
Finding Minimal Unsatisfiable Cores of
Declarative Specifications

Emina Torlak, Felix Sheng-Ho Chang and Daniel Jackson

MIT Computer Science and Artificial Intelligence Laboratory
{emina, fschang, dnj}@mit.edu

Abstract. Declarative specifications exhibit a variety of problems, such
as inadvertently overconstrained axioms and underconstrained conjec-
tures, that are hard to diagnose with model checking and theorem prov-
ing alone. Recycling core extraction is a new coverage analysis that pin-
points an irreducible unsatisfiable core of a declarative specification. It
is based on resolution refutation proofs generated by resolution engines,
such as SAT solvers and resolution theorem provers. The extraction al-
gorithm is described, and proved correct, for a generalized specification
language with a regular translation to the input logic of a resolution en-
gine. It has been implemented for the Alloy language and evaluated on
a variety of specifications, with promising results.

1 Introduction

As Dijkstra famously noted, testing can only show the presence of errors and not
their absence. Establishing the absence of errors has been a major motivation
for more complete analyses, such as model checking and theorem proving. Yet,
despite the advantages such analyses often bring in bug-detecting ability, it is not
always clear what level of confidence is warranted when no bugs are reported.

The main reason for doubting the result of a successful analysis is simply
that the theorem being checked might not be the right one, and might fail to
capture the notion of correctness that will actually be required in the context
of use. When the artifact being checked is a model (rather than the actual
implementation of a system), there is an additional concern that the model may
not be faithful to the system it purports to represent.

It may seem that this problem is not amenable to a technical solution. In
fact, however, the most common faults in a model or theorem that undermine
the credibility of an analysis can be exposed by a kind of ‘coverage analysis’ that
highlights those portions of the model and theorem that were used to establish
that the theorem held for the model. Portions that are not highlighted, contrary
to the expectations of the user, are evidence that the analysis was inadequate.

This idea has been explored as “vacuity detection” [1, 2] in the context of
model checking, although the very definition of the problem is somewhat in-
tricate. In the context of checking declarative specifications (as written in lan-
guages such as Alloy, Z, VDM, B, OCL, and so on), the notion of coverage has

2

a particularly simple formulation. A constraint, whether occurring in the model
being checked or in the theorem being asserted, is covered (and subsequently
highlighted) if it was used in the proof that the theorem follows from the model.

This approach has been implemented as a feature of the Alloy Analyzer [3,
4], but until recently has not been particularly useful since the highlighting has
been too conservative, often including constraints that were not in fact used. This
paper presents a new algorithm, RCE, that has been incorporated into the tool,
and which gives superior results. RCE is proven to give results that are sound
(meaning that constraints that are not highlighted are definitely irrelevant) and
minimal (meaning that removing the highlighting on a constraint would make
the result unsound). Its performance is compared to three simpler algorithms:
OCE, the one previously implemented in the Alloy Analyzer, which runs faster
than RCE but is not minimal, and typically highlights 2 to 3 times as many
constraints; and NCE and SCE, which are sound and minimal, but run much
more slowly than RCE.

As illustrated in the next section, coverage analysis mitigates a variety of
problems that can arise in practice: inadvertently overconstraining the model
(so that behaviours that should be included are de facto excluded); using a
theorem that is not strong enough (so that bad behaviours are accepted); and
setting the analysis bounds too small, so that the analyzer does not examine
a sufficiently large space of possibilities. This last problem is a liability only of
checkers (such as the Alloy Analyzer) that artificially bound the space, and is
not suffered by theorem provers. Nevertheless, provers do suffer from the other
two problems, and the algorithm presented here will therefore work for them
too.

The underlying mechanism used is unsat core extraction, a facility of some
SAT solvers. The core of an unsatisfiable formula (presented in CNF as a set
of boolean clauses) is a subset of the formula that is also unsatisfiable. Every
unsatisfiable formula is its own core, but a smaller core is more useful. SAT
solvers do not generally provide minimal cores, which would require too much
computation to produce.

Exploiting an unsat core facility is not straightforward, however, since the
core returned by the SAT solver must be translated back into the high-level
specification language before being shown to the user. Efficient compilations
into SAT employ a variety of elaborations and transformations that result in a
complex relationship between the original specification formula and the boolean
formula passed to the solver. Consequently, a small core at the boolean level
may be translated back to a large core at the specification level.

The new algorithm has two key ideas. The first idea is that, rather than
attempting to minimize the core at the boolean level, to map the core back
and apply reductions (by testing the removal of candidate constraints) at the
specification level. The second idea is to identify, using the proof returned by
the solver, and the mapping between levels, those boolean clauses that were
generated during a proof of unsatisfiability, and which will still hold when a
specification-level constraint is removed. By adding these clauses to the formula

3

presented to the SAT solver, the algorithm allows the solver to reuse the results
of inferences that were previously made. It is well known that careful exploitation
of learned clauses is essential for improving SAT solver performance in general,
so it is not surprising that it plays an important role in this application also.

Although the scheme was developed for analyzing coverage of Alloy specifica-
tions that are translated to boolean formulas, it has more general applicability.
The paper therefore defines the context rather abstractly. The source language
can take any form so long as its translation to the target language satisfies some
basic properties that the paper defines. The target language can be any clausal
language, and any prover is suitable if it can return a proof as a resolution graph.

2 A Small Example

As a motivating example, consider the problem of formalizing a key ingredient
in our core extraction algorithm—a proof of unsatisfiability expressed as a res-
olution graph. To make the problem more concrete, our challenge is to specify
what it means to refute a set of propositional clauses via resolution. A more
generic definition that also applies to first order clauses is given in §3.2.

