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Abstract – There is a growing interest in physical layer secu-

rity. Recent work has demonstrated that wireless devices can gen-

erate a shared secret key by exploiting variations in their chan-

nel. The rate at which the secret bits are generated, however, de-

pends heavily on how fast the channel changes. As a result, ex-

isting schemes have a low secrecy rate and are mainly applicable

to mobile environments. In contrast, this paper presents a new

physical-layer approach to secret key generation that is both fast

and independent of channel variations. Our approach makes a

receiver jam the signal in a manner that still allows it to decode

the data, yet prevents other nodes from decoding. Results from

a testbed implementation show that our method is significantly

faster and more accurate than state of the art physical-layer se-

cret key generation protocols. Specifically, while past work gen-

erates up to 44 secret bits/s with a 4% bit disagreement between

the two devices, our design has a secrecy rate of 3–18 Kb/s with

0% bit disagreement.

1 INTRODUCTION

Physical layer security enables two wireless nodes to ex-

change secret data in the presence of an eavesdropper, without

encryption [24]. It is an information-theoretic construct that

exploits randomness at the wireless physical layer and does not

require computational hardness [12]. It may be used to replace

encryption when the communicating devices lack the com-

putational resources for prime number generation (e.g., sen-

sors [21, 23]), or to generate a continuous stream of fresh se-

cret keys that strengthen existing cryptographic protocols [28,

12]. Physical layer security is rooted in Shannon’s work on

perfect secrecy [24]. It has experienced a renaissance in recent

years with a plethora of new theoretical results that character-

ize secrecy capacity [5, 9, 30], develop codes for secure com-

munications [18, 26], and exploit channel variations across

time, space, and users for higher information rates. These theo-

retical advances have culminated with the emergence of prac-

tical systems, where wireless devices have been empirically

shown to use the characteristics of their wireless channel to

generate a secret key in the presence of an eavesdropper [21,

17, 6].

Existing practical systems however are highly limited in

the rate at which they generate secret bits. Today, the highest

empirically achieved secrecy rate is only 44 bits/s [6]. Further,

achieving this rate requires mobility and incurs 4% average bit

disagreement between communicating nodes. The low secrecy

rate is because existing schemes extract secret bits from the
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Figure 1—iJam at work. The sender repeats its transmission. The receiver-

cum-jammer randomly jams complimentary samples in the original signal

and its repetition. To decode, the receiver-cum-jammer, stitches together un-

jammed samples to create a clean symbol.

channel variations, and hence cannot generate new secret bits

unless the channel changes. In fact, experimental results show

that in static scenarios, the extracted bits have very low entropy

making them less suitable for a secret key [17].

In this paper, we investigate a new approach to physical

layer security that is independent of channel variations, and

thus works even when the channel is static. We introduce

iJam, a channel-independent PHY technique that ensures that

an eavesdropper cannot even demodulate a wireless signal not

intended for it. We show that iJam achieves orders of mag-

nitude higher secrecy rates than existing schemes with no bit

disagreement.

The basic idea underlying iJam is simple: The sender re-

peats its transmission, as shown in Fig. 1. For each sample in

these repeated transmissions, the receiver randomly jams ei-

ther the sample in the original transmission, or the correspond-

ing sample in the repetition. Since the eavesdropper does not

know which signal sample is jammed and which one is clean,

it cannot correctly decode the data. In contrast, the receiver

knows which samples it jammed. Thus, the receiver can pick

the correct samples from the signal and its repetition and re-

arrange them to get a clean signal, which it can decode using

standard methods.

iJam builds on past theoretical work on cooperative jam-

ming [22, 7]. Past work however typically separates the jam-

mer from the receiver and hence requires an out-of-band chan-

nel to inform the receiver of the jamming signal [19, 13,

7]. In contrast, iJam presents a practical implementation of

a receiver-cum-jammer, eliminating the need for out-of-band



channels and third party intervention. iJam also addresses the

following practical challenges in using jamming for secret key

extraction:

(a) How do we ensure the jammed samples are indistinguish-

able from the clean samples? Jamming may change the char-

acteristics of the signal which allows the eavesdropper to iden-

tify the jammed samples [25]. iJam addresses this issue by ex-

ploiting the basic properties of OFDM transmissions. In §4, we
show that in contrast to alternative transmission schemes (e.g.,

BPSK or QAM), where the transmitted signal is highly struc-

tured, the OFDM time samples approximate random Gaussian

complex variables. Thus, by deriving the jamming signal from

a Gaussian distribution, we can ensure that the overall distribu-

tion after jamming still resembles the distribution of an OFDM

signal. In §5.1, we demonstrate that even if the eavesdropper

uses an optimal hypothesis testing strategy, it still experiences

a bit-error rate that is almost as high as a random guess.

