Overview of Quasi-Newton optimization methods

About this document
These notes were prepared by Galen Andrew for an informal tutorial at Microsoft Research, on Jan. 18, 2008. They are essentially a condensation of the relevant sections of Chapters 6 and 7 from “Numerical Optimization, Second Edition” by Jorge Nocedal and Stephen J. Wright, Springer Verlag, 2006.

Introduction
Suppose we are given a convex,\(^1\) twice-differentiable function to optimize: \(f: \mathbb{R}^n \rightarrow \mathbb{R}\) without constraints. The methods we will discuss are iterative, starting with an initial point \(x_0\), and producing a sequence of points \(x_k\) that converges to the optimum \(x^*\). Denote the gradient of \(f\) at \(x_k\) by \(\nabla f_k\), and the Hessian matrix (the matrix of second partial derivatives) by \(B_k\).

Newton’s method
In Newton’s method, we find the new iterate \(x_{k+1}\) as a function of \(x_k\) as follows. For any point \(x\) define \(p = x - x_k\). The second order Taylor expansion around \(x_k\) is given by

\[
m_k(p) = f_k + p^T \nabla f_k + \frac{1}{2} p^T B_k p
\]

This defines a quadratic model of the function near the point \(x_k\). Its gradient with respect to \(x\) is \(\nabla m_k(p) = \nabla f_k + B_k p\), and it is minimized at \(p_k = -B_k^{-1} \nabla f_k\) (Here we use the assumption that \(f\) is convex, so \(B_k\) is positive definite.) Finding \(p_k\) thus requires computing the inverse of the Hessian, or at least solving the linear system \(B_k p = -\nabla f_k\) by other means.

The next point \(x_{k+1}\) is then found via a line-search in the direction of \(p_k\): for some \(\alpha \in (0, \infty)\), \(x_{k+1} = x_k + \alpha p_k\). I won’t go into detail about the line search, but a good line search (in particular, one that satisfies the Wolfe conditions) is necessary to guarantee convergence. I will note that for these methods, the line search can be very approximate; in most cases the first step size \(\alpha = 1\) will be used.

DFP
The first quasi-Newton method is DFP, named after Davidson, who discovered it in 1959, and Fletcher and Powell, who explored its mathematical properties over the next few years. Instead of computing the true Hessian as in Newton’s method, we will use an approximation that is based on the change in gradient between iterations. The primary advantage is that we don’t have to compute the exact Hessian at each point, which may be computationally expensive.

The idea is to characterize the approximate Hessian \(B\) via several properties, and then derive an expression for the unique \(B\) that satisfies the properties. The three properties are:

\[\text{1 The convexity assumption can be relaxed, in which case these methods can be implemented in such a way that they are still guaranteed to converge to a local minimum. See N&R for details.}\]
1. \(B_k \) must be symmetric.
2. When we form a quadratic model using \(B_k \), as above, the gradient of the model must equal the function’s gradient at the points \(x_k \) and \(x_{k-1} \). This holds trivially for \(x_k \) (because \(p = 0 \) for \(x = x_k \)). For \(x_{k-1} \) the condition means that \(\nabla f_k + B_k(x_{k-1} - x_k) = \nabla f_{k-1} \), which we can rewrite as \(B_k(x_k - x_{k-1}) = (\nabla f_k - \nabla f_{k-1}) \). Defining the displacement vector \(s_{k-1} = x_k - x_{k-1} \) and the change in gradient \(y_{k-1} = \nabla f_k - \nabla f_{k-1} \), we can express this as \(B_k s_{k-1} = y_{k-1} \), which is known as the secant equation.
3. Subject to the above, \(B_k \) should be as close as possible to \(B_{k-1} \). The definition of closeness we will use is the weighted Frobenius norm of the difference between the Hessians:

\[
\|B - B_{k-1}\|_W = \left\|W^{\frac{1}{2}}(B - B_{k-1})W^{\frac{1}{2}}\right\|
\]

where \(W \) is any matrix satisfying \(W y_{k-1} = s_{k-1} \). This definition of distance ensures that the solution is non-dimensional, i.e., it does not change with an arbitrary scaling of the variables.

The second and third properties encode the assumption that the Hessian does not change wildly from iteration to iteration. This assumption may be suspect for the first few iterations, but as the process converges to a point (as all of these algorithms are guaranteed to do), it is not unreasonable. These three properties give us the following optimization problem:

minimize \(\|B - B_{k-1}\|_W \) subject to \(B = B^T, B s_{k-1} = y_{k-1} \).

