
Automatically Personalizing User Interfaces

Daniel S. Weld Corin Anderson
�

Pedro Domingos Oren Etzioni
Krzysztof Gajos Tessa Lau

�

Steve Wolfman
Department of Computer Science & Engineering

University of Washington, Box 352350
Seattle, WA 98195–2350 USA

Abstract

Todays computer interfaces are one-size-fits-all.
Users with little programming experience have
very limited opportunities to customize an inter-
face to their task and work habits. Furthermore,
the overhead induced by generic interfaces will be
proportionately greater on small form-factor PDAs,
embedded applications and wearable devices. Au-
tomatic personalization may greatly enhance user
productivity, but it requires advances in customiza-
tion (explicit, user-initiated change) and adapta-
tion (interface-initiated change in response to rou-
tine user behavior). In order to improve customiza-
tion, we must make it easier for users to direct these
changes. In order to improve adaptation, we must
better predict user behavior and navigate the in-
herent tension between the dynamism of automatic
adaptation and the stability required in order for the
user to predict the computers behavior and main-
tain control. This paper surveys a decade’s work on
customization and adaptation at the University of
Washington, distilling the lessons we have learned.

1 Introduction
Today’s software is mass produced with a plethora of features
designed to satisfy every user. But since different people are
working on different tasks with different styles, there is no
way to organize features in a way that makes essential func-
tionality convenient for everyone. Consider word processing,
for example; most people will never use automatic line num-
bering, but legal secretaries couldn’t survive without it.

The shift away from the desktop and towards pervasive
computing greatly exacerbates the problem of “Steelcase In-
spired” software for several reasons. First, the shift from quiet
office to ubiquitous use introduces complex environmental
factors that increase the differences between the usage pat-
terns of distinct individuals; indeed, a single user will require
different features depending on context. Second, the form

�
Current address: Google Inc, 2400 Bayshore Parkway, Moun-

tain View, CA, 94043�
Current address: IBM TJ Watson Research Center, P.O. Box

704, Yorktown Heights, NY 10598

factor of mobile devices is enormously more variable than
that of desktop machines — for example, the ratio of large
to small desktop display size is about four, but it varies by a
factor of 625 between a cell-phone and a liveboard.

The wisdom of user-centered design have been well doc-
umented [Lewis and Reiman, 1993]. However, as user
needs and device characteristics diverge, the traditional de-
sign methodology of intensive user studies becomes unscal-
able. While each user deserves a personalized interface, de-
signed for the device at hand and providing simple access to
the commands and features they need, there aren’t enough
ethnomethodologists and designers to manage, interpret, and
respond to so many studies. Indeed, the only resources that
scale with the number of users are the users themselves and
the computing devices they are using.

We use the term adaptation to denote personalization
which is automatically performed by the interface without
explicit user directives. By customization we mean person-
alization which is directly requested by the user. Our argu-
ment, thus, is that adaptivity and customization are the only
scalable approaches to personalization. Interfaces should au-
tomatically adapt to the capabilities of the device at hand,
to network connectivity, and to the individual user’s activi-
ties, location, and context; users should be able to guide and
control adaptation through a variety of customization mecha-
nisms.

1.1 Customization and Adaptation
Of course, many existing desktop applications allow limited
customization by letting the user (1) select which menus are
visible, (2) add buttons to toolbars, (3) define macros, and (4)
even add custom functionality via scripting languages such as
Visual Basic. While customization is important, most users
fail to customize effectively. Few users are comfortable with
macros, regular expressions, or scripting languages, and even
programmers are often too busy to invest the necessary time
now in order to speed future sessions. Thus, the challenge
is to create improved methods for users to direct their inter-
face, rearrange functionality as well as appearance, and re-
cover from inappropriate adaptations.

Similarly, many systems support limited adaptation, but
users don’t always appreciate it. Defaults that remember the
last option or directory selected are simple and can be help-
ful, but Microsoft’s smart menus disorient, while the Office



Assistant’s guesses fall far from the mark. The danger of
adaptivity is its potential to create confusing inconsistency
and rob the user of control. Thus, the challenge is to develop
datamining algorithms that can accurately predict a user’s be-
havior and to navigate the tension between too rapid adap-
tation (disorienting) and too little (inefficient), and to seek
interface metaphors that increase user control.