(b) How do we ensure that we can jam an eavesdropper in-

dependent of its location? The effectiveness of jamming de-

pends on the eavesdropper’s location with respect to the sender

and the jammer. If the eavesdropper is too close to the sender,

the jamming power at the eavesdropper will be far lower than

the power of the sender’s transmitted signal, which may allow

the eavesdropper to decode the sender’s signal despite jam-

ming. iJam addresses this problem using a two-way protocol

with multiple jamming powers. Specifically, to generate a se-

cret key shared between Alice and Bob, both nodes take turns

in sending and jamming. Hence, no eavesdropper can be al-

ways closer to the sender than the jammer. The secret key is

then constructed by XOR-ing the bits sent in the two direc-

tions. Further, the protocol runs multiple such iterations at dif-

ferent jamming powers that are strategically chosen to ensure

robustness to eavesdropper location. We show in §5.2 that iJam
ensures the eavesdropper, regardless of its location, gets no in-

formation about the key.

We implement iJam in GNURadio and evaluate it in a 20-

node testbed of USRP2 radios [15] with 802.11-like physical

layer. Our evaluation reveals the following.

• The bit error rate at an eavesdropper ranges from 40-60%,

which means that an eavesdropper cannot do much better

than randomly guessing the contents of the packet. This

is true even in extreme scenarios such as the eavesdropper

being very close to the sender or the jammer, as well as at

various positions between them.

• Jamming has no impact on packet decodability at the in-

tended receiver. Specifically, for the range of SNRs in

[7, 25] dB, the bit error rate with and without jamming is

the same.

• iJam is fast and accurate. A typical 802.11 receiver can

generate secret keys with zero disagreements, at a rate of

3–18Kb/s, depending on the modulation.

2 RELATED WORK

iJam builds on prior schemes that demonstrate the practi-

cality of secret key extraction from wireless transmissions [17,

21, 2, 20]. Say Alice and Bob want to establish a secret key.

These schemes work by using the time-varying wireless chan-

nel from Alice to Bob. Assuming reciprocity, Alice and Bob

can both derive this channel information using wireless trans-

missions. These schemes then extract secret bits from this

time-varying channel information. However, in order to de-

rive a number of uncorrelated bits, the channel has to change

quickly. As a result, these schemes have a low secrecy rate

and are mainly applicable to mobile environments. In contrast,

iJam provides a channel-independent approach for secret key

extraction, and hence is fast and can operate even in scenarios

where the channel stays static for long intervals.

Jamming has traditionally been used in adversarial man-

ner to prevent others from communicating over the wireless

medium [29]. Recently, however, there has been interest in co-

operative or friendly jamming. In [19, 13, 7], a trusted third

party jams the secret key from sender to receiver. The jamming

signal is known to the receiver, which decodes using interfer-

ence cancellation. In contrast, the eavesdropper does not know

the jamming signal and hence cannot decode the secret key.

The work in [22, 10] presents a variation on the above model

where the sender itself transmits the key combined with a jam-

ming signal. A third party node transmits an anti-jamming sig-

nal that cancels out the jamming signal at the receiver but not

at the adversary. In contrast, iJam achieves security without a

trusted third party, and is further implemented and evaluated

in a testbed.

iJam is related to dialog codes [1], where the receiver jams

the transmitted signal to flip specific bits in the packet as re-

ceived by the eavesdropper. This approach assumes a modula-

tion scheme where each bit is sent separately on the channel,

e.g., BPSK. Past work however shows that jammed bits are

easy to identify in such modulation schemes [25]. Addition-

ally, flipping specific bits requires phase synchronization of the

sender and the jammer at the eavesdropper. Such synchroniza-

tion needs knowledge of the channels from each of them to the

eavesdropper, but these channels cannot be obtained without

the cooperation of the eavesdropper in the first place.