Figure 1 shows an Alloy [5] solution to this problem.1 The keyword “sig”
introduces a set of atoms, called a signature. A field within a signature defines a
relation of some arity whose leftmost column is the signature itself. For example,
neg is a function from literals to their negations, and assign is a ternary relation
that maps each Instance to a partial function from Literals to Booleans. The key-
word “extends” specifies a containment relationship between sets. So, True and
False are subsets of Boolean. The constraints that immediately follow a signature
declaration hold for all atoms of that signature. For example, the constraint on
line 18 means that the edges of every Refutation are free of cycles.

A Refutation has three components: sources, resolvents, and edges. The sources

relation maps a Refutation to the nonempty set of clauses that it refutes. These
clauses cannot include the conflict clause. The resolvents relation defines the set of
clauses that are derivable from the sources via resolution, defined by the resolve

predicate. The resolvents of a valid refutation must include the conflict clause.
The edges relation describes the resolution relationships among the sources and
resolvents of a refutation. Every resolvent is a target of some edge, and the source
of that edge is a clause used in resolution derivation of the target. The remaining
definitions are straightforward.

2.1 Sample Analyses

We validate an Alloy model against an assertion that we believe to be true by
instructing the Alloy Analyzer [6] to check that the conjunction of the model
and the negation of the assertion is unsatisfiable. The check is performed with

1 A simpler example motivating the use of unsatisfiable cores, with a slower-paced
introduction to Alloy, can be found in the paper by Shlyakhter et al. [3].

4

respect to a finite scope, which bounds the number of atoms that the Analyzer
may assign to each signature in the model. If the assertion is invalid in the given
scope, the Analyzer produces a counterexample—an assignment of values to sets
and relations that satisfies the model but violates the assertion. The absence of
a counterexample, however, does not necessarily constitute a proof of validity.
Rather, it indicates one of the following:

1. the assertion is valid but the model is too strong,
2. the assertion and the model are both valid,
3. the assertion is too weak, or
4. the scope is too small.

Each of these cases leads to an identifiable pattern of minimal cores, discussed
below.

1 abstract sig Boolean {} // The set of booleans is partitioned into
2 one sig True, False extends Boolean {} // singleton sets True and False.

3 sig Literal { neg: Literal } // Each literal has an associated negation.
4 fact { neg = ˜neg ∧ (no iden ∩ neg) } // Negation is symmetric and irreflexive.

5 sig Clause { lits: set Literal } // Each clause contains a set of literals.
6 one sig Conflict extends Clause {} { no lits } // One empty clause is denoted Conflict.
7 fact { ∀ c: Clause \ Conflict | some c.lits } // Every clause other than Conflict is nonempty.
8 fact { ∀ c: Clause | no c.lits ∩ c.lits.neg } // No clause has both a literal and its negation.

9 pred resolve [c1, c2, r: Clause] { // Resolving clauses c1 and c2 yields r if
10 ∃ x: c1.lits ∩ c2.lits.neg | // c1 contains some literal x, c2 contains !x,
11 r.lits = (c1.lits ∪ c2.lits) \ (x ∪ x.neg) // and r is a union of c1 and c2 minus x and !x.
12 }

13 sig Refutation { // Each refutation consists of
14 sources: some Clause \ Conflict, // a set of nonempty clauses called ‘sources,’
15 resolvents: set Clause, // a set of clauses called ‘resolvents,’ and
16 edges: (sources ∪ resolvents)→resolvents // a set of edges from clauses to resolvents,
17 }{ // such that
18 no êdges ∩ iden // 1) The edge relation is acyclic;
19 ∀ r: resolvents | some edges.r // 2) Every resolvent has some incoming edges;
20 Conflict ⊆ resolvents // 3) The empty clause is a resolvent;
21 ∀ n1, n2: sources ∪ resolvents | // 4) For every source or resolvent n1 and n2
22 ∀ r: resolvents | // for every resolvent r
23 ((n1 ∪ n2)→r ⊆ edges // there are two edges 〈n1, r〉 and 〈n2, r〉
24 ⇔ resolve[n1, n2, r]) // if and only if n1 and n2 resolve to r.
25 }

26 sig Instance {
27 clauses: some Clause, // Each instance has a nonempty set of clauses,
28 assign: Literal→lone Boolean // and each literal is assigned at most one value.
29 }{
30 ∀ lit: clauses.lits | // Each mentioned literal is assigned a value,
31 assign[lit] = Boolean \ assign[lit.neg] // and its negation has the opposite value.
32 ∀ c: clauses | True ⊆ assign[c.lits] // Each clause has at least one true literal.
33 }

Fig. 1. A buggy formalization of resolution refutation

5

Case 1: the model is too strong. The first case is probably the most common.
It happens when a part of the model itself is overconstrained, admitting either
no solutions or just the uninteresting ones. As a result, many assertions follow
trivially from the model.

The example in Fig. 1 contains a bona fide error that one of the authors
made in the first version of the model. It was revealed by checking that a set of
clauses cannot have both an instance and a refutation:

check { ∀ i: Instance | 6 ∃ ref: Refutation | ref.sources = i.clauses } for 3

The Analyzer confirms that the assertion has no counterexamples in a scope of
3, and highlights these constraints as a minimal cause of unsatisfiability:

5 sig Clause { lits: set Literal }
8 fact { ∀ c: Clause | no c.lits ∩ c.lits.neg }

13 sig Refutation {
16 edges: (sources ∪ resolvents)→resolvents
17 }{
19 ∀ r: resolvents | some edges.r
20 Conflict ⊆ resolvents
21 ∀ n1, n2: sources ∪ resolvents |
22 ∀ r: resolvents |
23 ((n1 ∪ n2)→r ⊆ edges
24 ⇔ resolve[n1, n2, r])
25 }

check { ∀ i: Instance | 6 ∃ ref: Refutation | ref.sources = i.clauses } for 3

Increasing the analysis scope to 4, 5, and 6 yields the same result: the definition
of Instance is not needed to prove the assertion. What’s wrong?