1.2 Deep Deployment
Successful customization and adaptation methods will max-
imize their benefit when used by a broad range of applica-
tions. Ideally, there will be deep deployment: a uniform
layer at the operating systems level that records clickstream
data across applications, and supports ubiquitous personaliza-
tion. For this to work, the interfaces themselves must be de-
scribed using declarative representations like those developed
by the model-based interface community [Foley et al., 1989;
Puerta, 1996]

Deploying personalization methods at the OS layer will
bring several advantages. The first is consistency of behavior
amongst applications. Second, knowledge of a user’s activ-
ity with one application may improve adaptation of another’s
interface. Third, cross-application personalization may offer
the highest benefit to users, since many common tasks involve
patterns connecting two or more programs.

1.3 Outline
In the rest of this paper, we describe a sequence of our
projects which are making progress on this vision. The under-
lying techniques range along a continuum of user-involvment,
and our expository progression follows this vector from cus-
tomization towards pure adaptation. Along the way we com-
pare related endeavors and summarize lessons learned.

2 Customization by Command
The Internet Softbots project [Etzioni and Weld, 1994]
marked the genesis of work on Intelligent User Interfaces at
the University of Washington. By acting as a personal as-
sistant, the softbot supported a qualitatively different kind of
human-computer interface. Users were able to make high-
level requests, and the softbot used search [Weld, 1996], in-
ference [Etzioni et al., 1997], and knowledge to determine
how to satisfy the request. Furthermore, the softbot was able
to tolerate and recover from ambiguity, omissions, and errors
in these requests.

At its core, the softbot could handle goals specified in an
expressive subset of first-order logic with modal operators for
handling time and for distinguishing information gathering
goals from those that requested state changes [Golden and
Weld, 1996]. We labeled the softbot a goal-oriented inter-
face, because human requests specified what the user wanted;
the softbot was responsible for deciding how and when to sat-
isfy the request. Since most users are uncomfortable with
logical notation, we provided a forms-oriented interface front
end. Unfortunately, we found the forms approach to be un-
scalable, and goal-specification was a challenge for many
users. In response, we investigated two research directions:
reliable natural-language interfaces [Popescu et al., 2003;

Yates et al., 2003] and programming by demonstration [Lau
et al., 2000].

3 Programming by Demonstration
If it’s too hard for users to specify goals, then a natural ob-
jective is the design of an interface that can watch a user’s
normal behavior and help as appropriate. In the case of repet-
itive tasks, this amounts to programming by demonstration
(PBD). Of course, PBD has been studied extensively [Cypher,
1993], but most previous systems were heuristic and domain-
specific. We sought a domain-independent approach, suit-
able for deep deployment, that offered the expressiveness of
a scripting language and the ease of macro recording, with-
out a verbatim recorder’s accompanying brittleness. While
our PBD interface resembles a keystroke-based macro inter-
face, it generalizes from the demonstrated actions to a robust
program which is more likely to work in different situations.

It is useful to think of a PBD-interface as having three com-
ponents: 1) segmentation determines when the user is execut-
ing an automatable task, 2) trace induction predicts what the
user is doing from a prefix of her activity trace, and 3) facili-
tation manages user interaction to aid the user in completing
her task. The focus of our work was on the trace induction
phase.

We formalized PBD trace induction as a learning problem,
as follows. A repetitive task may be solved by a program
with a loop, where each iteration solves one instance of the
task. The PBD system must infer the correct program from
a demonstration of the first few iterations. Each action (e.g.,
move, select, copy, paste, . . . ) the user performs during this
demonstration causes a change in the state of the application
(e.g., defines a mapping between editor states). Therefore,
we modeled this problem as one of inferring the function that
maps one state to the next, based on observations of the state
prior to and following each user action.

PBD presents a particularly challenging machine learning
problem, because users are extremely reluctant to provide
more than a few training instances. Thus the learner must
be able to generalize from a very small number of iterations.
Yet in order to be useful, a wide range of programs must
be learnable. Thus the problem combines a weak bias with
the demand for low sample complexity. Our solution, called
version-space algebra, lets the application designer combine
multiple strong biases to achieve a weaker one that is tailored
to the application, thus reducing the statistical bias for the
least increase in variance. In addition, the learning system
must be able to interact gracefully with the user: presenting
comprehensible hypotheses, and taking user feedback into ac-
count. Version-space algebra addresses this issue as well.

