A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency

Lecture 3
Parallel Prefix, Pack, and Sorting

Dan Grossman

Last Updated: November 2012
For more information, see http://www.cs.washington.edu/homes/djg/teachingMaterials/
Outline

Done:
- Simple ways to use parallelism for counting, summing, finding
- Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible
- **Parallel prefix:**
 - This “key trick” typically underlies surprising parallelization
 - Enables other things like packs
- **Parallel sorting:** quicksort (not in place) and mergesort
 - Easy to get a little parallelism
 - With cleverness can get a lot
The prefix-sum problem

Given `int[] input`, produce `int[] output` where `output[i]` is the sum of `input[0]+input[1]+...+input[i]`

Sequential can be a CS1 exam problem:

```java
int[] prefix_sum(int[] input){
    int[] output = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```

Does not seem parallelizable

- Work: $O(n)$, Span: $O(n)$
- This algorithm is sequential, but a different algorithm has
 Work: $O(n)$, Span: $O(\log n)$
Parallel prefix-sum

- The parallel-prefix algorithm does two passes
 - Each pass has $O(n)$ work and $O(\log n)$ span
 - So in total there is $O(n)$ work and $O(\log n)$ span
 - So like with array summing, parallelism is $n/\log n$
 - An exponential speedup

- First pass builds a tree bottom-up: the “up” pass

- Second pass traverses the tree top-down: the “down” pass

Historical note:
 - Original algorithm due to R. Ladner and M. Fischer at the University of Washington in 1977
Example

Range: 0,8
Sum: 76

Range: 0,4
Sum: 36

Range: 4,8
Sum: 40

Range: 0,2
Sum: 10

Range: 2,4
Sum: 26

Range: 4,6
Sum: 30

Range: 6,8
Sum: 10

Input:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>16</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Output:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomoric Parallelism and Concurrency, Lecture 3
Example

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>52</td>
</tr>
<tr>
<td>14</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
</tr>
</tbody>
</table>

Sophomoric Parallelism and Concurrency, Lecture 3
The algorithm, part 1

1. Up: Build a binary tree where
 - Root has sum of the range \([x, y]\)
 - If a node has sum of \([lo, hi]\) and \(hi > lo\),
 • Left child has sum of \([lo, middle]\)
 • Right child has sum of \([middle, hi]\)
 • A leaf has sum of \([i, i+1]\), i.e., \(\text{input}[i]\)

This is an easy fork-join computation: combine results by actually building a binary tree with all the range-sums
 - Tree built bottom-up in parallel
 - Could be more clever with an array like with heaps

Analysis: \(O(n)\) work, \(O(\log n)\) span
The algorithm, part 2

2. Down: Pass down a value fromLeft
 – Root given a fromLeft of 0
 – Node takes its fromLeft value and
 • Passes its left child the same fromLeft
 • Passes its right child its fromLeft plus its left child’s sum
 (as stored in part 1)
 – At the leaf for array position i,
 output[i] = fromLeft + input[i]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result
 – Leaves assign to output
 – Invariant: fromLeft is sum of elements left of the node’s range

Analysis: $O(n)$ work, $O(\log n)$ span
Sequential cut-off

Adding a sequential cut-off is easy as always:

- **Up:**

 just a sum, have leaf node hold the sum of a range

- **Down:**