Examining the highlighted lines more closely reveals that the definition of
refutation edges is too strong. It forces each Refutation to have at least one re-
solvent (line 20) and to therefore include at least one edge (line 19). But, the
constraints on lines 21-24 and line 8 prevent any edge from existing. To see why,
let 〈c1, c2〉 be an edge between some clauses c1 and c2. The formula on lines 21-24
simplifies to (c1 ∪ c1)→c2 ⊆ edges ⇔ resolve[c1, c1, c2] when c2 is substituted
for r and c1 for n1 and n2. By our hypothesis, 〈c1, c2〉 ⊆ edges, so resolve[c1,
c1, c2] must be true. The definition of resolution (Fig. 1, lines 10-11), however,
says that c1 must contain both a literal and its negation, which contradicts the
constraint on line 8. A revised definition of edges is given below:

21 edges = { // For every source or resolvent n, for every
22 n: sources ∪ resolvents, r: resolvents | // resolvent r, 〈n, r〉 is an edge if there is
23 one edges.r \ n ∧ // a unique clause m!=n such that 〈m, r〉
24 resolve[n, edges.r \ n, r] } // is an edge, and n and m resolve to r.

Case 2: the model and assertion are both valid. A valid model and
a valid assertion produce cores that highlight both the assertion and all the
definitions to which it pertains. When we revise the definition of edges and check
the previous assertion against the revised model, the Analyzer, once again, finds
no counterexample within a scope of 3. But, the derived core now includes the
entire definition of Clause, Refutation, and Instance. Moreover, it remains the same
with increasing scope, suggesting that the model and the assertion are both
valid.

6

Case 3: the assertion is too weak. A valid assertion that exercises only a
small portion of a model is called weak. By themselves, weak assertions are not
harmful, but they can be misleading. If the modeler believes a weak assertion
covers all or most of the model, he can miss real errors in the parts of the
model that are not exercised. For example, the following assertion is supposed
to validate the Instance definition. It states that, if an instance satisfies a set of
clauses, then it must also satisfy all subsets of those clauses:

check { ∀ i: Instance, cs: set i.clauses | cs ⊆ lits.(i.assign.True) } for 3

The Analyzer finds no counterexample, but produces the following minimal
core that, once again, does not include more constraints as the scope is increased:

26 sig Instance {
29 }{
32 ∀ c: clauses | True ⊆ assign[c.lits]
33 }

check { ∀ i: Instance, cs: set i.clauses | cs ⊆ lits.(i.assign.True) } for 3

The problem here is that the assertion covers only the highlighted part of the
Instance definition, when the intention was to cover the definition in its entirety.
That is, the assertion was intended to fail if any part of the Instance definition
was wrong. But, if we had, for example, accidentally omitted the “lone” keyword
from the declaration of assign (Fig. 1, line 28), which ensures that each literal gets
at most one value, checking this assertion would not produce a counterexample.

Case 4: the scope is too small. The last case is the easiest to diagnose: if
the scope is too small, the minimal core usually increases when the analysis is
repeated in a larger scope. In the case of a valid assertion, the core will stop
increasing after a while. For an invalid one, the core will often continue to grow
with scope until the scope becomes large enough to reveal a counterexample.
The following assertion, which states that the edges of a resolution graph never
point to source clauses, illustrates this scenario:

check { ∀ ref: Refutation | no (ref.edges).(ref.sources) } for 2

In the search scope of 2, no counterexample exists and the unsatisfiable core
includes only the assertion and the definition of resolution edges:

13 sig Refutation {
17 }{
21 edges = {
22 n: sources ∪ resolvents, r: resolvents |
23 one edges.r \ n ∧
24 resolve[n, edges.r \ n, r] }
25 }

check { ∀ ref: Refutation | no (ref.edges).(ref.sources) } for 2

As we increase the scope, however, the core expands to include more and more of
the model—Refutation, Clause, and Literal definitions—until a counterexample is
found in a scope of 5. The assertion is invalid because the sources of a refutation
graph can be redundant; i.e. they can include a clause that is derivable from
other source clauses via resolution.

7

3 Finding Minimal Cores

The Simple and Recycling Core Extractor (SCE and RCE) are new algorithms
for finding minimal unsatisfiable cores of declarative specifications. They were
developed in the context of the Alloy language and SAT-based analysis, but are
independent of either. Both SCE and RCE are applicable to any specification
language that can be translated to the input language of some resolution engine
as described in §3.1-3.3. Unlike the alternatives (§3.4), they guarantee minimality
(§3.6) at a reasonable cost (§4).

3.1 Specifications and Cores

A declarative specification is a conjunction of constraints on variables vi ∈ V
that range over a universe U of values. A model or an instance of a satisfiable
specification is a binding of vi ∈ V to elements of U that makes the specification
true. An unsatisfiable specification has no models, but it has one or more un-
satisfiable cores—subsets of the specification’s constraints which are themselves
unsatisfiable. Such a core is minimal if removing any one of its constraints causes
the remainder of the core to become satisfiable.