3.1 Version-Space Algebra
Originally developed for concept learning, a version space is
the subset of a hypothesis space which is consistent with a
set of training instances [Mitchell, 1982]. If there is a partial
order over candidate hypotheses, one may represent the ver-
sion space implicitly (i.e., with boundary sets) and manage
updates efficiently. Version space algebra defines transforma-
tion operators (e.g., union, join, etc.) for combining simple



ActionActionAction

Program

Move

Location

Action

Select

Location
Delete

Location
Location

Insert

LinearInt

Number

LinearInt

ConstStr

Indent
ConstStr

DeleteSel

Cut
Copy

Paste

StrNumStr IndentStrConstStr

ConstStr

iterationro
w

Location

RowCol

CharOffset

LinearIntFindFix

WordOffset

Prefix

Column

RelCol

Row

LinearInt

AbsCol

ConstInt

RelRow

LinearInt

AbsRow

ConstInt

Suffix

to
ke

n−
ty

pe

token−type

SuffixPrefix

Figure 1: Algebraic specification of the version space for a
SMARTEDIT program.

version spaces into more complex ones. We also developed a
probabilistic framework for reasoning about the likelihood of
each hypothesis in a composite version space.

After constructing a library of reusable, domain-
independent component version spaces, we combined a set of
primitive spaces to form a bias for learning text-editing pro-
grams (Figure 1), which was used in the SMARTEDIT PBD
implementation.

3.2 The SmartEdit Implementation
We verified the utility of version-space algebra for PBD with
SMARTEDIT, an Emacs-like editor. When a user notices that
she is about to perform a repetitive task, she clicks a button
to start the PBD recorder. After completeing one instance of
the task, she clicks another button to mark the first demon-
stration. SMARTEDIT initializes the version space using the
recorded state sequence as the first training example. As
the user continues to type, SMARTEDIT updates the version
space with every action. In parallel, SMARTEDIT displays
what action it thinks the user will next perform, and its con-
fidence in the prediction. These probabilities are calculated
by voting the version space. When the user is confident that
SMARTEDIT has learned her procedure, she may let it exe-
cute in single-step or fully autonomous mode. We explored
a number of ways of structuring the user’s dialog with the
learner, including decision-theoretic control [Wolfman et al.,
2001], but many aspects of facilitation require further study.

Version-space algebra provides SMARTEDIT with several
benefits: efficient methods for incremental update and voting,
without explicit enumeration of the version space [Lau et al.,
2000], and flexibility. By varying the algebraic formulation
for the hypothesis space, we experimented with several other
version spaces for learning single-loop programs from traces
with varying amounts of segmentation information, as well as
learning programs with multiple nested loops.

3.3 Experiments and Observations
Empirical studies validated our approach on a range of text-
editing scenarios (e.g., bibliographic reformatting, HTML
to LATEX conversion, information extraction, etc.). We
show that a program that generalizes correctly for each of

these scenarios can be learned quickly in as few as one or
two training examples. An informal user study confirmed
SMARTEDIT’s usability and usefulness, and showed that even
novice SMARTEDIT users perform tasks more quickly and
concisely with PBD than without.

However, we learned a negative lesson when we started
widespread distribution — despite incorporation within
Emacs, relatively few people used SMARTEDIT frequently.
From this we conclude that the overhead of a macro recorder
interface is relatively high. Since most repetitive tasks are
short, it is often easier to do them manually and avoid the
cognitive load of complex customization. Others have found
similar results — users customize relatively little [Mackay,
1991] — perhaps because customization facilities are com-
plex themselves [McGrenere et al., 2002]. We conjecture
that widespread PBD adoption requires automatic segmen-
tation, and the adaptation mechanisms, described in the next
section, may provide this capability.

4 Adapting to User Behavior
The AI community has a long-standing interest in adaptive in-
terfaces. The Calendar’s Apprentice [Dent et al., 1992] used
machine learning to predict meeting location and durations.
This research and similar work on email classification [Maes
and Kozierok, 1993] led to an important principle about the
incorporation of imperfect behavioral predictions in an inter-
face: defaults are an effective way to minimize the cost to the
user of (inevitable) poor predictions. Horvitz’s decision the-
oretic framework [Horvitz, 1999] resulted in additional prin-
ciples: graceful degradation of service prediction, expected
utility of disambiguation dialogs as a function of user time
and attention), and the use of timeouts to minimize cost of
prediction errors.1

