Some Homework Problems For the Material in “A Sophomoric Introduction
to Shared-Memory Parallelism and Concurrency”

For more information, see http://www.cs.washington.edu/homes/djg/teachingMaterials.

Problem 1. Fork-Join Parallelism: Longest Series

Consider the problem of finding the longest sequence of some number in an array of numbers:
longest_sequence(i,arr) returns the longest number of consecutive i in arr. For example, if
arris{2,17,17,8,17,17,17,0,17,1} then longest_sequence (17,arr) is 3 and longest_sequence(9,arr)
is 0.

(a) In pseudocode, give a parallel fork-join algorithm for implementing longest_sequence. Your algorithm
should have work O(n) and span O(log n) where n is the length of the array. Do not employ a sequential
cut-off: your base case should process an array range containing one element. Hint: Use this definition:

class Result {
int numLeftEdge;
int numRightEdge;
int numLongest;
boolean entireRange;
Result(int 1, int r, int m, boolean a) {
numLeftEdge=1; numRightEdge=r; numlLongest=m; entireRange=a;
}
}

For example, numLeftEdge should represent the length of the sequence at the beginning of the range
processed by a subproblem. Think carefully about how to combine results.

(b) In English, describe how you would make your answer to part (a) more efficient by using a sequential
cut-off. In pseudocode, show the code you would use below this cut-off.

Problem 2. Fork-Join Parallelism: Leftmost Occurrence of Substring

Consider the problem of finding the leftmost occurrence of the sequence of characters cseRox in an array of
characters, returning the index of the leftmost occurrence or -1 if there is none. For example, the answer
for the sequence cseRhellocseRoxmomcseRox is 9.

(a) In English (though some high-level pseudocode will probably help), describe a fork-join algorithm
similar in design to your solution in problem 1. Use a sequential cut-off of at least 6 (the length of
cseRox) and explain why this significantly simplifies your solution. Notice you still must deal with the
leftmost occurrence being “split” across two recursive subproblems.

(b) Give a much simpler fork-join solution to the problem that avoids the possibility of a “split” by using
slightly overlapping subproblems. Assume a larger sequential cut-off, for example 100. Give your
solution precisely in pseudocode. Avoid off-by-one errors.

Problem 3. Amdahl’s Law: Graphing the Pain

Use a graphing program such as a spreadsheet to plot the following implications of Amdahl’s Law. Turn in
the graphs and tables with the data.

(a) Consider the speed-up (T1/Tp) where P = 256 of a program with sequential portion S where the
portion 1 — S enjoys perfect linear speed-up. Plot the speed-up as S ranges from .01 (1% sequential)
to .25 (25% sequential).

(b) Consider again the speed-up of a program with sequential portion S where the portion 1 — S enjoys
perfect linear speed-up. This time, hold S constant and vary the number of processors P from 2 to 32.
On the same graph, show three curves, one each for S = .01, S = .1, and S = .25.

Problem 4. Parallel Prefix and Pack

In this problem, the input is an array of strings and the output is an array of integers. The output has the
length of each string in the input, but empty strings are filtered out. For example:

llhomeworkll s nn , Il7l| s nn]

[n ll’ Illl, "CSG", n

I.()}(ll , nn

produces output:
(3, 3,8, 1]

A parallel algorithm can solve this problem in O(logn) span and O(n) work by doing a parallel map to
produce a bit vector, followed by a parallel prefix over the bit vector, followed by a parallel map to produce
the output.

Show the intermediate steps for the algorithm described above on the example above. For each step, show
the tree of recursive task objects that would be created (where a node’s child is for two problems of half
the size) and the fields each node needs. Do not use a sequential cut-off. Show three separate trees (for the
three steps). Explain briefly what each field represents.

Note that because the input length is not a power of two, the tree will not have all its leaves at exactly the
same height.

Problem 5. Parallel Quicksort

Lecture presented a parallel version of quicksort with best-case O(log2 n) span and O(nlogn) work. This
algorithm used parallelism for the two recursive sorting calls and the partition.

(a) For the algorithm from lecture, what is the asymptotic worst-case span and work. Justify your answer.

(b) Suppose we use the parallel partition part of the algorithm, but perform the two recursive calls in
sequence rather than in parallel.

i. What is the asymptotic best-case span and work? Justify your answer.

ii. What is the asymptotic worst-case span and work? Justify your answer.

Problem 6. Another Wrong Bank Account
Note: The purpose of this problem is to show you something you should not do because it does not work.

Consider this pseudocode for a bank account supporting concurrent access:

class BankAccount {

private int balance = 0;

private Lock 1k = new Lock();

int getBalance() {
lk.acquire();
int ans = balance;
lk.release();
return ans;

}

void setBalance(int x) {
lk.acquire();
balance = x;
lk.release();

}

void withdraw(int amount) {
lk.acquire();
int b = getBalance();
if (amount > b) {

lk.release();
throw new WithdrawTooLargeException();

}
setBalance(b - amount);
lk.release();

3

}

The code above is wrong if locks are not re-entrant. Consider the absolutely horrible idea of “fixing” this
problem by rewriting the withdraw method to be:

void withdraw(int amount) {
lk.acquire();
lk.release();
int b = getBalance();
lk.acquire();
if (amount > b) {
lk.release();
throw new WithdrawToolLargeException();
}
lk.release();
setBalance(b - amount);
lk.acquire();
lk.release();
}

(a) Explain how this approach prevents blocking forever unlike the original code.

(b) Show this approach is incorrect by giving an interleaving of two threads in which a withdrawal is
forgotten.