We assume that a declarative specification S = s1 ∧ . . . ∧ sk is encoded in a
language L as a directed, acyclic Abstract Syntax Graph (ASG) with k roots.
The remaining constraints on the structure of ASGs capture the usual syntactic
rules for declarative languages. In particular, the leaves of the ASG are variables
vi ∈ V and constants in U , and each internal node n computes a predetermined
function f : U |n| → U of its children, c1, . . . , c|n|.

The meaning of an ASG node n with respect to a binding b : V 7→ U
is computed by applying the function f to the values of n’s children: [[n]]b =
f([[c1]]b, . . . , [[c|n|]]b). The root nodes compute Boolean functions whose conjunc-
tion is the value of S as a whole. Hence, S is satisfiable if there is a binding for
the variables vi ∈ V that induces the value true in the roots of its ASG. In the
remainder of the paper, we will take S to mean “the ASG of S.”

3.2 Resolution Engine

Invalidity of a specification can be proved by converting it to a clausal logic and
then applying a suitable resolution engine to the generated clauses. At its sim-
plest, a resolution engine is a procedure that applies resolution to a set of clauses
in conjunctive normal form until it detects a conflict or determines satisfiability.
Because resolution is refutation complete [7], a resolution engine is guaranteed
to terminate on an unsatisfiable clause set with a proof of its unsatisfiability.
This proof takes the form of a resolution refutation (Fig. 2), defined as follows:

Definition 1 (Resolution refutation). Let C and R be sets of clauses such
that C is unsatisfiable and R\C contains the empty (conflict) clause, denoted by
c∅. Let E be a set of edges from C∪R to R. A directed acyclic graph G = (C,R,E)
is a resolution refutation of C iff

8

1. the sources of G are in C;
2. each r ∈ R is the result of resolving some clauses s0, s1, . . . , sk ∈ C ∪ R,

represented by 〈s0, r〉, . . . , 〈sk, r〉 ∈ E (which are the only edges in E); and,
3. c∅ is a sink of G.

The sources of a resolution refutation G = (C,R,E) that are connected to c∅
form an unsatisfiable core of C. The core of C with respect to (C,R, E) is denoted
by {c ∈ C | c∅ ∈ E∗LcM}, where E∗ is the reflexive transitive closure of E and
E∗LcM is the relational image of c under E∗.

The behavior of a resolution engine on an arbitrary clause set depends on
the decidability of its input language. For example, a SAT solver [8–10] will
eventually produce a model or a refutation for every set of propositional clauses,
while a theorem prover [11–13] will run forever on some sets of first order clauses.
We abstract away from the particulars of the concrete engines’ behavior with
a partial function E : P(C) ⇀ G that maps each unsatisfiable clause set to
a resolution refutation. The remaining sets in the domain of E are taken to
resolution graphs that do not include c∅ (indicating satisfiability).

¬c a

¬b

¬a

false

a ∨ ¬b¬a ∨ b ¬b ∨ c b ∨ ¬c

Fig. 2. Resolution refutation of (a = b) ∧ (b = c) ∧ ¬(a ⇒ c). Core clauses are shaded
in gray. The false square designates the conflict clause.

3.3 Translation

There are many ways to translate an ASG to a set of clauses in conjunctive
normal form (e.g. [14–16]). The details of such a translation are unimportant
for its use with our core extraction algorithms, as long as it is regular in the
following sense:

Definition 2 (Regular Translation). A procedure T : L → P(C) is a regular
translation from the specification language L to the clausal logic P(C) iff

1. a specification S ∈ L is unsatisfiable iff T (S) is unsatisfiable;
2. the translation of a specification S ∈ L is the union of the translations of

its constraints: T (S) = TS(roots(S)) = ∪s∈roots(S)TS(s), where TS(s) is the
translation of the constraint s in the context of the specification S; and,

9

3. the translation of the constraints σ = roots(S) ∩ roots(S′) is context in-
dependent up to a renaming: TS(σ) = r(TS′(σ)) for some bijection r over
the symbols (i.e. variable, constant, function, and predicate names) used in
T (S) ∪ T (S′), lifted to clauses and sets of clauses in the obvious way.

Informally, a regular translation takes a specification to an equisatisfiable set
of clauses, in a context independent way. For example, suppose that we have two
specifications S = ∃x.p(x) and S′ = (∀x.q(x)) ∧ (∃x.p(x)) whose free variables
range over a universe of two atoms, {a0, a1}. A regular translation T of these
specifications to propositional logic might generate the clauses T (S) = (v0 ∨ v1)
and T (S′) = v0∧v1∧(v2∨v3). In the context of S, the value of the predicate p on
atoms a0 and a1 is represented by boolean variables v0 and v1, respectively. In
the context of S′, p is represented by v2 and v3. As a result, the translation of the
constraint ∃x.p(x) is not context-free. But, it is context independent, because
TS(∃x.p(x)) and TS′(∃x.p(x)) are equivalent up to the renaming of v0 to v2 and
v1 to v3.

3.4 Basic Core Extraction Algorithms

The Naive Core Extractor (NCE) is the most basic algorithm for extracting
minimal cores of declarative specifications (Fig. 3a). It starts with an initial core
K that contains all roots of the unsatisfiable specification S (line 1). The initial
core is then pruned, one constraint at a time, by discarding all constraints u for
which a regular translation of K \ {u} is unsatisfiable (lines 3-8). This pruning
step is sound since the regularity of the translation guarantees that T (K \ {u})
and K \ {u} are equisatisfiable. In the end, K contains a minimal core of S.

Because it calls the computationally expensive resolution procedure once for
each constraint, NCE tends to be unacceptably slow for large specifications with
small, hard cores. Shlyakhter et al. [3] addressed this problem with the One-
Step Core Extractor (OCE) algorithm which sacrifices minimality for scalability.
OCE (Fig. 3b) simply returns all roots of S whose translations include clauses
connected to the conflict clause c∅ in a refutation of T (S). The set of constraints
computed in this way is an unsatisfiable core of S (§3.6, Thm. 1), but it is usually
not minimal.