We set \(B_k \) to the unique solution to this problem, which is given by

\[
B_k = (I - \rho_{k-1} y_{k-1} s_{k-1}^T)B_{k-1}(I - \rho_{k-1} s_{k-1} y_{k-1}^T) + y_{k-1} \rho_{k-1} y_{k-1}^T,
\]

where \(\rho_k = (y_k^T s_k)^{-1} \).

Note that we did not require that \(B_k \) be positive definite. That is because we can show that it must be positive definite if \(B_{k-1} \) is. Therefore, as long as the initial Hessian approximation \(B_0 \) is positive definite, all \(B_k \) are, by induction. We need to show that, if \(B_{k-1} > 0 \), then for any non-zero vector \(z \), \(z^T B_k z > 0 \). Form the vector \(w = z - \rho_{k-1} s_{k-1}(y_{k-1}^T z) \), so that

\[
z^T B_k z = w^T B_{k-1} w + \rho_{k-1} (y_{k-1}^T z)^2.
\]

It is easy to show that \(\rho_k \) is always positive for any convex function, so this expression is always non-negative. It could be zero only if \(y_{k-1}^T z \) is zero, in which case \(w = z \neq 0 \), so \(w^T B_{k-1} w > 0 \) by the positive definiteness of \(B_{k-1} \). Therefore \(z^T B_k z > 0 \), and \(B_k \) is positive definite.

The final issue to address for DFP is how to choose the initial Hessian \(B_0 \). One option is to use the true Hessian at the initial point (so we still have to compute it once), or a diagonal approximation to the true Hessian. An easier option that works fine in practice is to use a scalar multiple of the identity matrix, where the scaling factor is chosen to be in the range of the eigenvalues of the true Hessian. See N&R for a recipe to find this initializer.
BFGS

DFP was the first quasi-Newton method, but it was soon superceded by BFGS, which is considered to be the most effective quasi-Newton method. BFGS is named for the four people who (independently!) discovered it in 1970: Broyden, Fletcher, Goldfarb and Shanno. It is actually the same as DFP with a single, very elegant modification: instead of approximating the Hessian, B_k, we approximate its inverse H_k, using exactly the same criteria as before. Since the search direction $p = -H_k \nabla f_k$, this has the advantage that we don’t need to solve a linear system to get the search direction, but only do a matrix/vector multiply. It is also more numerically stable, and has very effective “self-correcting properties” not shared by DFP, which may account for its superior performance in practice.

Working with the inverse Hessian H_k in place of B_k, the secant equation becomes

$$H_k y_{k-1} = s_{k-1}.$$

The optimization is then

$$\minimize \|H - H_{k-1}\|_W \text{ subject to } H = H^T, H y_{k-1} = s_{k-1}.$$

which has the unique solution

$$H_k = (I - \rho_{k-1} s_{k-1} y_{k-1}^T)H_{k-1}^{-1}(I - \rho_{k-1} s_{k-1} s_{k-1}^T) + s_{k-1} \rho_{k-1} s_{k-1}^T.$$

Note the symmetry between the solutions of DFP and BFGS: they are identical except that y and s have been reversed! Therefore, the discussion of positive definiteness and initial approximation is just the same as with DFP.

L-BFGS

BFGS is a very effective optimization algorithm that does not require computing the exact Hessian, or finding any matrix inverses. However, it is not possible to use BFGS on problems with a very high number n of variables (millions, say), because in that case it is impossible to store or manipulate the approximate inverse Hessian H, which is of size n^2. L-BFGS (“limited-memory” BFGS) solves this problem by storing the approximate Hessian in a compressed form that requires storing only a constant multiple of vectors of length n. In particular, L-BFGS only “remembers” updates from the last m iterations, so information about iterates before that is lost. Furthermore, the search direction can be computed in a number of operations that is also linear in n (and m).

The way this is accomplished is by “unrolling” the Hessian update from BFGS as follows. Defining $V_k = I - \rho_k y_k s_k^T$, the BFGS update can be written

$$H_k = V_{k-1}^T H_{k-1} V_{k-1} + s_{k-1} \rho_{k-1} s_{k-1}^T.$$

Rolling back one step gives

$$H_k = V_{k-1}^T V_{k-2} H_{k-2} V_{k-2} V_{k-1} + V_{k-1}^T s_{k-2} \rho_{k-2} s_{k-2}^T V_{k-1} + s_{k-1} \rho_{k-1} s_{k-1}^T.$$