Our work on adaptive interfaces focussed initially on web-
site design [Perkowitz and Etzioni, 1997] and led to al-
gorithms for datamining web logs to discover aggregate
patterns, which powered the automatic creation of index
pages [Perkowitz and Etzioni, 2000]. Later we concentrated
on mining individual behavior patterns, generating personal-
ized sites for display on small, wireless devices [Anderson et
al., 2001b]. Our emphasis was on “information-goal seek-
ing” behavior, common to wireless internet use, rather than
general browsing or surfing. The PROTEUS system mod-
eled adaptation as search through the space of possible web-
sites. Site modification operators included highlighting text,
adding shortcut links, and eliding parts of pages. We adopted
the decision-theoretic approach, guiding search with expected
utility calculations based on a model of the cost of manipu-
lating the small PDA screen and fetching pages over the slow
wireless connection.

A small user study revealed two important lessons. For the
most part, the adaptations were good ones; PROTEUS sug-
gested useful shortcuts and the elided content was almost al-
ways useless to the user. However, the cost of deleting im-
portant parts of a page was very high. Reweighting our utility
function would have led to more conservative behavior, but

1It is ironic that the Office Assistant violates most of Horvitz’s
principles, which were developed at Microsoft Research.



(a.) (b.) (c.)

Figure 2: (a) Main dialog box for print command. (b) After clicking the “Properties...” button, the default “Setup” tab is
displayed. (c) After clicking the “Features” tab, the user can select double-sided printing; the user must now click “ok” twice.

the problem of accurate behavior prediction is central to in-
terface adaptation; we discuss it in the next section.

A second problem stemmed from the fact that frequently
users didn’t find a shortcut link, even though PROTEUS had
added it in the appropriate place. Shortcut-naming was usu-
ally to blame, and this raised the general issue of saliency,
which we discuss in section 4.2.

4.1 Predicting User Behavior
High-quality adaptation requires the ability to learn an ex-
tremely accurate model of user behavior. Our comparison of
existing techniques showed that a mixture of Markov mod-
els had the best predictive power [Anderson et al., 2001a].
(Shortcuts generated by the mixture model saved users up to
40% of their navigational effort.) But all models performed
poorly when data was sparse; hence none of these models
would work well for situations where a user is exploring new
parts of the interface — even if she is performing a task which
is similar to one she has performed frequently in another con-
text (e.g., shopping cart checkout at a new store). To rem-
edy this problem, we developed relational Markov models
(RMMs), a generalization of Markov models that overlays
relational structure on the states [Anderson et al., 2002].

Intuitively, RMMs do for Markov models what Prob-
abilistic Relational Models (PRMs) do for Baysian net-
works [Friedman et al., 1999]. RMMs generalize Markov
models by partitioning the states into classes; each class has
an associated � -ary relation, � , and members of the class cor-
respond to � instantiated with distinct ground values. The
domain of each variable can be hierarchically structured, and
a smoothing techniqued called shrinkage is carried out over
the cross product of these hierarchies. RMMs make it pos-
sible to generalize beyond the observed states. For example,
suppose a user surfing through an e-commerce Web site goes
from a page about Nirvana’s “Nevermind” CD to a page con-
taining a biography of Nirvana. An ordinary Markov model

can infer nothing from this about what the user will do when
visiting a page about a Pearl Jam CD, but an RMM would be
able to infer that the user might next go to a Pearl Jam bi-
ography. RMMs make effective learning possible in domains
with very large and heterogeneous state spaces, given only
sparse data. Experiments on academic and e-commerce web-
sites show that RMMs trained on only ten instances perform
as well as Markov models which were trained on ten thousand
instances [Anderson et al., 2002]. We are currently extending
RMMs by incorporating structure in the same way that dy-
namic Bayes nets extend Markov models; see [Sanghai et al.,
2003].

4.2 Partitioned Dynamicity
As our experience with unnoticed shortcuts showed, saliency
is essential — any adaptive mechanism that introduces new
commands or options to an interface, must ensure that the
user finds them. Furthermore, the mechanism must take care
not to obscure important existing functionality.

One way to increase saliency, while minimizing the cogni-
tive dissonance associated with adaptivity, is to partition dy-
namism — to segregate dynamic and static areas of an inter-
face. Indeed, a number of well-designed adaptive interfaces
exhibit this property. For example, the news stories and ad-
vertisements on Yahoo change continuously, but because the
layout is fixed, the adaptation causes little distress to users. In
contrast, the automatic menu shortening feature of Microsoft
Office 2000 violates partitioned dynamicity, since the loca-
tion of commands in the menus changes unpredictably.