3.5 Simple and Recycling Core Extraction

The Simple Core Extractor (SCE) combines the core-pruning loop of NCE with
the core-extraction technique of OCE (Fig. 3c). In particular, SCE is NCE with
the following modifications: initialize K with a core of S instead of S (line 14),
and reduce K to a core of K \ {u} instead of K \ {u} itself in the iterative step
(line 21). Correctness and minimality of SCE’s output are discussed in §3.6.

Although it avoids unnecessary calls to the resolution engine, SCE is still
wasteful. By applying E solely to TS(K\{u}) on line 19, it discards all the clauses
that E has learned about TS(K \ {u}) in previous iterations (while refuting

10

NCE(S: L, T : L → P(C), E: P(C)⇀G)

1 K ← roots(S)

2 M ← {}
3 while K 6⊆M do

4 u← pick(K \M)

5 M ←M ∪ {u}
6 (C, R, E)← E(T (K \ {u}))
7 if c∅ ∈ R then

8 K ← K \ {u}
9 return K

OCE(S: L, T : L → P(C), E: P(C)⇀G)

10 (C, R, E)← E(T (S))

11 K ← {s∈roots(S) | c∅ ∈ E∗LTS(s)M}
12 return K

(a) Naive Core Extractor (b) One-Step Core Extractor

SCE(S: L, T : L → P(C), E: P(C)⇀G)

13 (C, R, E)← E(T (S))

14 K ← {s∈roots(S) | c∅ ∈ E∗LTS(s)M}
15 M ← {}
16 while K 6⊆M do

17 u← pick(K \M)
18 M ←M ∪ {u}
19 (C, R, E)← E(TS(K \ {u}))
20 if c∅ ∈ R then
21 K ← {s ∈ K\{u} | c∅ ∈ E∗LTS(s)M}
22 return K

RCE(S: L, T : L → P(C), E: P(C)⇀G)

23 (C, R, E)← E(T (S))

24 K ← {s∈roots(S) | c∅ ∈ E∗LTS(s)M}
25 M ← {}
26 while K 6⊆M do
27 u← pick(K \M)

28 M ←M ∪ {u}
29 C′ ← TS(K \ {u})
30 R′ ← R \ E∗LC \ C′M
31 if c∅ ∈ R′ then

32 K ← K \ {u}
33 else

34 (C′′, R′′, E′′)← E(C′ ∪R′)
35 if c∅ ∈ R′′ then
36 (C, R, E)← (C′, R′∪R′′, E′′∪(E.R′))
37 K ← {s : K\{u} | c∅ ∈ E∗LTS(s)M}
38 return K

(c) Simple Core Extractor (d) Recycling Core Extractor

Fig. 3. Core extraction algorithms. S is an unsatisfiable specification, T is a regular
translation, and E is a resolution engine. Star (*) means reflexive transitive closure,
rLXM is the relational image of X under r, and . is range restriction.

TS(K)). When these clauses are recycled, SCE turns into the Recycling Core
Extractor algorithm (RCE).

The pseudocode for RCE is shown in Fig. 3d. As before, line 24 initializes
K to the unsatisfiable core of S extracted from E(T (S)). Lines 29-30 construct
T (K\{u}) (from the already computed translations of the roots of S) and collect
the clauses, called resolvents, that E had already learned about T (K\{u}). These
are simply all resolvents reachable from T (K\{u}) but not from the other clauses
previously fed to E . If they include the conflict clause c∅, u is discarded (line
32) because there must be some other constraint in K \ {u} whose translation
contributes the same or a larger set of clauses to the core of C as u. Otherwise,

11

line 34 applies E to T (K \ {u}) and its resolvents. If the result is a refutation,
the invalidity of K can be proved without u. Before we can extract the u-free
core from (C ′′, R′′, E′′), however, we have to fix it: (C ′′, R′′, E′′) is not a valid
refutation of S because its sources include the resolvents for T (K \ {u}). So,
lines 36-37 fix the proof and set K to the corresponding core, which excludes at
least u.

3.6 Correctness and Minimality of SCE and RCE

Both SCE and RCE rely on OCE’s core extraction technique to reduce the
number of calls to the resolution engine. Establishing the correctness of OCE’s
output is therefore the first step to proving the correctness of SCE and RCE:

Theorem 1. Let G = (C,R,E) be a resolution refutation for C = T (S), a regu-
lar translation of the unsatisfiable specification S. Then, K = {s∈roots(S) | c∅ ∈
E∗LTS(s)M} is an unsatisfiable core of S.

Proof. Let S′ be a specification whose roots are K, i.e. roots(S′) = K. Because
T is regular, T (S′) = TS′(roots(S′)) = TS′(K) = r(TS(K)) for some renaming
r. Let CK = TS(K), RK = E∗LCKM and EK = E . RK , where . is range
restriction. By Def. 1 and the construction of K, the graph GK = (CK , RK , EK)
is a resolution refutation of TS(K), and, letting r(GK) denote GK with r applied
to all of its vertices, r(GK) is a resolution refutation of r(TS(K)) = T (S′). Hence,
by regularity of T , S′ is unsatisfiable and, by the semantics of ASGs, so is K. ut

We can now show that RCE produces a minimal unsatisfiable core of the
input specification S, if the input engine terminates on each invocation. Since
RCE reduces to SCE when R′ is set to the empty set on line 30, the following is
also a proof of SCE’s correctness and minimality:

Theorem 2. If it terminates, RCE(S, T , E) returns a minimal unsatisfiable
core of S, where S is an unsatisfiable specification, T is a regular translation,
and E a resolution engine.