Problem 7. Concurrent Queue with Two Stacks

Consider this Java implementation of a queue with two stacks. We do not show the entire stack implemen-
tation, but assume it is correct. Notice the stack has synchronized methods but the queue does not. The
queue is incorrect in a concurrent setting.

class Stack<E> { class Queue<E> {
... Stack<E> in = new Stack<E>();
synchronized boolean isEmpty() { ... } Stack<E> out = new Stack<E>();
synchronized E pop() { ... } void enqueue(E x){ in.push(x); }
synchronized void push(E x) { ... } E dequeue() {

} if (out.isEmpty()) {

while(!in.isEmpty()) {
out.push(in.pop());
}
}
return out.popQ);
}
+

(a) Show the queue is incorrect by showing an interleaving that meets the following criteria:
i. Only one thread ever performs enqueue operations and that thread enqueues numbers in increas-
ing order (1, 2, 3, ...).

ii. There is a thread that performs two dequeue operations such that its first dequeue returns a
number larger than its second dequeue, which should never happen.

iii. Every dequeue succeeds (the queue is never empty).
Your solution can use 1 or more additional threads that perform dequeue operations.

(b) A simple fix would make enqueue and dequeue synchronized methods. Explain why this would never
allow an enqueue and dequeue to happen at the same time.

(¢) To allow an enqueue and a dequeue to operate on a queue at the same time (at least when out is not
empty), we could try either of the approaches below for dequeue. For each, show an interleaving that
demonstrates the approach is broken. Your interleaving should satisfy the three properties listed in

part (a).
E dequeue() { E dequeue() {
synchronized(out) { synchronized(in) {
if (out.isEmpty () { if (out.isEmpty () {
while('in.isEmpty()) { while('in.isEmpty()) {
out.push(in.pop()); out.push(in.pop());
} }
} }
return out.pop(); }
} return out.pop();
} }

(d) Provide a solution, based on two stacks as above, that correctly allows an enqueue and a dequeue to
happen at the same time, at least when out is not empty. Your solution should define dequeue and
involve multiple locks.

Problem 8. Simple Concurrency with B-Trees

Note: Real databases and file systems use very fancy fine-grained synchronization for B-Trees such as
“hand-over-hand locking” (which we did not discuss), but this problem considers some relatively simpler
approaches.

Suppose we have a B Tree supporting operations insert and lookup. A simple way to synchronize threads
accessing the tree would be to have one lock for the entire tree that both operations acquire/release.

(a) Suppose instead we have one lock per node in the tree. Each operation acquires the locks along the
path to the leaf it needs and then at the end releases all these locks. Explain why this allegedly more
fine-grained approach provides absolutely no benefit.

(b) Now suppose we have one readers/writer lock per node and lookup acquires a read lock for each node
it encounters whereas insert acquires a write lock for each node it encounters. How does this provide
more concurrent access than the approach in part (a)? Is it any better than having one readers/writer
lock for the whole tree (explain)?

(¢) Now suppose we modify the approach in part (b) so that insert acquires a write lock only for the leaf
node (and read locks for other nodes it encounters). How would this approach increase concurrent
access? When would this be incorrect? FExplain how to fix this approach without changing the
asymptotic complexity of insert by detecting when it is incorrect and in (only) those cases, starting
the insert over using the approach in part (b) for that insert. Why would reverting to the approach
in part (b) be fairly rare?

Problem 9. Concurrent/Parallel Graph Traversal

(a) In Java or pseudocode, define an unbounded stack with operations push and pop that can be used
by threads concurrently. Make the element type generic and use a linked list for the underlying
implementation. A pop should not raise an error. Instead it should wait until the stack is not empty.
Use a condition variable. (Java detail: The wait method throws an exception that Java requires you
catch, but it doesn’t matter if you include this detail in your solution.)

(b) The method traverseFrom in the code below uses your answer to part (a) to apply the doIt method
to every node reachable from some node in a graph. The order doIt is applied to nodes does not
matter. The code uses 4 threads to try to improve performance. All you need to do is write the run
method (probably around 10 lines) for GraphWalker using the other code. Requirements:

e No node should have doIt applied to it more than once. You can assume the visited field of

each node is initially false for this purpose.

e Use the stack to hold nodes that still need to be processed. That way threads not busy completing

a doIt call can find useful work.

e Avoid all synchronization errors. (Hint: Your code does not need any explicit synchronization
since it can call other code that already performs synchronization.)

e Because doIt may be expensive, do not hold any locks while calling it.

Note that after all reachable nodes have been processed, all threads will be blocked forever waiting for
the stack to become non-empty. That is fine for a homework problem. Also note that you may or may

not find isVisited helpful.

class GraphNode {

}

boolean visited = false;
GraphNode [] neighbors;
// ... other fields, constructor,
// etc. omitted ...
synchronized boolean isVisited() {
return visited;
}
synchronized boolean wasAndSetVisited(){
boolean ans = visited;
visited = true;
return ans;

3

10

class GraphWalker extends java.lang.Thread {
Stack<GraphNode> stk;
GraphWalker (Stack<GraphNode> s) {
stk = s;
}
void doIt(GraphNode n) {/*...x/}

// ... FOR YOU ...

}
class Main {
public static final int NUM_THREADS = 4;
void traverseFrom(GraphNode root) {
Stack<GraphNode> stk =
new Stack<GraphNode>();
stk.push(root);
for(int i = 0; i < NUM_THREADS; i++)
new GraphWalker (stk).start();

