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ABSTRACT
The wealth of information on the web makes it an at-
tractive resource for seeking quick answers to simple,
factual questions such as \who was the �rst American in
space?" or \what is the second tallest mountain in the
world?" Yet today's most advanced web search services
(e.g., Google and AskJeeves) make it surprisingly te-
dious to locate answers to such questions. In this paper,
we extend question-answering techniques, �rst studied
in the information retrieval literature, to the web and
experimentally evaluate their performance.
First we introduce Mulder, which we believe to

be the �rst general-purpose, fully-automated question-
answering system available on the web. Second, we de-
scribe Mulder's architecture, which relies on multiple
search-engine queries, natural-language parsing, and a
novel voting procedure to yield reliable answers coupled
with high recall. Finally, we compare Mulder's per-
formance to that of Google and AskJeeves on questions
drawn from the TREC-8 question track. We �nd that
Mulder's recall is more than a factor of three higher
than that of AskJeeves. In addition, we �nd that Google
requires 6.6 times as much user e�ort to achieve the
same level of recall as Mulder.

1. INTRODUCTION
While web search engines and directories have made

important strides in recent years, the problem of ef-
�ciently locating information on the web is far from
solved. This paper empirically investigates the prob-
lem of scaling question-answering techniques, studied
in the information retrieval and information extraction
literature [1, 16], to the web. Can these techniques,
previously explored in the context of much smaller and
more carefully structured corpora, be extended to the
web? Will a question-answering system yield bene�t
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when compared to cutting-edge commercial search en-
gines such as Google1?
Our focus is on factual questions such as \what is the

second tallest mountain in the world?" or \who was the
�rst American in space?" While this species of questions
represents only a limited subset of the queries posed
to web search engines, it presents the opportunity to
substantially reduce the amount of user e�ort required
to �nd the answer. Instead of forcing the user to sift
through a list search engine \snippets" and read through
multiple web pages potentially containing the answer,
our goal is to develop a system that concisely answers
\K-2" or \Alan Shepard" (along with the appropriate
justi�cation) in response to the above questions.
As a step towards this goal, this paper intro-

duces the Mulder web question-answering system.
We believe that Mulder is the �rst general-purpose,
fully-automated question-answering system available on
the web.2 The commercial search engine known as
AskJeeves3 responds to natural-language questions but
its recall is very limited (see Section 4) suggesting that
it is not fully automated.
To achieve its broad scope, Mulder automatically

submits multiple queries on the user's behalf to a search
engine (Google) and extracts its answers from the en-
gine's output. Thus, Mulder is an information car-
nivore in the sense described in [13]. Mulder utilizes
several natural-language parsers and heuristics in order
to return high-quality answers.
The remainder of this paper is organized as follows.

Section 2 provides background information on question-
answering systems and considers the requirements for
scaling this class of systems to the web. Section 3 de-
scribes Mulder and its architecture. Section 4 com-
pares Mulder's performance experimentally with that
of AskJeeves and Google, and also analyzes the con-
tribution of each of Mulder's key components to its
performance. We conclude with a discussion of related
and future work.

2. BACKGROUND
A question answering (QA) system provides direct an-

swers to user questions by consulting its knowledge base.
Since the early days of arti�cial intelligence in the 60's,

1http://www.google.com
2See http://mulder.cx for a prototype
3http://www.ask.com
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researchers have been fascinated with answering natural
language questions. However, the diÆculty of natural
language processing (NLP) has limited the scope of QA
to domain-speci�c expert systems.
In recent years, the combination of web growth, im-

provements in information technology, and the explosive
demand for better information access has reignited the
interest in QA systems. The availability of huge doc-
ument collections (e.g., the web itself), combined with
improvements in information retrieval (IR) and NLP
techniques, has attracted the development of a special
class of QA systems that answers natural language ques-
tions by consulting a repository of documents [16]. The
Holy Grail for these systems is, of course, answering
questions over the web. A QA system utilizing this re-
source has the potential to answer questions of a wide
variety of topics, and will constantly be kept up-to-date
with the web itself. Therefore, it makes sense to build
QA systems that can scale up to the web.
In the following sections, we look at the anatomy of

QA systems, and what challenges the web poses for
them. We then de�ne what is required of a web-based
QA system.

2.1 Components of a QA system
An automated QA system based on a document col-

lection typically has three main components. The �rst
is a retrieval engine that sits on top of the document
collection and handles retrieval requests. In the con-
text of web, this is a search engine that indexes web
pages. The second is a query formulation mechanism
that translates natural-language questions into queries
for the IR engine in order to retrieve relevant documents
from the collection, i.e., documents that can potentially
answer the question. The third component, answer ex-
traction, analyzes these documents and extracts answers
from them.

2.2 Challenges of the Web
Although the web is full of information, �nding

the facts sometimes resembles picking needles from a
haystack. The following are speci�c challenges of the
web to an automated QA system:

� Forming the right queries. Given a question,
translating it into a search engine query is not a
trivial task. If the query is too general, too many
documents may be retrieved and the system would
not have enough resources to scan through all of
them. If the query is too speci�c, no pages are
retrieved. Getting the right set of pages is crucial
in dealing with the web.

� Noise. Sometimes even with the right set of key-
words, the system may still retrieve a lot of pages
that talk about something else. For example,
we issued the query first american in space to
Google, and received results about the �rst Amer-
ican woman in space and the �rst American to
vote from space. The QA system has to be toler-
ant of such noise or it will become confused and
give incorrect answers.

