a binary search tree.
The code is somewhat complicated to account for all possible tree shapes, but it always descends
to the correct node without making any modifications to the tree. Suppose the code is in a method
secondSmallestMidterm. Would it be correct for two threads to execute secondSmallestMidterm
concurrently? Explain briefly.

(b) Here is a simpler algorithm for finding the second smallest element in a binary search tree in terms
of some other operations:

synchronized E deleteMin() { ... }

synchronized E findMin() { ... }

synchronized void insert(E x) { ... }

E secondSmallestFinal() {

E min = this.deleteMin();

E ans = this.findMin();

this.insert(min);

return ans;

}

Notice deleteMin, findMin, and insert are synchronized methods.

i. Suppose two threads call secondSmallestFinal concurrently. Demonstrate how one of them
can get the wrong answer.

ii. Does the code above have any data races? Explain briefly.

iii. What is the easiest way to fix secondSmallestFinal?

Solution:

(a) Yes, secondSmallestMidterm does no writes to shared memory, so multiple concurrent executions
would not interfere. (Interleaving with other tree operations like insert would be a problem, but
that is not the question here.)

(b) i. If thread 1 deletes the minimum element and then thread 2 runs secondSmallestFinal, it
will actually get the 3rd smallest element (or raise an exception if there were only 2 elements
to begin with).

ii. No, there is never unsynchronized access to the same field by two threads because all field
access is by synchronized helper methods.

iii. Make it synchronized as well.

8

Name:

7. You are designing a new social-networking site to take over the world. To handle all the volume you
expect, you want to support multiple threads with a fine-grained locking strategy in which each user’s
profile is protected with a different lock. At the core of your system is this simple class definition:

class UserProfile {

static int id_counter;

int id; // unique for each account

int[] friends = new int[9999]; // horrible style

int numFriends;

Image[] embarrassingPhotos = new Image[9999];

UserProfile() { // constructor for new profiles

id = id_counter++;

numFriends = 0;

}

synchronized void makeFriends(UserProfile newFriend) {

synchronized(newFriend) {

if(numFriends == friends.length

|| newFriend.numFriends == newFriend.friends.length)

throw new TooManyFriendsException();

friends[numFriends++] = newFriend.id;

newFriend.friends[newFriend.numFriends++] = id;

}

}

synchronized void removeFriend(UserProfile frenemy) {

...

}

}

(a) The constructor has a concurrency error. What is it and how would you fix it? A short English
answer is enough – no code or details required.

(b) The makeFriends method has a concurrency error. What is it and how would you fix it? A short
English answer is enough – no code or details required.

(c) Rather than throwing an exception in makeFriends if an array is full, give two alternatives.
Describe them only at a high level – a sentence or two is enough – without getting into any code
details. One alternative should be easy and have nothing to do with concurrency. The other
should involve concurrency.

Solution:

(a) There is a data race on id_counter. Two accounts could get the same id if they are created
simultaneously by different threads. Or even stranger things could happen. You could synchronize
on a lock for id_counter or mark id_counter volatile.

(b) There is a potential deadlock if there are two objects obj1 and obj2 and one thread calls
obj1.makeFriends(obj2) when another thread calls obj2.makeFriends(obj1). The fix is to
acquire locks in a consistent order based on the id fields, which are unique.

(c) First, you could resize the array. Second, you could use condition variables to wait until there is
room in the array and have removeFriend call notifyAll.

9

Note from instructor, not necessary for the exam: Getting this right is rather difficult
since you need room in both arrays but it would be inefficient and deadlock-prone to wait on one
object while still holding the lock for the other. Something like this pseudocode should work:

while(true) {

synchronized(acct1) { if(acct1.friends is full) acct1.wait(); }

synchronized(acct2) { if(acct2.friends is full) acct2.wait(); }

synchronized(acct1) {

synchronized(acct2) {

if(acct1.friends is full || acct2.friends is full) continue;

... add to arrays ...

break;

}

}

10

Name:

8. Answer “always” or “sometimes” or “never” for each of the following.

(a) A program with data races also has bad interleavings.

(b) A program with bad interleavings also has data races.

(c) A program that correctly uses consistent locking (all thread-shared data is associated with a lock
that is always held when accessing the data) has data races.

(d) A program that correctly uses consistent locking (all thread-shared data is associated with a lock
that is always held when accessing the data) has bad interleavings.

(e) Java’s synchronized statement will block if the thread executing it already holds the lock that
is being acquired.

(f) This code snippet using a condition variable foo is a bug: if(someCondition()) foo.wait().

Solution:

(a) Sometimes

(b) Sometimes

(c) Never

(d) Sometimes

(e) Never

(f) Always

11

Name:

9. Consider an adjacency-list representation of an undirected graph where if edge (u, v) is in the graph
then v is in u’s adjacency list and u is in v’s adjacency list. (This supports efficient operations for “find
all nodes adjacent to a given node.”) Suppose we wish to support multiple threads accessing the graph
concurrently such that every thread always sees a consistent state of the graph. Further suppose we
use a locking strategy where each adjacency list uses a different reentrant lock (one lock for the whole
adjacency list).

(a) This pseudocode for deleting an edge from the graph — and doing nothing if the edge is not already
present — has a concurrency error. Write down an interleaving that exhibits a concurrency error
and describe what happens when the interleaving occurs. Assume array holds the adjacency
lists, vertices are represented by ints, and contains and delete are methods on lists (the latter
throwing an exception if the item is not present).

void deleteEdge(int u, int v) {

synchronized(array[u]) {

if(!array[u].contains(v))

return;

}

synchronized(array[u]) { array[u].delete(v); }

synchronized(array[v]) { array[v].delete(u); }

}

(b) This pseudocode also has a concurrency error. Repeat the previous problem with this code:

void deleteEdge(int u, int v) {

synchronized(array[u]) {

synchronized(array[v]) {

if(!array[u].contains(v))

return;

array[u].delete(v);

array[v].delete(u);

}

}

}

(c) Write a correct version of deleteEdge in the same style as the broken versions above. For
simplicity, you can assume no other operations modify the graph (or that they are written using
the same approach as your method).

Solution:
See next page.

12

Name:

(a) (Other answers are possible.) Here a bad interleaving causes an exception because we try to
remove an edge that has already been removed. The exception occurs when Thread 1 does
array[u].delete(v).

Thread 1 (deleteEdge(u,v)) Thread 2 (deleteEdge(u,v))

------------------------- --------------------------

synchronized(array[u]) {

if(!array[u].contains(v))

return;

}

all of deleteEdge(u,v)

synchronized(array[u]) {

array[u].delete(v);

}

(b) Here a bad interleaving causes a deadlock, so neither thread will run again and no other threads
can get the two locks for these adjacency lists.

Thread 1 (deleteEdge(u,v)) Thread 2 (deleteEdge(v,u))

------------------------- --------------------------

synchronized(array[u]) { synchronized(array[v]) {

synchronized(array[v]) { // blocks synchronized(array[u]) { // blocks

(c) void deleteEdge(int u, int v) {

int a = u < v ? u : v;

int b = u > v ? u : v;

synchronized(array[a]) {

synchronized(array[b]) {

if(!array[a].contains(b))

return;

array[a].delete(b);

array[b].delete(a);

}

}

}

13