Proof. Let K be the output of RCE(S, T , E). We first show that K is unsat-
isfiable and then that it is minimal. By Thm. 1, the constraints assigned to K
by line 24 form an unsatisfiable core of S. The only other lines that assign K
are lines 32 and 37. Suppose that the condition on line 31 is true. Then, by Def.
1 and construction of C ′ and R′, (C ′, R′, E . R′) is a resolution refutation for
C ′ = TS(K \ {u}) which, by regularity of T , is equivalent (up to a renaming)
to T (K \ {u}). Hence, K \ {u} is unsatisfiable, so line 32 will never remove a
relevant constraint from K. For line 37 to execute, the condition on line 35 must
hold. If it does, line 36 executes first, establishing (C,R,E) as a resolution refu-
tation for C = C ′ ≡r T (K \ {u}) (Defs. 1, 2). This and Thm. 1 ensure that the
constraints assigned to K in line 37 form an unsatisfiable core of K \ {u}.

Now, suppose that K is not minimal. Then, there is a constraint s ∈ K such
that K \{s} is unsatisfiable. Lines 26 and 28 ensure that s is picked at least once
on line 27. Because K \ {s} is invalid, either the condition on line 31 or that on
line 35 holds, causing s to be removed from K—a contradiction. ut

12

4 Experimental Results

We have implemented both SCE and RCE for the Alloy language, with MiniSat
[8] as the resolution engine and Kodkod [14] as the (regular) translation proce-
dure from Alloy to propositional clauses. These implementations were evaluated
against the basic algorithms (NCE and OCE) on two sets of problems: fifteen
TPTP [17] benchmarks and six problems from the Alloy4 distribution [6]. The
chosen problems come from a variety of fields (software engineering, medicine,
geometry, etc.), include 4 to 59 constraints, and exhibit a wide range of behav-
iors. In particular, eleven are theorems (i.e. unsatisfiable conjunctions of axioms
and negated conjectures); four are assumed to be (counter)satisfiable but have
no known finite models; two are unsatisfiable in some universes and satisfiable
in others; and four have neither an assumed status nor any known finite models.

problem size scope variables clauses
transl

(sec)

solve

(sec)

initial

core

min

core

OCE

(sec)

NCE

(sec)

SCE

(sec)

RCE

(sec)

tRCE

(sec)

Trees 4 7 407396 349384 10 98 4 4 1 7 7 7 7

RingElection 10 8 59447 187381 1 49 9 9 2 59 7 8 9

Lists.empties 12 60 2547216 7150594 74 12 7 6 9 196 89 86 86

Lists.reflexive 12 14 34914 91393 1 23 10 5 3 134 120 158 96

Lists.symmetric 12 8 7274 17836 0 27 12 7 3 150 115 93 85

Hotel 59 5 22407 55793 0 0 53 29 0 27 14 11 11

ALG212 6 7 1072203 1027000 7 63 6 5 1 103 104 107 98

COM008 14 9 6154 9845 0 1 14 10 0 190 193 235 166

NUM374 14 3 6874 18938 0 0 14 6 0 3 3 3 3

TOP020 14 10 2554114 4262733 21 113 2 2 6 826 10 10 10

SET943 18 5 5333 12541 0 0 14 4 0 19 18 15 13

SET948 20 14 339132 863889 5 36 10 6 1 754 247 359 254

SET967 20 4 14641 45112 0 0 10 2 0 454 181 142 142

GEO091 26 10 106329 203303 9 108 24 7 3 1129 652 105 105

GEO092 26 8 48500 91285 3 7 24 7 0 120 99 70 51

GEO158 26 8 46648 88234 3 38 25 7 2 175 107 45 45

GEO115 27 9 109002 188782 6 85 25 7 2 675 278 63 86

LAT258 27 7 205621 336912 2 11 26 20 0 95 87 70 70

GEO159 28 8 87214 195200 10 57 24 7 1 223 83 50 50

MED007 41 35 130777 265702 2 67 24 7 1 >3600 >3600 176 91

MED009 41 35 130777 265703 2 71 26 7 1 >3600 >3600 85 76

A
llo

y
T

P
T

P

Fig. 4. Experimental results. The notation “>3600” means that an algorithm was
unable to produce a core for the specified problem in the given scope within one hour.
Gray shading highlights the best running time among NCE, SCE, RCE, and trained
RCE (tRCE).

Each problem p was tested for satisfiability in scopes of increasing sizes until a
failing scope sfail(p) was reached in which either a model was found or all three
minimality-guaranteeing algorithms failed to produce a result for that scope
within 5 minutes (300 seconds). Then, because our implementation of RCE is
parameterized by a “resolution distance” d that controls which resolvents are
reused in each iteration2, RCE was automatically trained using a scope of 0.75∗
2 A relevant resolvent r ∈ R′ (Fig. 3d, line 30) is recycled if all paths from r to a

source in C′ (Fig. 3d, line 29) contain at most d edges.