Powerpoint XP’s “Insert Symbol” command provides an-
other example. Previous versions required a long sequence
of clicks to select the correct font and navigate to the desired
symbol, but the dialog box in the XP version has a “Recently
used symbols” area.

We conjecture that partitioned dynamicity is a useful
general principle for adaptation in interfaces. Because



print setup

^P

ok,
cancel

printer,
range,
copies,
frames,
links

properties

features

color

services

ok,

cancel

ok,

cancel

ok,
cancel

ok,
cancel

main

Figure 3: Abstract-state machine for the printing dialogs; the
example user’s path is darkened.

users become accustomed to changes in the dynamic area,
these changes don’t disturb their conceptual model [Norman,
1998]. And because existing navigational patterns remain un-
changed, users maintain control even if adaptation is unhelp-
ful. The alternative, dual-interface approach of [McGrenere
et al., 2002] shares many benefits with partitioned dynamic-
ity, but trades convenience for screen real estate.

4.3 Example: Adapting Desktop Dialogs
We believe that the PROTEUS architecture, developed for
adaptive websites, would be even more useful in a desk-
top application setting. As a story-board example, suppose
that a user wishes to print a Word document, doublesided.
As Figures 2 and 3 show this requires six user actions.2

First, the user presses ctrl-P to print the current docu-
ment. Next, she must click on “Properties...” which yields
“Setup” options. Clicking on the “Features” tab uncovers
two sided printing options; another click selects book-style
duplex. Then “Ok” must be clicked twice, once to close the
Properties window and the other to confirm printing.3 How-
ever, if an individual user executes this pattern hundreds of
times, always choosing duplex printing, the system should
recognize this and provide a shortcut.

Figure 4 shows one possible result, where the main screen
has partitioned dynamicity, and the duplex options (with a
new default value) have been added. In this example, we as-
sume that the user had never chosen the “tablet” duplex value.
For the shortcut, therefore, the system deleted the value, cast-
ing the duplex variable into a Boolean. As a result, the duplex
option could be rendered with a simple, space-efficient check-
box. Of course, if the user later desired the tablet format, they

2Using Windows ME, Office XP, and a HP R80 printer.
3Of course, one can quibble with the design of this particular

interaction, but it is a result of today’s software engineering pro-
cess, and many similar designs exist — that’s why adaptation is so
promising

Figure 4: After adaptation, duplex printing is the default and
visible on the main print dialog. By discarding the infre-
quently used “tablet” value, the variable can be cast as a
Boolean and a simple, space-efficient check-box widget used.

could find it unchanged on the “Features” tab.4

Restricting a state variable’s set of valid values and type
casting are just two representative transformations; many
more exist. Note that it is only possible to perform these
transformations when the interface is represented in an ab-
stract, declarative language. The next section discusses addi-
tional benefits from such a representation.

5 Adapting to Device Characteristics
The trend towards mobile and ubiquitous computing has re-
sulted in an morass of device form factors and input mech-
anisms, and it is nearly impossible for a designer to tar-
get each of these manually. Furthermore, as shown in pre-
vious section, some parts of the interface may be gener-
ated dynamically in response to the particular usage pat-
terns. Hence, we are building an automated solution, called
SUPPLE. Others researchers have laid useful foundations.
Starting with [Foley et al., 1989], the model-based UI com-
munity has developed declarative, interface-representation
languages; SUPPLE uses an extension of the representation
developed for PEBBLES [Nichols et al., 2002].

Researchers have explored many methods for “compil-
ing” a declarative UI representation into concrete form for
use on a specific target device. For example, PEBBLES
uses a hand-constructed decision tree for this task; other
approaches include hierarchical templates [Szekely et al.,
1993], stylesheets [Schreiber, 1994], and tools for facilitating

4Some might argue that this problem could be simply solved by
using a MRU default for options like duplex, without restructuring
the dialogs. But changing defaults is very dangerous unless they are
visible to the user.



Figure 5: Given different PDA screen resolutions, SUPPLE generates different interfaces for a household controller.

manual design [Eisenstein et al., 2001]. Yet another method
is based on a higher-level encoding of the design in terms of
design patterns [Lin and Landay, 2002].