� Factoids. By far the worst scenario for a QA
system is �nding falsehoods. Advanced NLP tech-

niques in the future may allow us to �nd answers
90% of the time, but if the knowledge is incor-
rect then the answer is still invalid. Sometimes
such factoids are human errors or lies, but not al-
ways. For example, one of the sites returned by
Google stated \John Glenn was the �rst Ameri-
can in space", which is false. However, the site is
labeled \Common misconceptions in Astronomy".
Such sentences can cause a lot of headaches for
QA systems.

� Resource limitations. Search engines have been
improving steadily and are faster than ever, but it
is still very taxing to issue a few dozen queries
in order to answer each question. A QA system
has to make intelligent decisions on which queries
to try instead of blindly issuing combinations of
words. Online interactive QA systems also have
to consider the time spent by the user in waiting
for an answer. Very few users are willing to wait
more than a few minutes.

In the next section, we describe a fully implemented
prototype web QA system, Mulder, which takes these
factors into consideration.

3. THE MULDER WEB QA SYSTEM
Figure 1 shows the architecture of Mulder. The user

begins by asking the question in natural language from
Mulder's web interface. Mulder then parses the ques-
tion using a natural language parser (section 3.1), which
constructs a tree of the question's phrasal structure.
The parse tree is given to the classi�er (section 3.2)
which determines the type of answer to expect. Next,
the query formulator (section 3.3) uses the parse tree
to translate the question into a series of search engine
queries. These queries are issued in parallel to the search
engine (section 3.4), which fetches web pages for each
query. The answer extraction module (section 3.5) ex-
tracts relevant snippets called summaries from the web
pages, and generates a list of possible candidate answers
from these snippets. These candidates are given to the
answer selector (section 3.6) for scoring and ranking;
the sorted list of answers (presented in the context of
their respective summaries) is displayed to the user.
The following sections describe each component in de-

tail.

3.1 Question Parsing
In contrast to traditional search engines which treat

queries as a set of keywords, Mulder parses the user's
question to determine its syntactic structure. As we
shall see, knowing the structure of the question allows
Mulder to formulate the question into several di�er-
ent keyword queries which are submitted to the search
engine in parallel, thus increasing recall. Furthermore,
Mulder uses the question's syntactic structure to bet-
ter extract plausible answers from the pages returned
by the search engine.
Natural language parsing is a mature �eld with a

decades-long history, so we chose to adopt the best ex-
isting parsing technology rather than roll our own. To-
day's best parsers employ statistical techniques [12, 8].
These parsers are trained on a tagged corpus, and they
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Figure 1: Architecture of Mulder

use learned probabilities of word relationships to guide
the search for the best parse. The Maximum Entropy-
Inspired (MEI) parser [9] is one of the best of this breed,
and so we integrated it into Mulder. The parser was
trained on the Penn Wall Street Journal tree-bank [21]
sections 2� 21.
Our overall experience with the parser has been pos-

itive, but initially we discovered two problems. First,
due to its limited training set the parser has a restricted
vocabulary. Second, when the parser does not know
a word, it attempts to make educated guesses for the
word's part-of-speech. This increases its search space,
and slows down parsing.4 In addition, the guesses can
be quite bad. In one instance, the parser tagged the
word \tungsten" as a cardinal number. To remedy both
of these problems, we integrated a lexical analyzer called
Pc-Kimmo [3] into the MEI parser. Lexical analysis al-
lows Mulder to tag previously unseen words. For ex-
ample,Mulder does not know the word \neurological",
but by breaking down the word into the root \neurol-
ogy" and the suÆx \-al", it knows the word is an ad-
jective. When the MEI parser does not know a word,
Mulder uses Pc-Kimmo to recognize and tag the part-
of-speech of the word. If Pc-Kimmo also does not know
the word either, we adopt the heuristic of tagging the
word as a proper noun.

4While speed is not a concern for short questions, longer
questions can take a few seconds to parse. We also use
the parser extensively in the answer extraction phase to
parse longer sentences, where speed is a very important
issue.

Mulder's combination of MEI/Pc-Kimmo and noun
defaulting is able to parse all Trec-8 questions cor-
rectly.

3.2 Question Classifier
Question classi�cation allows Mulder to narrow the

number of candidate answers during the extraction
phase. Our classi�er recognizes three types of questions:
nominal, numerical and temporal, which correspond to
noun phrase, number, and date answers. This simple hi-
erarchy makes classi�cation an easy task and o�ers the
potential of very high accuracy. It also avoids the diÆ-
cult process of designing a complete question ontology
with manually-tuned answer recognizers.
Most natural questions contain a wh-phrase, which

consists of the interrogative word and the subsequent
words associated with it. The MEI parser distinguishes
four main types of wh-phrases, and Mulder makes use
of this type information to classify the question. Wh-
adjective phrases, such as \how many" and \how tall",
contain an adjective in addition to the question words.
These questions inquire about the degree of something
or some event, and Mulder classi�es them as numer-
ical. Wh-adverb phrases begin with single question
words such as \where" or \when". We use the inter-
rogative word to �nd the question type, e.g., \when"
is temporal and \where" is nominal. Wh-noun phrases
usually begin with \what", and the questions can look
for any type of answer. For example, \what height"
looks for a number, \what year" a date, and \what car"
a noun. We use the object of the verb in the question
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to determine the type. To �nd the object of the verb,
Mulder uses the Link parser [14]. The Link parser
is di�erent from the MEI parser in that it outputs the
sentence parse in the form of the relationships between
words (called links) instead of a tree structure. Mul-

der uses the verb-object links to �nd the object in the
question. Mulder then consults WordNet [22] to deter-
mine the type of the object. WordNet is a semantic net-
work containing words grouped into sets called synsets.
Synsets are linked to each other by di�erent relations,
such as synonyms, hypernyms and meronyms5 To clas-
sify the object word, we traverse the hypernyms of the
object until we �nd the synsets of \measure" or \time".
In the former case, we classify the question as numeri-
cal, and in the latter case temporal. Sometimes a word
can have multiple senses, and each sense may lead to a
di�erent classi�cation, e.g., \capital" can be a city or
a sum of money. In such cases we assume the question
is nominal. Finally, if the question does not contain a
wh-phrase (e.g., \Name a �lm that has won the Golden
Bear award : : : "), we classify it as nominal.