  ```
  output[lo] = fromLeft + input[lo];
  for(i=lo+1; i < hi; i++)
      output[i] = output[i-1] + input[i]
  ```
Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements to the left of \(i \)
- Is there an element to the left of \(i \) satisfying some property?
- Count of elements to the left of \(i \) satisfying some property
 - This last one is perfect for an efficient parallel pack…
 - Perfect for building on top of the “parallel prefix trick”
- We did an inclusive sum, but exclusive is just as easy
Pack

[Non-standard terminology]

Given an array **input**, produce an array **output** containing only elements such that \(f(elt) \) is true

Example: **input** [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
\[f: \text{is } elt > 10 \]
output [17, 11, 13, 19, 24]

Parallelizable?
- Finding elements for the output is easy
- But getting them in the right place seems hard
Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
 input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output
 output [17, 11, 13, 19, 24]

 output = new array of size bitsum[n-1]
 FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
 }
Pack comments

- First two steps can be combined into one pass
 - Just using a different base case for the prefix sum
 - No effect on asymptotic complexity

- Can also combine third step into the down pass of the prefix sum
 - Again no effect on asymptotic complexity

- Analysis: $O(n)$ work, $O(\log n)$ span
 - 2 or 3 passes, but 3 is a constant

- Parallelized packs will help us parallelize quicksort…
Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

1. Pick a pivot element
2. Partition all the data into:
 A. The elements less than the pivot
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C

How should we parallelize this?
Quicksort

1. Pick a pivot element $O(1)$
2. Partition all the data into:
 A. The elements less than the pivot $O(n)$
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C $2T(n/2)$

Easy: Do the two recursive calls in parallel
- Work: unchanged of course $O(n \log n)$
- Span: now $T(n) = O(n) + 1T(n/2) = O(n)$
- So parallelism (i.e., work / span) is $O(\log n)$
Doing better

- $O(\log n)$ speed-up with an infinite number of processors is okay, but a bit underwhelming
 - Sort 10^9 elements 30 times faster

- Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
 - The Internet has been known to be wrong 😊
 - But we need auxiliary storage (no longer in place)
 - In practice, constant factors may make it not worth it, but remember Amdahl’s Law

- Already have everything we need to parallelize the partition…
Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

• This is just two packs!
 – We know a pack is $O(n)$ work, $O(\log n)$ span
 – Pack elements less than pivot into left side of aux array
 – Pack elements greater than pivot into right size of aux array
 – Put pivot between them and recursively sort
 – With a little more cleverness, can do both packs at once but no effect on asymptotic complexity

• With $O(\log n)$ span for partition, the total best-case and expected-case span for quicksort is
 $$T(n) = O(\log n) + 1T(n/2) = O(\log^2 n)$$
Example

• Step 1: pick pivot as median of three

```
8 1 4 9 0 3 5 2 7 6
```

• Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array
 – Fancy parallel prefix to pull this off not shown

```
1 4 0 3 5 2
1 4 0 3 5 2 6 8 9 7
```

• Step 3: Two recursive sorts in parallel
 – Can sort back into original array (like in mergesort)
Now **mergesort**

Recall mergesort: sequential, not-in-place, worst-case $O(n \log n)$

1. Sort left half and right half \hspace{2cm} 2T(n/2)
2. Merge results \hspace{2cm} O(n)

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the span to $T(n) = O(n) + 1T(n/2) = O(n)$

- Again, parallelism is $O(\log n)$
- To do better, need to parallelize the merge
 - The trick won’t use parallel prefix this time
Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

\[
\begin{array}{cccc}
0 & 1 & 4 & 8 & 9 \\
2 & 3 & 5 & 6 & 7 \\
\end{array}
\]

Idea: Suppose the larger subarray has \(m \) elements. In parallel:

- Merge the first \(m/2 \) elements of the larger half with the “appropriate” elements of the smaller half
- Merge the second \(m/2 \) elements of the larger half with the rest of the smaller half
Parallelizing the merge

\[
\begin{array}{cccccc}
0 & 4 & 6 & 8 & 9 \\
1 & 2 & 3 & 5 & 7
\end{array}
\]
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: $O(\log n)$ to do binary search on the sorted small half
1. Get median of bigger half: \(O(1) \) to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: \(O(\log n) \) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: \(O(1) \)
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$
4. Do two submerges in parallel
When we do each merge in parallel, we split the bigger one in half and use binary search to split the smaller one.
Analysis

• Sequential recurrence for mergesort:
 \[T(n) = 2T(n/2) + O(n) \] which is \(O(n \log n) \)

• Doing the two recursive calls in parallel but a sequential merge:
 Work: same as sequential
 Span: \(T(n)=1T(n/2)+O(n) \) which is \(O(n) \)

• Parallel merge makes work and span harder to compute
 – Each merge step does an extra \(O(\log n) \) binary search to find how to split the smaller subarray
 – To merge \(n \) elements total, do two smaller merges of possibly different sizes
 – But worst-case split is \((1/4)n \) and \((3/4)n \)
 • When subarrays same size and “smaller” splits “all” / “none”
Analysis continued

For just a parallel merge of \(n \) elements:
- Work is \(T(n) = T(3n/4) + T(n/4) + O(\log n) \) which is \(O(n) \)
- Span is \(T(n) = T(3n/4) + O(\log n) \), which is \(O(\log^2 n) \)
- (neither bound is immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:
- Work is \(T(n) = 2T(n/2) + O(n) \), which is \(O(n \log n) \)
- Span is \(T(n) = 1T(n/2) + O(\log^2 n) \), which is \(O(\log^3 n) \)

So parallelism (work / span) is \(O(n / \log^2 n) \)
 - Not quite as good as quicksort’s \(O(n / \log n) \)
 - But worst-case guarantee
 - And as always this is just the asymptotic result