3 ADVERSARY MODEL

We assume the adversary can listen to all communications

in the network. It can also measure the channels between itself

and the communicating nodes. Further, it can be anywhere in

the network and is free to move or stay static.

The adversary can operate at the packet, bit, or signal lev-

els. For example, it can consider the jamming signal as noise

and try to decode in the presence of jamming. Or it can take

a stronger approach, and examine the received signal samples

in an attempt to distinguish jammed samples from clean sam-

ples. In §5.1, we discuss these approaches and show that iJam

is robust to them.

Also, instead of considering the jamming signal as noise,

the adversary can implement interference cancellation or joint

decoding in an attempt to simultaneously decode the jamming

signal and the original transmission. This approach however

does not work because basic results in multiuser information
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Figure 2—Amplitude Distribution of OFDM signal samples. The OFDM

uses a 64-point FFT and modulates bits using 4QAM. The distribution follows

a zero-mean Gaussian.

theory say that decoding multiple signals is impossible if the

total information rate is outside the capacity region [27]. In

iJam, we ensure that the information rate at the eavesdrop-

per exceeds the capacity region by making the jammer trans-

mit at an excessively high rate. This can be done by making

the jamming signal samples i.i.d.s and sending them at a very

dense modulation. Specifically, we use a modulation of 65,536

QAM. (This corresponds to having a resolution of 8 bits for

both the I and Q components of the signal.) In comparison to

existing 802.11 bit rates, which use a maximum of 64 QAM,

this is an excessively high bit rate.

The secrecy bit rates reported in this paper are for the case

where the eavesdropper’s hardware is as powerful as that of

the sender and receiver. The ideas underlying iJam, however,

can be applied in certain scenarios where the eavesdropper’s

hardware may be more powerful than that of the sender and

the receiver, albeit with lower secrecy rates. For example, the

eavesdropper may use directional antennas to obtain a power

gain which reduces the secrecy rate. But the basic ideas un-

derlying iJam can still help exchange secret keys between the

sender and the receiver. Evaluating these scenarios, however,

is beyond the scope of this paper.

Finally, similarly to all practical past work on physical

layer wireless security we assume the adversary is passive and

not interested in mounting a man-in-the middle attack [21, 17,

6]. There is a growing literature on authenticating wireless de-

vices based on their location or their physical properties [3],

which can be used to address such attacks.

4 IMPACT OF JAMMING ON OFDM SIGNALS

At a high level, OFDM works as follows: the transmitter

takes a sequence of bits and converts them into complex num-

bers by applying quadrature amplitude modulation (QAM).

Next, the transmitter takes blocks of N such complex num-

bers (N = 64 in 802.11), and apply the inverse fast fourier

transform (IFFT) to them, i.e.:

xk =

N∑

n=0

Xne
i2πkn/N ,

where Xn is a modulated complex number. The output of the

IFFT, i.e., xk , is then transmitted on the channel as the time
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Figure 3—Time domain signal samples for BPSK and OFDM. In contrast

to BPSK, the OFDM signal spans a wide range of values.

samples of the signal.1 Thus, each time sample in the signal is

a linear combination of multiple modulated bits.

The design of OFDM has two implications for jamming:

(a) In OFDM, it is hard to distinguish jammed samples from

clean ones. Since each sample is a linear combination of N

random modulated bits, by the central limit theorem, each of

the OFDM time samples approximately takes values from a

random Gaussian distribution [27]. Fig. 2 shows the distribu-

tion of OFDM signal samples at the output of GNURadio, for

an OFDM system that uses 4-QAM modulation and N = 64

(which is the value used in 802.11). The figure confirms that

the signal distribution follows a zero-mean Gaussian. Thus, the

amplitude of an OFDM sample can take a wide range of val-

ues. Compare such an OFDM signal with BPSK, a transmis-

sion system commonly used in sensor hardware [16]. BPSK

transmits a “0” bit as -1 and a “1” bit as +1. Thus, in the

time domain, the BPSK signal takes only two values (-1,+1).