3.3 Query Formulation
The query formulation module converts the ques-

tion into a set of keyword queries that will be sent
to the search engine for parallel evaluation. Mul-

der has a good chance of success if it can guess how
the answer may appear in a target sentence, i.e. a
sentence that contains the answer. We believe this
strategy works especially well for questions related
to common facts, because these facts are replicated
across the web on many di�erent sites, which makes
it highly probable that some web page will contain
our formulated phrase. To illustrate, one can �nd
the answer to our American-in-space question by issu-
ing the phrase query \"The first American in space
was"".6 When given this query, Google returns 34
pages, and most of them say \The first American
in space was Alan Shepard," with variations of Shep-
ard's name.
A second insight behindMulder's query formulation

method is the idea of varying the speci�city of the query.
The most general query contains only the most impor-
tant keywords from the user's question, while the most
speci�c queries are quoted partial sentences. Longer
phrases place additional constraints on the the query,
increasing precision, but reducing the number of pages
returned. If the constraint is too great, then no pages
will be returned at all. A priori it is diÆcult to know
the optimal point on the generality/speci�city tradeo�,
hence our decision to try multiple points in parallel; if a
long phrase query fails to return, Mulder can fall back
on the more relaxed queries. Mulder currently imple-
ments the following reformulation strategies, in order of
general to speci�c:

� Verb Conversion. For questions with an aux-
illiary do-verb and a main verb, the target sen-

5A hypernym is a word whose meaning denotes a super-
ordinate, e.g., animal is a hypernym of dog. A meronym
is a concept that is a part of another concept, e.g., knob
is a meronym of door.
6The actual query is \"+the first American +in
space +was"", following Google's stop word syntax.

tence is likely to contain the verb in the conjugated
form rather than separate verbs. For example, in
\When did Nixon visit China?", we expect the
target sentence to be \Nixon visited China : : : "
rather than \Nixon did visit China : : : ". To form
the verb \visited", we use Pc-Kimmo's word syn-
thesis feature. It generates words by combining
the in�nitive of a word with di�erent suÆxes or
pre�xes.7 Mulder forms a query with the auxil-
liary and the main verb replaced by the conjugated
verb.

� Query Expansion. Extending the query vocab-
ulary via a form of query expansion [5, 29] im-
proves Mulder's chances of �nding pages with
an answer. For example, with wh-adjective ques-
tions such as \How tall is Mt. Everest?", the an-
swers may occur in sentences such as \the height of
Everest is : : : ". For these questions, we use Word-
Net [22] to �nd the attribute noun of the adjec-
tives. Mulder composes a new query by replac-
ing the adjective with its attribute noun. Tight
bounds are employed to ensure that Mulder will
not ood the search engine with too many queries.

� Noun Phrase Formation. Many noun phrases,
such as proper names, are atomic and should
not be broken down. Mulder gets more rel-
evant web pages if it quotes these entities in
its query. For example, if one wants to �nd
web pages on question-answering research, the
query \"question answering"" performs better
than the unquoted query. Mulder implements
this idea by composing a query with quoted non-
recursive noun phrases, i.e., noun phrases that do
not contain other noun phrases.

� Transformation. Transforming the question
into equivalent assertions (as illustrated in the be-
ginning of this section) is a powerful method for
increasing the chance of getting target sentences.
Transformational Grammar [11, 2] allowsMulder

to do this in a principled manner. The grammar
de�nes conversion rules applicable to a sentence,
and their e�ects on the semantics of the sentence.
The following are some sample transformations we
have implemented in Mulder:

1. Subject-Aux Movements. For ques-
tions with a single auxilliary and a trail-
ing phrase such as the American-in-space
question, Mulder can remove the interrog-
ative and form two queries with the phrase
placed in front and after the auxilliary,
respectively, i.e.\"was the first American
in space"" and \"the first American in
space was"".

2. Subject-Verb Movements. If there is a
single verb in the question, Mulder forms
a query by stripping the interrogative, e.g.,
from \who shot JFK?" Mulder creates
\"shot JFK"".

7Irregular verbs are handled specially by Pc-Kimmo,
but are only slightly trickier than the regulars.
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The actual rules are slightly more complicated in
order to handle complex sentences, but the essence
is the same.

Since only a subset of these techniques is applicable to
each question, for each user question Mulder's query
formulation module issues approximately 4 search en-
gine queries on average. We think this is a reasonable
load on the search engine. Section 4.4 details exper-
iments that show that reformulation signi�cantly im-
proves Mulder's performance.