13

problem N-score
NCE /

RCE

NCE /

tRCE

average

speed-up

NUM374 -0.34 1.04 0.95

RCE: 1.48x

tRCE: 1.56x

SET943 0.12 1.29 1.44

SET967 0.53 3.20 3.20

Trees 0.59 1.08 1.08

COM008 0.60 0.81 1.14

Hotel 1.08 2.54 2.54

RCE: 2.45x

tRCE: 2.59x

RingElection 1.73 7.13 6.31

ALG212 1.82 0.96 1.05

Lists.empties 1.87 2.28 2.29

LAT258 1.89 1.36 1.36

Lists.symmetric 2.13 1.61 1.77

GEO092 2.14 1.73 2.35

Lists.reflexive 2.21 0.85 1.40

SET948 2.70 2.10 2.97

GEO158 2.86 3.90 3.89

GEO159 3.08 4.49 4.48

RCE: 29.04x

tRCE: 32.65x

TOP020 3.13 85.26 85.76

GEO115 3.23 10.74 7.82

GEO091 3.32 10.78 10.77

MED007 3.36 20.51 39.54

MED009 3.38 42.47 47.53

e
a
s
y

m
e
d

iu
m

 h
a
rd

problem S-score
SCE /

RCE

SCE /

tRCE

average

speed-up

NUM374 -0.34 1.05 0.96

RCE: 1.08x

tRCE: 1.11x

SET943 -0.03 1.21 1.36

SET967 0.18 1.28 1.28

TOP020 0.35 0.99 1.00

Trees 0.59 1.08 1.08

COM008 0.60 0.82 1.16

RingElection 0.65 0.87 0.77

Hotel 0.99 1.31 1.31

Lists.empties 1.12 1.04 1.04

RCE: 1.27x

tRCE: 1.43x

ALG212 1.82 0.97 1.06

LAT258 1.82 1.24 1.24

Lists.reflexive 2.06 0.76 1.25

GEO092 2.09 1.43 1.94

Lists.symmetric 2.13 1.24 1.36

SET948 2.16 0.69 0.97

GEO158 2.83 2.39 2.39

GEO159 2.99 1.67 1.66

MED007 3.06 20.51 39.54

RCE: 18.41x

tRCE: 24.13x

MED009 3.13 42.47 47.53

GEO115 3.18 4.42 3.22

GEO091 3.27 6.23 6.22

e
a
s
y

m
e
d

iu
m

 h
a
rd

(a) RCE and tRCE versus NCE (b) RCE and tRCE versus SCE

Fig. 5. Comparison of minimal core extractors based on problem difficulty.

(sfail(p) − 1) to estimate the best d for the problem p. Once the experimental
parameters were determined, the algorithms were tested on each problem using
a scope of sfail(p)−1. All experiments were performed on a 2×3 GHz Dual-Core
Intel Xeon with 2 GB of RAM, with a cut-off time of one hour (3600 seconds).

The results are shown in Fig. 4. The first three columns show the name of the
problem, the number of constraints it contains, and the scope in which it was
tested. The next two columns contain the number of propositional variables and
clauses produced by the translator. The “transl (sec)” and “solve (sec)” columns
show the time, in seconds, taken by the translator to generate the problem and
the SAT solver to produce the initial refutation. The “initial core” and “min
core” columns present the number of constraints in the initial core found by
OCE and the minimal core found by the minimality-guaranteeing algorithms.
The remaining columns show core extraction time, in seconds, for each algorithm.

On average, RCE outperforms NCE and SCE by a factor of 10 and 4, re-
spectively; its trained variant (tRCE) is roughly 11 times faster than NCE and
6 times faster than NCE. These overall averages, however, do not take into ac-
count the wide variance in difficulty among the tested problems. A more useful
comparison of the minimality-guaranteeing algorithms is given in Fig. 5, where
we classify the problems according to their difficulty for NCE (Fig. 5a) and SCE
(Fig. 5b), and then report how well the RCE variants perform on the problems
deemed as “easy”, “moderately hard” or “hard” for the competing algorithms.

To assess the difficulty of a given problem for NCE, we compute its N-score,
and rate it as easy if the score is less than 1, hard if the score is 3 or more, and
moderately hard otherwise. The N-score for a specification S is log10((s−m) ∗
t+m∗ t∗ .01), where s is the size of the specification, m is the size of its minimal
core, and t is the time, in seconds, taken by the SAT solver to determine that S

14

is unsatisfiable. Note that the N-score for a problem measures how much work
NCE has to do to eliminate irrelevant constraints from the specification, which
is approximated by predicting that NCE will take (s−m) ∗ t seconds to prune
away the (s−m) irrelevant constraints. (The formula assumes that it takes only
1 percent of the initial time to throw out a relevant constraint because of the
ability of modern SAT solvers to find satisfying assignments very quickly.) The
difficulty of a problem for SCE is computed in a similar way; the S-score of a
given problem is log10((s′−m) ∗ t+m ∗ t ∗ .01), where s′ is the size of the initial
(one-step) core.

Unsurprisingly, OCE outperforms both SCE and RCE in terms of execution
time. However, it generates cores that are on average 2.4 times larger than the
corresponding minimal cores. For 20 out of 21 (95%) of the tested problems, the
OCE core included at least 50% of the original constraints. In contrast, only 7
out of 21 (33%) minimal cores included at least half of the original constraints.

5 Related Work

The problem of finding unsatisfiable cores of sets of constraints has been studied
in the context of linear programming [18], propositional satisfiability [19–25], and
finite model finding [3]. Chinneck and Dravnieks’ [18] deletion filtering algorithm
for linear constraints is similar to NCE: given an infeasible linear program LP ,
the algorithm tests each functional constraint for membership in an Irreducible
Infeasible Subset (i.e. minimal unsatisfiable core) by removing it from LP and
applying a linear programming solver to the result. If the reduced LP is infeasi-
ble, the constraint is permanently removed, otherwise it is kept. The remaining
algorithms in [18] are specific to linear programs, and there is no obvious way
to adapt them to other domains.