(From now on I will write the subscript $-i$ in place of $k - i$, and it is to be understood that all subscripts are relative to k.) Then we can unroll the computation back m steps:
\[H_k = (V_{-1}^T \ldots V_{-m}^T)H_{-m}(V_{-m}V_{-m+1} \ldots V_{-1}) \\
+ (V_{-1}^T \ldots V_{-m+1}^T)S_{-m} \rho_{-m} S_{-m}^T (V_{-m}V_{-m+1} \ldots V_{-1}) \\
+ (V_{-1}^T \ldots V_{-m+2}^T)S_{-m+1} \rho_{-m+1} S_{-m+1}^T (V_{-m+1}V_{-m+2} \ldots V_{-1}) \\
+ \ldots \\
+ V_{-1}^T S_{-2} \rho_{-2} S_{-2}^T V_{-1} \\
+ s_{-1} \rho_{-1} s_{-1}^T V_{-1} \]

Remember that ultimately we need to compute the search direction \(p_k = -H_k \nabla f_k \). In a moment I will show how to use this recursion to compute \(p_k \) without actually expanding out the matrix \(H_k \). All that is required is that we can compute \(H_{-m} \nabla f_k \) efficiently. In L-BFGS, \(H_{-m} \) plays the role of \(H_0 \) in BFGS. It is exactly as if we started at the point \(x_{-m} \) and ran \(m \) iterations of BFGS, starting with the initial approximation \(H_{-m} \). If \(H_{-m} \) has a simple form, like a multiple of the identity matrix, then we can easily compute \(H_{-m} \nabla f_k \). Note that unlike the \(H_0 \) of BFGS, \(H_{-m} \) is allowed to vary from iteration to iteration.

So, how do we compute \(H_k \nabla f_k \)? With the following algorithm.

\[
\begin{align*}
q &= \nabla f_k \\
\text{for } (i = 1 \ldots m) \text{ do} \\
\alpha_i &= \rho_{-i} s_{-i}^T q \\
q &= q - \alpha_i y_{-i} \\
\text{end for} \\
r &= H_{-m} q \\
\text{for } (i = m \ldots 1) \text{ do} \\
\beta_i &= \rho_{-i} y_{-i}^T r \\
r &= r + s_{-i} (\alpha_i - \beta_i) \\
\text{end for} \\
\text{return } r
\end{align*}
\]

To see why this works, let \(q_i \) be the value of \(q \) after iteration \(i \) of the first loop. Then \(q_0 = \nabla f_k \), and
\[
q_i = q_{i-1} - \rho_{-i} y_{-i} s_{-i}^T q_{i-1} = V_{-i} q_{i-1} = (V_{-i} \ldots V_{-1}) \nabla f_k,
\]
and therefore
\[
\alpha_i = \rho_{-i} s_{-i}^T q_{i-1} = \rho_{-i} s_{-i}^T (V_{-i} \ldots V_{-1}) \nabla f_k.
\]
You can see that the \(\alpha_i \)'s are building up the right sides of the unrolled BFGS update. Moving to the \(r_i \)'s, we have \(r_{m+1} = H_{-m} q = H_{-m} (V_{-i} \ldots V_{-1}) \nabla f_k \), and
\[
r_i = r_{i+1} + s_{-i}(\alpha_i - \rho_{-i} y_{-i} r_{i+1}) = (I - s_{-i} \rho_{-i} y_{-i}^T) r_{i+1} + s_{-i} \alpha_i = V_{-i} r_{i+1} + s_{-i} \alpha_i.
\]
Finally, if we “unroll” this expression for r_1, we get

$$r_1 = V_{-1}^T r_2 + s_{-1} \rho_{-1} s_{-1}^T \nabla f_k = (V_{-1}^T V_{-2}) r_3 + V_{-1}^T s_{-2} \rho_{-2} s_{-2}^T V_{-1} \nabla f_k + s_{-1} \rho_{-1} s_{-1}^T \nabla f_k = \cdots$$

$$= (V_{-1}^T V_{-2} \ldots V_{-m}) H_{-m} (V_{-m} V_{-m+1} \ldots V_{-1}) \nabla f_k + \cdots + V_{-1}^T s_{-2} \rho_{-2} s_{-2}^T V_{-1} \nabla f_k + s_{-1} \rho_{-1} s_{-1}^T \nabla f_k$$

which is clearly building up the product of our expression for H_k with the gradient ∇f_k.

Note that this process requires only storing s_{-i} and y_{-i} for $i = 1 \ldots m$, or $O(mn)$ floating-point values, which may represent drastic savings over $O(n^2)$ values to store H. After each iteration, we can discard the vectors from iteration $k - m$, and add new vectors for iteration k. Also note that the time required to compute p is only $O(mn)$.