3.4 Search Engine
Since Mulder depends on the web as its knowledge

base, the choice of search engine essentially determines
our scope of knowledge, and the method of retrieving
that knowledge. The idiosyncrasies of the search engine
also a�ect more than just the syntax of the queries. For
example, with Boolean search engines one could issue a
query A AND ( B OR C ), but for search engines which
do not support disjunction, one must decompose the
original query into two, A B and A C, in order to get the
same set of pages.
We considered a few search engine candidates, but

eventually chose Google. Google has two overwhelm-
ing advantages over others: it has the widest cover-
age among search engines (as of October 2000, Google
has indexed 1.2 billion web pages), and its page rank-
ing function is unrivaled. Wider coverage means that
Mulder has a larger knowledge base and access to
more information. Moreover, with a larger collection
we have a higher probability of �nding target sen-
tences. Google's ranking function helpsMulder in two
ways. First, Google's ranking function is based on the
PageRank [17] and the Hits algorithms [19], which
use random walk and link analysis techniques respec-
tively to determine sites with higher information value.
This providesMulder with a selection of higher quality
pages. Second, Google's ranking function is also based
on the proximity of words, i.e., if the document has key-
words closer together, it will be ranked higher. While
this has no e�ect on queries with long phrases, it helps
signi�cantly in cases when we have to rely on keywords.

3.5 Answer Extraction
The answer extraction module is responsible for ac-

quiring candidate answers from the retrieved web pages.
In Mulder, answer extraction is a two-step process.
First, we extract snippets of text that are likely to con-
tain the answer from the pages. These snippets are
called summaries; Mulder ranks them and selects the
N best. Next Mulder parses the summaries using the
MEI parser and obtains phrases of the expected answer
type. For example, after Mulder has retrieved pages
from the American-in-space queries, the summary ex-
tractor obtains the snippet \The �rst American in space
was Alan B. Shepard. He made a 15 minute subor-
bital ight in the Mercury capsule Freedom 7 on May
5, 1961." WhenMulder parses this snippet, it obtains
the following noun phrases, which become candidate an-
swers: \The �rst American", \Alan B. Shepard", \sub-
orbital ight" and \Mercury capsule Freedom 7".
We implemented a summary mechanism instead of

extracting answers directly from the web page because

the latter is very expensive. The MEI parser takes be-
tween a half second for short sentences to three or more
for longer sentences, making it impractical to parse ev-
ery sentence on every web page retrieved. Moreover,
regions that are not close to any query keywords are
unlikely to contain the answer.
Mulder's summary extractor operates by locating

textual regions containing keywords from the search en-
gine queries. In order to bound subsequent parser time
and improve eÆciency, these regions are limited to at
most 40 words and are delimited by sentence bound-
aries whenever possible. We tried limiting summaries
to a single sentence, but this heuristic reduced recall
signi�cantly. The following snippet illustrates why mul-
tiple sentences are often useful: \Many people ask who
was the �rst American in space. The answer is Alan
Shepard whose suborbital ight made history in 1961."
After Mulder has extracted summaries from each

web page, it scores and ranks them. The scoring func-
tion prefers summaries that contain more important
keywords which are close to each other. To determine
the importance of a keyword, we use a common IR met-
ric known as inverse document frequency (IDF), which
is de�ned by N

df
, where N is the size of a document col-

lection and df is the number of documents containing
the word. The idea is that unimportant words, such as
\the" and \is", are in almost all documents while im-
portant words occur sparingly. To obtain IDF scores for
words, we collected about 100,000 documents from var-
ious online encyclopedias and computed the IDF score
of every word in this collection. For unknown words, we
assume df is 1. To measure how close keywords are to
each other, Mulder calculates the square-root-mean of
the distances between keywords. For example, suppose
d1; : : : ; dn�1 are the distances between the n keywords
in summary s, then the distance is

D(s) =

q
d2
1
+ : : :+ d2n�1

(n� 1)

If s has n keywords, each with weight wi, then its
score is given by:

S(s) =

Pn
i=1 wi

D(s)

Mulder selects the best N summaries and parses
them using the MEI parser. To reduce the overall parse
time, Mulder runs many instances of the MEI parser
on di�erent machines so that parsing can be done in par-
allel. We also created a quality switch for the parser,
so that Mulder can trade quality for time. The parse
results are then scanned for the expected answer type
(noun phrases, numbers, or dates), and the candidate
answers are collected.

3.6 Answer Selection
The answer selection module picks the best answer

among the candidates with a voting procedure. Mulder

�rst ranks the candidates according to how close they
are to keywords. It then performs clustering to group
similar answers together, and a �nal ballot is cast for all
clusters; the one with the highest score wins. The �nal
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answer is chosen from the top candidate in this clus-
ter. For instance, suppose we have 3 answer candidates,
\Alan B. Shepard", \Shepard", and \John Glenn", each
with scores 2, 1 and 2 respectively. The clustering will
result in two groups, one with \Alan B. Shepard" and
\Shepard" and the other with \John Glenn". The for-
mer is scored 3 and the latter 2, thus Mulder would
pick the Shepard cluster as the winner and select \Alan
B. Shepard" as the �nal answer.
Mulder scores a candidate answer by its distance

from the keywords in the neighborhood, weighted by
how important those keywords are. Let ki represent a
keyword, ai an answer word and ci a word that does not
belong to either category. Furthermore, let wi be the
weight of keyword ki. Suppose we have a string of con-
secutive keywords on the left side of the answer candi-
date beginning at a1, separated by m unrelated words,
i.e., k1 : : : knc1 : : : cma1 : : : ap, Mulder scores the an-
swer by

KL =
w1 + : : :+ wn

m

(the L in KL stands for \Left".) We compute a similar
score, KR, with the same formula, but with keywords
on the right side of the answer. The score for a can-
didate is max(KL; KR). For certain types of queries,
we modify this score with multipliers. The answers
for temporal and wh-adverb (when, where) queries are
likely to occur inside prepositional phrases, so we raise
the score for answers that occur under a prepositional
phrase. Some transformations expect the answers on
a certain side of the query keywords (left or right).
For example, the search engine query \"was the first
American in space"" expects the answer on the left
side of this phrase, soMulder rejects potential answers
on the right side.
After we have assigned scores to each candidate an-

swer, we cluster them into groups. This procedure ef-
fects several corrections:

� Reducing noise. Random phrases that occur
by chance are likely to be eliminated from further
consideration by clustering.