Most of the work on extracting small unsatisfiable cores comes from the SAT
community. Several practical algorithms [20, 24, 25] have been proposed for find-
ing small, but not necessarily minimal, cores of propositional formulas. Zhang
and Malik’s algorithm [25], for example, works by extracting a core from a refu-
tation, feeding it back to the solver, and repeating this process until the size
of the extracted core no longer decreases. A few proposed algorithms provide
strong optimality guarantees—such as returning the smallest minimal core [22,
23] or all minimal cores [21, 26–28] of a boolean formula—at the cost of scaling
to problems that are orders of magnitude smaller than those handled by the ap-
proximation algorithms. The Complete Resolution Refutation (CRR) algorithm
by Dershowitz et al. [19] strikes an attractive balance between scalability and
optimality: it finds a single minimal core but scales to large real-world formulas.
CRR was one of the inspirations for our work and is, in fact, an instantiation of
RCE for propositional logic, with a SAT solver as a resolution engine and the
identity function as the translation procedure.

The work by Shlyakhter et al. [3] is most closely related to ours. It proposes
the One-Step Core Extractor (OCE) for declarative specifications in a language
reducible to propositional logic. As discussed in previous sections, OCE is faster

15

than RCE but produces cores that are two to three times larger than the corre-
sponding minimal cores.

6 Conclusions

We have presented recycling core extraction, a new method for finding minimal
unsatisfiable cores of declarative specification, and compared it to two simpler
algorithms, NCE and SCE. On hard problems, the base recycling extraction
algorithm (RCE), which reuses all available learned clauses, is about 29x faster
than NCE and 18x faster than SCE. But even greater speed-ups can be achieved
with a simple variant of RCE that is trained to recycle a fixed subset of the
available resolvents in each iteration.

RCE has so far been used as a coverage analysis for hand-crafted formal
models within the interactive modeling environment of the Alloy Analyzer. It
seems likely, however, that RCE will be applicable in other settings, particularly
those involving large, automatically generated specifications, enabling its use for
coverage analysis in code checking [29–31] and declarative configuration [32].

References

1. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for temporal logic
model checking. LCNS 2031 (2001) 528+

2. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. In:
Conference on Correct Hardware Design and Verification Methods. (1999) 82–96

3. Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging
overconstrained declarative models using unsatisfiable cores. In: ASE ’03. (2003)

4. Shlyakhter, I.: Declarative Symbolic Pure Logic Model Checking. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA (2005)

5. Jackson, D.: Software Abstractions: logic, language, and analysis. MIT Press,
Cambridge, MA (2006)

6. Chang, F.: Alloy analyzer 4.0. http://alloy.mit.edu/alloy4/ (2007)

7. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1) (1965) 23–41

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT’03. Volume LNCS 2919.
(2004) 502–518

9. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT solver. In: DATE ’02.
(2002) 142–149

10. Mahajan, Y.S., Fu, Z., Malik, S.: zchaff2004: An efficient SAT solver. In: SAT
(Selected Papers). (2004) 360–375

11. Kalman, J.A.: Automated Reasoning with Otter. Rinton Press (2001)

12. Riazanov, A.: Implementing an Efficient Theorem Prover. PhD Thesis, The Uni-
versity of Manchester, Manchester (2003)

13. Weidenbach, C.: Combining superposition, sorts and splitting. Handbook of auto-
mated reasoning (2001) 1965–2013

14. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS ’07, Braga,
Portugal (2007)

16

15. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model
finding. In: CADE-19 Workshop on Model Computation, Miami, FL (2003)

16. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models
by reduction to function-free clause logic. Journal of Applied Logic (2007)

17. Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Jour-
nal of Automated Reasoning 21(2) (1998) 177–203

18. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in
linear programs. ORSA Journal of Computing 3(2) (1991) 157–158

19. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfi-
able core extraction. In: SAT ’06. LNCS, Springer Berlin (2006) 36–41

20. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: DATE ’03. (2003)

21. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas.
In: SAT ’05. (2005)

22. Lynce, I., ao Marques-Silva, J.: On computing minimum unsatisfiable cores. In:
SAT ’04. (2004)

23. Mneimneh, M., Lynce, I., Andraus, Z., ao Marques-Silva, J., Sakallah, K.A.: A
branch and bound algorithm for extracting smallest minimal unsatisfiable formulas.
In: SAT ’05. (2005)

24. Oh, Y., Mneimneh, M., Andraus, Z., Sakallah, K., Markov, I.: Amuse: A minimally-
unsatisfiable subformula extractor. In: DAC, ACM/IEEE (2004) 518–523

25. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean
formula. In: SAT ’03. (2003)

26. Grégoire, E., Mazure, B., Piette, C.: Extracting MUSes. In: ECAI’06, Trento
(Italy) (2006) 387–391

27. Grégoire, E., Mazure, B., Piette, C.: Local-search extraction of MUSes. Constraints
Journal 12(3) (2007) 324–344

28. Grégoire, E., Mazure, B., Piette, C.: Boosting a complete technique to find MSS
and MUS thanks to a local search oracle. In: IJCAI’07. Volume 2., Hyderabad
(India) (2007) 2300–2305

29. Dennis, G., Chang, F., Jackson, D.: Modular verification of code. In: ISSTA ’06,
Portland, Maine (2006)

30. Dolby, J., Vaziri, M., Tip, F.: Finding bugs efficiently with a sat solver. In: ESEC-
FSE ’07, New York, NY, USA, ACM (2007) 195–204

31. Taghdiri, M.: Automating Modular Program Verification by Refining Specifica-
tions. PhD thesis, Massachusetts Institute of Technology (2007)

32. Yeung, V.: Declarative configuration applied to course scheduling. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA (2006)