Fig. 3 shows an OFDM signal against a BPSK signal. Since

the BPSK signal takes only two values, it is relatively easy to

identify jammed bits as those far away from the two expected

values. In contrast, since the OFDM signal spans a whole range

of values, it is hard to simply look at the amplitude of a sample

and identify whether it is jammed.

Further, if one picks the jamming signal also from a zero-

mean Gaussian distribution, then the combination of the jam-

ming and original signals will also have Gaussian statistics

(this is because a linear combination of two independent Gaus-

sians is a Gaussian). This makes it even harder to tell which

sample is jammed. In §5.1, we analyze an eavesdropper that

uses hypothesis testing to identify the jammed samples and

show that iJam is resilient to such attack.

(b) In OFDM, there is no one-to-one map between a bit and a

time sample. In OFDM, each time sample is a linear combina-

tion of many modulated bits. Thus, jamming a single OFDM

sample, affects multiple bits at the same time. Compare that

to BPSK, where each bit is modulated into one signal sam-

ple, and thus, jamming a particular sample of a BPSK signal

corrupts only the bit that is encoded into that sample.

5 IJAM

iJam is a PHY-layer technique that enables two wireless

nodes to exchange an unencrypted secret key, in the presence

of an eavesdropper. Without loss of generality, we focus on ex-

1The transmitter also appends a cyclic prefix [14].



changing a secret key of B bits (the default is B = 512 bits).

Larger keys can be obtained by repeating the process multi-

ple times. Also, while iJam is a general secrecy technique, we

focus our description on 802.11.

iJam works as follows. The sender generates a random se-

quence of B bits, which we refer to as a salt. It delivers the

salt to its PHY for transmission, along with the standard packet

header. The PHY generates the OFDM signal corresponding to

the packet. However, for each OFDM symbol corresponding to

the salt, the PHY sends 2 copies of the symbol back-to-back.

The PHY layer at the receiver starts by decoding the

packet’s header. If the header is marked to indicate an iJam

packet and the MAC address matches the receiver’s MAC ad-

dress, the PHY waits until the end of the header, then starts

jamming the transmission.2 For each received signal sample

from the salt, the PHY either jams the original sample or its

repetition. Since an OFDM symbol and its repetition are back-

to-back, the PHY knows how to match a sample and its rep-

etition. To jam a sample, the PHY transmits a signal sample

that is drawn randomly from a zero-mean Gaussian distribu-

tion whose variance is set to the variance of an OFDM signal

with the same modulation.3

To decode the salt, the PHY stitches the unjammed samples

together to create a clean version of the OFDM signal corre-

sponding to the salt. It then decodes this clean signal to obtain

the bits in the salt. If the bits pass the checksum, the receiver

sends an acknowledgment to the sender. If the sender does not

receive an ack, it repeats the process with a different random

salt. Once the sender and receiver have successfully exchanged

a salt, they can use it to generate the secret key. In the follow-

ing few sections we expand this basic idea to make it robust to

various adversarial scenarios.

5.1 The Adversary’s Optimal Strategy for Detecting

Jammed Samples

To make iJam robust, we need to ensure that an eavesdrop-

per cannot distinguish jammed samples from clean samples.

We had earlier argued that it is difficult for an eavesdropper

to simply look at an OFDM sample and identify whether it is

jammed. However, since iJam repeats each sample, an eaves-

dropper has additional information: it can compare an OFDM

sample against its repetition to guess which one is jammed.

In particular, a jammed sample is the sum of two zero-

mean Gaussian variables: the data sample received from the

sender, and the jamming sample received from the receiver.

Recall that the sum of two independent zero-mean Gaussian

variables is also a zero-mean Gaussian variable, whose vari-

ance is the sum of the two variances [27]. Therefore, jammed

samples have higher variance than clean samples. An eaves-

dropper can exploit this fact to improve its ability to identify

jammed samples.

2In practice, the hardware pipeline at the receiver has a decoding delay of 2-4

OFDM symbols. Thus, to ensure that the receiver can jam all data samples,

the transmitter inserts a pad of 4 OFDM symbols at the end of the header.
3The receiver knows the modulation of the packet from the header. Given a

particular modulation, the variance of the OFDM signal can be pre-computed.