� Allowing alternative answers. Many answers
have alternative acceptable forms. For example,
\Shepard", \Alan B. Shepard", \Alan Shepard"
are all variations of the same name. Clustering
collects all of these dissimilar entries together so
that they have collective bargaining power and get
selected as the �nal answer.

� Separating facts from �ction. The web con-
tains a lot of misinformation. Mulder assumes
the truth will prevail and occur more often, and
clustering embeds this ideal.

Our clustering mechanism is a simpli�ed version of
suÆx tree clustering [31]. Mulder simply assigns an-
swers that share the same words into the same cluster.
While a complete implementation of suÆx tree cluster-
ing that handles phrases may give better performance
than our simple algorithm, our experience shows word-
based clustering works reasonably well.

After the clusters are created, they are ranked accord-
ing to the sum of the scores of their member answers.
The member answer with the highest individual score
is chosen as the representative of each cluster.
The sorted list of ranked clusters and their represen-

tatives are displayed as the �nal results to the user.
Figure 2 shows Mulder's response to the American-in-
space question.

4. EVALUATION
In this section, we evaluate the performance of Mul-

der by comparing it with two popular and highly-
regarded web services, Google (the web's premier search
engine) and AskJeeves (the web's premier QA sys-
tem). In addition, we evaluate how di�erent compo-
nents contribute to Mulder's performance. Speci�-
cally, we study the e�ectiveness of query formulation,
answer extraction and the voting selection mechanism.
AskJeeves allows users to ask questions in natural

language. It looks up the user's question in its own
database and returns a list of matching questions which
it knows how to answer. The user selects the most ap-
propriate entry in the list, and is taken to a web page
where the answer will be found. Its database of ques-
tions appears to be constructed manually, therefore the
corresponding web pages reliably provide the desired an-
swer. We also compare Mulder with Google. Google
supplies the web pages that Mulder uses in our cur-
rent implementation and provides a useful baseline for
comparison.
We begin by de�ning various metrics of our experi-

ment in section 4.1, then in section 4.2 we describe our
test question set. In section 4.3, we compare the per-
formance of Mulder with the two web services on the
Trec-8 question set. Finally, in section 4.4 we investi-
gate the eÆcacy of various system components.

4.1 Experimental Methodology
The main goal of our experiments is to quantitatively

assess Mulder's performance relative to the baseline
provided by Google and AskJeeves. Traditional infor-
mation retrieval systems use recall and precision to mea-
sure system performance. Suppose we have a document

Figure 2: Mulder output for the question \Who
was the �rst American in space?"
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collection D, there is a subset R of this collection that
is relevant to a query Q. The retrieval system fetches

a subset F of D for Q. Recall is de�ned as jF\Rj
jRj

and

precision jF\Rj
jF j

. In other words, recall measures how

thorough the system is in locating R. Precision, on
the other hand, measures how many relevant retrieved
documents are among the retrieved set, which can be
viewed as a measure of the e�ort the user has to ex-
pend to �nd the relevant documents. For example, if
precision is high then, all other things being equal, the
user spends less time sifting through the irrelevant doc-
uments to �nd relevant ones.
In question answering, we can de�ne recall as the per-

centage of questions answered correctly from the test
set. Precision, on the other hand, is inappropriate to
measure in this context because a question is answered
either correctly or incorrectly.8 Nonetheless, we would
still like to measure how much user e�ort is required to
�nd the answer, not merely what fraction of the time
an answer is available.
To measure user e�ort objectively across the di�er-

ent systems, we need a metric that captures or approx-
imates how much work it takes for the user to reach
an answer while reading through the results presented
by each system. While the true \cognitive load" for
each user is diÆcult to capture, a natural candidate for
measuring user e�ort is time; the longer it takes the
user to reach the answer, the more e�ort is expended
on the user's part. However, reading time depends on
numerous factors, such as how fast a person reads, how
well the web pages are laid out, how experienced the
user is with the subject, etc. In addition, obtaining
data for reading time would require an extensive user
study. Thus, in our �rst investigation of the feasibility
of web QA systems, we chose to measure user e�ort by
the number of words the user has to read from the start
of each system's result page until they locate the �rst
correct answer.
Naturally, our measure of user e�ort is approximate.

It does not take into account page layout, users' ability
to skip text instead of reading it sequentially, di�erences
in word length, etc. However, it has two important ad-
vantages. First, the metric can be computed automati-
cally without requiring an expensive user study. Second,
it provides a common way to measure user e�ort across
multiple systems with very di�erent user interfaces.
We now de�ne our metric formally. The word dis-

tance metric counts how many words it takes an ideal-
ized user to reach the �rst correct answer starting from
the top of the system's result page and reading sequen-
tially towards the bottom. Suppose s1; s2; : : : ; sn are
the summary entries in the results page returned by the
system, and di is the web page linked to by si. We de-
�ne jtj to be the number of words in the text t before
the answer. If t does not have the answer, then jtj is

8Consider a search engine that returns one hundred re-
sults. In one case, the correct answer is the top-ranked
result and all other answers are incorrect. In the sec-
ond case, the �rst �fty answers are incorrect and the
last �fty are correct. While precision is much higher
in the second case, user e�ort is minimized in the �rst
case. Unlike the case of collecting relevant documents,
the value of repeating the correct answer is minimal.

the total number of words in t. Finally, let a be the
index of the entry with the answer, thus sa and da are
the �rst snippet and document containing the answer
respectively. j da j= 0 if the answer is found in sa, since
we do not need to view da if sa already contains the
answer.
We now de�neW (C;P ), the word distance of the �rst

correct answer C on a results page P , as follows:

W (C;P ) =

 
aX
i=1

j si j

!
+ j da j

Note that our word distance metric favors Google and
AskJeeves by assuming that the user is able to deter-
mine which document di contains the answer by reading
snippets exclusively, allowing her to skip d1 : : : di�1. On
the other hand, it does assume that people read snip-
pets and pages sequentially without skipping or employ-
ing any kind of \speed reading" techniques. Overall, we
feel that this a fair, though approximate, metric for com-
paring user e�ort across the three systems investigated.
It is interesting to note that an average person reads

280 words per minute [27], thus we can use word dis-
tance to provide a rough estimate of the time it takes
to �nd the answer.