In contrast, we adopt the decison-theoretic framework and
search for the design with the highest expected utility among
those that satisfy the device constraints. Our SUPPLE pro-
totype focusses on screen-size constraints and uses a utility
function that models the expected ease of interface opera-
tions for each widget. If multiple interface actions are nec-
essary to complete a task (e.g., if tabs must be selected, panes
navigated, or confirmation buttons pressed) the costs are com-
bined linearly. Figure 5 shows three different interfaces (from
amongst the 3,888,000 possible) which were generated by
SUPPLE and deemed optimal for differing amounts of avail-
able screen space.

While the current SUPPLE implementation accepts as in-
put an arbitrary probability distribution over command usage,
our framework supports user-based adaptation as described in
the previous section. For example, at present SUPPLE makes
an independence assumption regarding command use, but in
practice people use commands in sequence and human de-
signers recognize this by colocating the corresponding wid-
gets. By computing the expected utility of an interface rela-
tive to a recorded trace of individual user commands, SUPPLE
should be able to automatically duplicate this form of design
optimization, but in a personalized manner.

6 Conclusions
Effective personalization requires improved methods for both
adaptation (change based on implicit user behavior) and cus-
tomization (change guided by explicit user requests). Inter-
faces should automatically adapt to the capabilities of the de-
vice at hand, to network connectivity, and to the user’s activi-
ties, location, and context. If they wish to provide customiza-
tion guidance, users should be able to control the adaptation
process at any level.

This paper has briefly surveyed some of the projects at the
University of Washington, which are investigating these is-
sues, and codified several emerging principles:

� Because users find it hard to specify their prefences and
goals, it is often more effective to induce them from user
behavior. Version-space algebra allows an application
designer to combine multiple strong biases to achieve a
weaker one that is tailored to the application, thus reduc-
ing the statistical bias for the least increase in variance.

� Many benefits of model-based UI design have been long
recognized [Foley et al., 1989], but it is increasingly ap-
parent that these declarative models are essential to a set
of transformations (e.g., Currying and casting) that fa-
cilitate adaptation.

� Since adaptive mechanisms are imperfect, the cost to
users of errors must be considered alongside the advan-
tages. Decison theory provides a powerful framework
for such analysis [Horvitz, 1999], and the requisit utili-
ties can be learned from user behavior or derived from
device models.

� Certain interface mechanisms, such as defaults and au-
tomatic timeouts, can minimize the cost of errors and so
increase the value of adaptation. Partitioned dynamicity
offers a way to manage adaptivity while minimizing a
user’s cognitive load.

� Another way to enhance the user experience by improv-
ing prediction of user behavior. Because RMMs smooth,
based on an abstraction lattice defined by the relational
structure, they are exceptionally accurate when predict-
ing sequential behavior (e.g., a user’s next action) from
sparse data.

Acknowledgments
We thank James Landay for helpful discussions. This re-
search was funded in part by Office of Naval Research Grants



N00014-98-1-0147 & N00014-02-1-0932, National Science
Foundation Grants IRI-9303461, IIS-9872128, DL-9874759,
and a CAREER Award.

References
[Anderson et al., 2001a] C. R. Anderson, P. Domingos, and

D. S. Weld. Adaptive web navigation for wireless devices.
IJCAI-01, Aug 2001.

[Anderson et al., 2001b] C. R. Anderson, P. Domingos, and
D. S. Weld. Personalizing web sites for mobile users.
WWW-01, May 2001.

[Anderson et al., 2002] C. R. Anderson, P. Domingos, and
D. S. Weld. Relational Markov models. KDD-02, Aug
2002.

[Cypher, 1993] Allen Cypher, editor. Watch what I do: Pro-
gramming by demonstration. MIT Press, 1993.

[Dent et al., 1992] L. Dent, J. Boticario, J. McDermott,
T. Mitchell, and D. Zabowski. A personal learning ap-
prentice. AAAI-92, pages 96–103, July 1992.

[Eisenstein et al., 2001] J. Eisenstein, J. Vanderdonckt, and
A. Puerta. Applying model-based techniques to the de-
velopment of UIs for mobile computers. IUI 2001, pages
14–17, 2001.

[Etzioni and Weld, 1994] O. Etzioni and D. Weld. A softbot-
based interface to the Internet. C. ACM, 37(7):72–6, 1994.