4.2 Data Set
For our test set, we use the Trec-8 question track

which consists of 200 questions of varying type, topic,
complexity and diÆculty. Some example questions are
shown in Table 1.
In the original question track, each system is pro-

vided with approximately 500,000 documents from the
Trec-8 document collection as its knowledge base, and
is required to supply a ranked list of candidate answers
for each question. The score given to each participant is
based on where answers occur in its lists of candidates.
The scoring procedure is done by trained individuals.
All the questions are guaranteed to have an answer in
the collection.
We chose Trec-8 as our test set because its ques-

tions are very well-selected, and it allows our work to
be put into context with other systems which partic-
ipated in the track. However, our experiments di�er
from the Trec-8 question track in four ways. First,
Mulder is a QA system based on the web, therefore
we do not use the Trec-8 document collection as our
knowledge base. Second, because we do not use the
original document collection, it is possible that some
questions will not have answers. For example, we spent
about 30 minutes with Google looking for the answer to
\How much did Mercury spend on advertising in 1993?"
and could not �nd an answer. Third, since we do not
have the resources to score all of our test runs manu-
ally, we constructed a list of answers based on Trec-8's
relevance judgment �le9 and our manual e�ort. Fur-
thermore, some of Trec-8's answers had to be slightly
modi�ed or updated. For example, \How tall is Mt.
Everest?" can be answered either in meters or feet;
\Donald Kennedy" was Trec-8's answer to \Who is

9http://trec.nist.gov/data/qrels eng/
qrels.trec8.qa.gz
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Question Answer

Who is the President of Ghana? Rawlings
What is the name of the rare neurological disease with symptoms such as:
involuntary movements (tics), swearing, and incoherent vocalizations (grunts,
shouts, etc.)?

Tourette' s Syndrome

How far is Yaroslavl from Moscow? 280 miles
What country is the biggest producer of tungsten? China
When did the Jurassic Period end? 144 million years ago

Table 1: Some sample questions from Trec-8 with answers provided by Mulder.

the president of Stanford University", but it is Gerhard
Casper at the time of writing.10 Finally, whereas Trec-
8 participants are allowed to return a snippet of �xed
length text as the answer, Mulder returns the most
precise answer whenever possible.

4.3 Comparison with Other Systems
In our �rst experiment, we compare the user e�ort

required to �nd the answers in Trec-8 by using Mul-

der, Google and AskJeeves. User e�ort is measured
using word distance as de�ned in section 4.1. At each
word distance level, we compute the recall for each sys-
tem. The maximum user e�ort is bounded at 5000,
which represents more than 15 minutes of reading by a
normal person. To compare the systems quantitatively,
we compute total e�ort at recall r% by summing up the
user e�ort required from 0% recall up to r%. Figure 3
shows the result of this experiment.
The experiment shows that Mulder outperforms

both AskJeeves and Google. Mulder consistently re-
quires less user e�ort to reach an answer than either
system at every level of recall. AskJeeves has the low-
est level of recall; its maximum is roughly 20%. Google

10The updated set of questions and answers
used in our experiments is publicly available at
http://longinus.cs.washington.edu/mulder/trec8t.qa.
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Figure 3: Recall vs. user e�ort: Mulder versus
Google versus AskJeeves. On average, Google
requires 6.6 times the total e�ort of Mulder, to
achieve the same level of recall. AskJeeves' per-
formance is substantially worse.

requires 6.6 times more total e�ort than Mulder at
64.5% recall (Google's maximum recall).
Mulder displayed an impressive ability to answer

questions e�ectively. As �gure 3 shows, 34% of the
questions have the correct answer as their top-ranked
result (as compared with only 1% for Google.) Mul-

der's recall rises to about 60% at 1000 words. After
this point, Mulder's recall per unit e�ort grows lin-
early at a rate similar to Google. The questions in this
region are harder to answer, and some of the formu-
lated queries from transformations do not retrieve any
documents, hence Mulder's performance is similar to
that of Google. Mulder still has an edge over Google,
however, due to phrased queries and answer extraction.
The latter �lters out irrelevant text so that users can
�nd answers with Mulder while reading far less text
than they would using Google. Finally,Mulder's curve
extends beyond this graph to about 10,000 words, end-
ing at 75%. Based on our limited testing, we speculate
that of the 25% unanswered questions, about 10% can-
not be answered with pages indexed by Google at the
time of writing, and the remaining 15% require more
sophisticated search strategies.
From our results, we can also see the limited recall of

AskJeeves. This suggests that a search engine with a
good ranking function and wide coverage is better than
a non-automated QA system in answering questions.

4.4 Contributions by Component
Our second experiment investigates the contribution

of each component of Mulder to its performance. We
compare Mulder to three di�erent variants of itself,
each with a single missing component:

� Mulder without query formulation (M-QF).
We take away the query formulation module and
issue only the question to the search engine.

� Mulder without answer extraction (M-X)
Without answer extraction, we locate answers in
this system using the same approach we used for
Google in the previous experiment. To linearize
the results retrieved from multiple queries, we or-
der queries in order of generality, starting from the
most speci�c query. Then results from each query
are selected in a breadth-�rst manner. To illus-
trate, suppose ri;j is the jth result from the ith

query, and we have n queries. The order would
be r1;1; r2;1; : : : ; rn;1; r1;2; : : : ; rn;2; : : : and so on.
rn;i would be the ith result from the original un-
formulated query, since it is the most general.
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Figure 4: Recall vs. user e�ort: Mulder versus 3 di�erent con�gurations of itself - without query
formulation (M-QF), without answer extraction (M-X), and without voting (M-V). Google is the
baseline.

System total e�ort
total e�ort Mulder

Mulder 1.0
M-V 2.3
M-QF 3.0
M-X 3.8
Google 6.6

Table 2: Performances of Mulder variants and
Google as multiples of total e�ort required by
Mulder at 64.5% recall. All three Mulder vari-
ants perform worse than Mulder but better than
Google. The experiment suggests that answer
extraction (M-X) is the most important, fol-
lowed by query formulation (M-QF) and �nally
voting (M-V).

� Mulder without voting (M-V) In this system,
we replace voting by a simple scheme: it assigns
candidate answers the same score given to the
summaries from which they were extracted from.

In addition, we included Google as a baseline for com-
parison. As in the �rst experiment, we compare the sys-
tems' performance on recall and user e�ort. Figure 4
illustrates the results.
Figure 4 shows that at all recall levels, systems with

missing components perform worse than Mulder, but
better than Google. Among them, M-V appears to per-
form better than M-QF, and M-X trails both. Table 2
shows total user e�ort for each system as a multiple of
Mulder's at 64.5% recall, Google's maximum. The
numbers suggest that answer extraction is the most
important, followed by query formulation, and voting

least. Answer extraction plays a major role in distilling
text which saves users a lot of time. Query formulation
helps in two ways: �rst, by forming queries with alterna-
tive words that improve the chance of �nding answers;
second, by getting to the relevant pages sooner. The
positive e�ects of query formulation can also be seen
with the improvement in M-X over Google; we expect
this e�ect to be much more pronounced with other less
impressive search engines, such as AltaVista11 and Ink-
tomi.12 Finally, voting is the last element that enhances
answer extraction. Without voting, M-V only reaches
17% recall at e�ort 0; with voting, the number is dou-
bled. It is, however, less e�ective after 1500 words, be-
cause it becomes diÆcult to �nd any correct answer at
that point.

5. RELATED WORK
Although question answering systems have a long his-

tory in Arti�cial Intelligence, previous systems have
used processed or highly-edited knowledge bases (e.g.,
subject-relation-object tuples [18], edited lists of fre-
quently asked questions [6], sets of newspaper arti-
cles [16], and an encyclopedia [20]) as their founda-
tion. As far as we know, Mulder is the �rst automated
question-answering system that uses the full web as its
knowledge base. AskJeeves13 is a commercial service
that provides a natural language question interface to
the web, but it relies on hundreds of human editors to
map between question templates and authoritative sites.

11http://www.altavista.com
12http://www.inktomi.com. Inktomi powers
web sites such as http://www.hotbot.com and
http://www.snap.com.
13http://www.ask.com
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The Webclopedia project14 appears to be attacking the
same problem as Mulder, but we are unable to �nd
any publications for this system, and from the absence
of a functioning web interface, it appears to be still in
active development.
START [18] is one of the �rst QA systems with a web

interface, having been available since 1993. Focussed
on questions about geography and the MIT InfoLab,
START uses a precompiled knowledge base in the form
of subject-relation-object tuples, and retrieves these tu-
ples at run time to answer questions. Our experience
with the system suggests that its knowledge is rather
limited, e.g., it fails on simple queries such as \What is
the third highest mountain in the world?"
The seminal MURAX [20] uses an encyclopedia as

a knowledge base in order to answer trivia-type ques-
tions. MURAX combines a Boolean search engine with
a shallow parser to retrieve relevant sections of the en-
cyclopedia and to extract potential answers. The �nal
answer is determined by investigating the phrasal rela-
tionships between words that appear in the question.
According to its author MURAX's weak performance
stems from the fact that the vector space model of re-
trieval is insuÆcient for QA, at least when applied to a
large corpus like an encyclopedia.
Recently Usenet FAQ �les (collections of frequently

asked questions and answers, constructed by human
experts) have become a popular choice of knowledge
base, because they are small, cover a wide variety of
topics, and have high content-to-noise ratio. Auto-
FAQ [30] was an early system, limited to a few FAQ
�les. FAQFinder [6] is a more comprehensive system
which uses a vector-space IR engine to retrieve a list
of relevant FAQ �les from the question. After the user
selects a FAQ �le from the list, the system proceeds to
use question keywords to �nd a question-answer pair
in the FAQ �le that best matches the user's question.
Question matching is improved by using WordNet [22]
hypernyms to expand the possible keywords. Another
system [25] uses priority keyword matching to improve
retrieval performance. Keywords are divided into dif-
ferent classes depending on their importance and are
scored di�erently. Various morphological and lexical
transformations are also applied to words to improve
matching. Mulder uses a similar idea by applying IDF
scores to estimate the importance of words.
There are also many new QA systems spawning from

the Trec-8 QA competition [28], the 1999 AAAI Fall
Symposium on Question Answering [10] and the Mes-
sage Understanding Conferences [1]. Since the Trec-8
competition provides a relatively controlled corpus for
information extraction, the objectives and techniques
used by these systems are somewhat di�erent from those
of Mulder. Indeed, most Trec-8 systems use simple,
keyword-based retrieval mechanisms, instead focussing
on techniques to improve the accuracy of answer extrac-
tion. While e�ective in Trec-8, such mechanisms do
not scale well to the web. Furthermore, these systems
have not addressed the problems of noise or incorrect
information which plague the web. A lot of common
techniques are shared among the Trec-8 systems, most