[Etzioni et al., 1997] O. Etzioni, K. Golden, and D. Weld.
Sound and efficient closed-world reasoning for planning.
Artificial Intelligence, 89(1–2):113–148, January 1997.

[Foley et al., 1989] J. Foley, W. C. Kim, S. Kovacevic, and
K. Murray. Defining interfaces at a high level of abstrac-
tion. IEEE Software, Jan 1989.

[Friedman et al., 1999] N. Friedman, L. Getoor, D. Koller,
and A. Pfeffer. Learning probabilistic relational models.
IJCAI-99, Aug 1999.

[Golden and Weld, 1996] K. Golden and D. Weld. Repre-
senting sensing actions: The middle ground revisited. KR-
96, pages 174–185, 1996.

[Horvitz, 1999] Eric Horvitz. Principles of mixed-initiative
user interfaces. CHI-99, pages 159–166. ACM Press, May
1999.

[Lau et al., 2000] Tessa Lau, Pedro Domingos, and Daniel S.
Weld. Version space algebra and its application to pro-
gramming by demonstration. ICML-00, pages 527–534,
June 2000.

[Lewis and Reiman, 1993] C. Lewis and J. Reiman. Task-
Centered User Interface Design: A Practical Introduction.
University of Colorado, Boulder, CO, 1993.

[Lin and Landay, 2002] J. Lin and J. A. Landay. Damask:
A tool for early-stage design and prototyping of multi-
device user interfaces. 8th International Conference on
Distributed Multimedia Systems, pages 573–580, 2002.

[Mackay, 1991] W. Mackay. Triggers and barriers to cus-
tomizing software. CHI-91, pages 153–160. ACM Press,
1991.

[Maes and Kozierok, 1993] Pattie Maes and Robyn
Kozierok. Learning interface agents. AAAI-93, pages
459–465, 1993.

[McGrenere et al., 2002] J. McGrenere, R. M. Baecker, and
K. S. Booth. An evaluation of a multiple interface design
solution for bloated software. CHI-02, 2002.

[Mitchell, 1982] T. Mitchell. Generalization as search. Arti-
ficial Intelligence, 18:203–226, 1982.

[Nichols et al., 2002] J. Nichols, B. A. Myers, M. Higgins,
J. Hughes, T. K. Harris, R. Rosenfeld, and M. Pignol. Gen-
erating remote control interfaces for complex appliances.
UIST-02, pages 161–170, 2002.

[Norman, 1998] D. Norman. The Invisible Computer. MIT
Press, 1998.

[Perkowitz and Etzioni, 1997] M. Perkowitz and O. Etzioni.
Adaptive web sites: an AI challenge. IJCAI-97, Aug 1997.

[Perkowitz and Etzioni, 2000] M. Perkowitz and O. Etzioni.
Towards adaptive web sites: Conceptual framework and
case study. Artificial Intelligence, 118:245–276, 2000.

[Popescu et al., 2003] A. M. Popescu, O. Etzioni, and
H. Kautz. High precision natural language interfaces to
databases: a graph theoretic approach. IUI-03, Jan 2003.

[Puerta, 1996] A. Puerta. The MECANO project: Compre-
hensive and integrated support for model-based interface
development. CADUI’96, pages 19–36, June 1996.

[Sanghai et al., 2003] S. Sanghai, P. Domingos, and D. S.
Weld. Dynamic probabilistic relational models. IJCAI-03,
Aug 2003.

[Schreiber, 1994] S. Schreiber. Specification and generation
of user interfaces with the boss-system. EWHCI-94, pages
107–120, 1994.

[Szekely et al., 1993] P. Szekely, P. Luo, and R. Neches.
Beyond interface builders: Model-based interface tools.
INTERCHI-93, pages 383–390. ACM Press, 1993.

[Weld, 1996] D. Weld. Planning-based control of software
agents. AIPS-96, May 1996.

[Wolfman et al., 2001] Steven A. Wolfman, Tessa Lau, Pe-
dro Domingos, and Daniel S. Weld. Mixed initiative in-
terfaces for learning tasks: Smartedit talks back. IUI-01,
pages 167–174, Santa Fe, USA, January 2001.

[Yates et al., 2003] A. Yates, O. Etzioni, and D. Weld. Reli-
able natural language interfaces to household appliances.
IUI-03, 2003.