14http://www.isi.edu/natural-language/projects/
webclopedia/

notably a question classi�cation mechanism and name-
entity tagging.
Question classi�cation methods analyze a question in

order to determine what type of information is being re-
quested so that the system may better recognize an an-
swer. Many systems de�ne a hierarchy of answer types,
and use the �rst few words of the question to determine
what type of answer it expects (such as [23, 26]). How-
ever, building a complete question taxonomy requires
excessive manual e�ort and will not cover all possible
cases. For instance, what questions can be associated
with many noun subjects, such as what height, what cur-
rency and what members. These subjects can also occur
in many positions in the question. In contrast, Mulder

uses a simple question wh-phrase matching mechanism
with combined lexical and semantic processing to clas-
sify the subject of the question with high accuracy.
Name-entity (NE) tagging associates a phrase or a

word with its semantics. For example, \Africa" is asso-
ciated with \country", \John" with \person" and \1.2
inches" with \length". Most of the NE taggers are
trained on a tagged corpus using statistical language
processing techniques, and report relatively high accu-
racy [4]. QA systems use the NE tagger to tag phrases
in the question as well as the retrieved documents. The
number of candidate answers can be greatly reduced if
the system only selects answers that have the required
tag type. Many systems report favorable results with
NE tagging, e.g. [26]. We believe a NE tagger would be
a useful addition to Mulder, but we also believe a QA
system should not rely too heavily on NE tagging, as
the number of new terms changes and grows rapidly on
the web.
Relationships between words can be a powerful mech-

anism to recover answers. As mentioned previously,
the START system uses subject-relation-object rela-
tionships. CL Research's QA system [24] parses all sen-
tences from retrieved documents and forms semantic
relation triples which consist of a discourse entity, a se-
mantic relation that characterizes the entity's role in
the sentence, and a governing word to which the entity
stands in the semantic relation. Another system, de-
scribed by Harabagiu [15], achieves respectable results
for Trec-8 by reasoning with linkages between words,
which are obtained from its dependency-based statisti-
cal parser [12]. Harabagiu's system �rst parses the ques-
tion and the retrieved documents into word linkages. It
then transforms these linkages into logical forms. The
answer is selected using an inference procedure, sup-
plemented by an external knowledge base. We believe
mechanisms of this type would be very useful in reduc-
ing the number of answer candidates in Mulder.

6. FUTURE WORK
Clearly, we need substantially more experimental

evaluation to validate Mulder's strong performance in
our initial experiments. We plan to compare Mulder

against additional search services, and against tradi-
tional encyclopedias. In addition, we plan to evaluate
Mulder using additional question sets and additional
performance metrics. We plan to conduct controlled
user studies to gauge the utility of Mulder to web
users. Finally, as we have done with previous research
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prototypes, we plan to gather data on the performance
of the deployed version of Mulder in practice.
Many challenges remain ahead of Mulder. Our cur-

rent implementation utilizes little of the semantic and
syntactic information available during answer extrac-
tion. We believe our recall will be much higher if these
factors are taken into consideration.
There are many elements that can determine the

truth of an answer. For example, the last-modi�ed in-
formation from web pages can tell us how recent the
page and its answer is. The authority of a page is also
important, since authoritative sites are likely to have
better contents and more accurate answers. In future
versions of Mulder we may incorporate these elements
into our answer selection mechanism.
We are also implementing our own search engine, and

plan to integrate Mulder with its index. We expect
that an evaluation of the best data structures and inte-
grated algorithms will provide many challenges. There
are many advantages to a local search engine, the most
obvious being reduced network latencies for querying
and retrieving web pages. We may also improve the eÆ-
ciency and accuracy for QA with analyses of a large doc-
ument collection. One disadvantage of a home-grown
search engine is our smaller coverage, since we do not
have the resources of a commercial search engine. How-
ever, with focussed web crawling techniques [7], we may
be able to obtain a very high quality QA knowledge base
with our limited resources.

7. CONCLUSION
In this paper we set out to investigate whether the

question-answering techniques studied in classical infor-
mation retrieval can be scaled to the web. While addi-
tional work is necessary to optimize the system so that
it can support high workloads with fast response, our
initial experiments (reported in Section 4) are encour-
aging. Our central contributions are the following:

� We �elded http://mulder.cx, the �rst general-
purpose, fully-automated question-answering sys-
tem available on the web.

� Mulder is based on a novel architecture that com-
bines information retrieval ideas with those of sta-
tistical natural language processing, lexical analy-
sis, query formulation, answer extraction, and vot-
ing.

� We performed an ablation experiment which
showed that each major component of Mulder

(query formulation, answer extraction, and vot-
ing) contributed to the system's overall e�ective-
ness.

� We conducted empirical experiments which
showed that Mulder reduces user e�ort by a
factor of 6.6 when compared with Google. We
also demonstrated a three-fold advantage in re-
call when comparing our fully-automatedMulder

system with the manually-constructed AskJeeves.

Our work is a step towards the ultimate goal of using
the web as a comprehensive, self-updating knowledge

repository that can be automatically mined to answer
a wide range of questions with much less e�ort than
is required from users interacting with today's search
engines.
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