Specifically, the eavesdropper can apply an optimal hy-

pothesis testing strategy as follows. Consider two transmis-

sions of the same sample, one of which is jammed by the

receiver. Let S1 denote the first OFDM sample received by

the eavesdropper, and S2 denote the second. Let H1 denote

the hypothesis that S1 is jammed, H2 the hypothesis that S2 is

jammed, and C the condition that one of S1 and S2 is jammed.

The eavesdropper can now apply a maximum likelihood test

as follows:

Pr(H1|S1, S2,C) H1≷H2
Pr(H2|S1, S2,C)

Substituting the events corresponding to H1 and H2, we get:

Pr(S1 is jammed|S1, S2,C) H1≷H2
Pr(S2 is jammed|S1, S2,C)

Thus, the optimal hypothesis testing reduces to the following:

Pr(S1, S2|S1 is jammed,C)H1≷H2
Pr(S1, S2|S2 is jammed,C)

After substituting the Gaussian probabilities and rearranging

the terms, the maximum likelihood test reduces to:

|S1|
2 H1≷H2

|S2|
2

Thus, when comparing a sample to its repetition, the eaves-

dropper’s best guess is to assume the one with the smaller mag-

nitude to be clean. The eavesdropper can then apply this test to

all samples and their repetitions to obtain its optimal estimate

of the salt.

Say that the eavesdropper applies the above optimal strat-

egy, how well does she perform? Let us compute an upper

bound on the performance of such eavesdropper. To do so,

we simulate in Matlab the case where the eavesdropper re-

ceives the transmitted signal with infinite SNR, in the absence

of the jammer. For each modulation scheme (BPSK, 4-QAM,

16-QAM, 64-QAM over OFDM), we vary the power of the

jammer and use the optimal hypothesis test to estimate the salt.

Fig. 4 plots the bit error rate as a function of the ratio of the

jamming power to the sender’s power at the eavesdropper. The

figure shows 4 lines, one for each modulation scheme. The fig-

ure reveals three important points:

• Jamming can produce high BERs at the eavesdropper for 4-

QAM, 16-QAM, and 64-QAM. However, to ensure a BER

as high as a random guess, i.e., a BER of 50%, iJam needs

an additional mechanism that amplifies the BER at the ad-

versary.

• The BER is close to the maximumwhen the sender’s power

at the eavesdropper, Ps→e, and the jammer’s power at the

eavesdropper, Pj→e satisfy the relationship 1 <
Pj→e

Ps→e
< 9.

However, this condition may not be satisfied at the eaves-

dropper’s location. Hence, iJam needs an additional mech-

anism that works at all power ratios to allow it to be loca-

tion independent.

• Finally, the BER for BPSK over OFDM is very low and

hence we cannot use iJam’s scheme directly. Thus, iJam

needs to find an alternative approach to transmit over chan-

nels that have low SNR and for which 802.11 would typi-

cally use BPSK over OFDM.
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Figure 4—Performance of an optimal hypothesis-testing adversary. The

figure shows the Bit Error Rate (BER) for different modulations as a function

of the ratio of the jamming power to the transmitter power at the eavesdrop-

per. The graph can be divided into three regions: Region 1 where the power

from the jammer is lower than the transmitter, Region 2 where the power ratio

is such that it maximizes the BER, and Region 3 where the power from the

jammer is significantly higher than the transmitter.

The next three sections address the above three challenges.

We start with making iJam location independent.

5.2 Making iJam Location Independent

As we saw in Fig. 4, the simple jamming idea works only

in region 2, i.e., when 1 <
Pj→e

Ps→e
< 9. So, how do we deal with

scenarios in which the eavesdropper is in a location that does

not satisfy the above constraint?

(a) Dealing with Region 1 (i.e.,
Pj→e

Ps→e
≤ 1.) Region 1 occurs

in locations where the jamming power is too low. This means

that the eavesdropper is not really affected by the jamming and

therefore has a low BER. iJam addresses this problem by us-

ing a 2-way exchange of salts. Say Alice and Bob want to ex-

change a random key. Alice first sends a random salt to Bob,

which Bob jams using our technique. Bob then sends a new

random salt to Alice, which Alice jams using our technique.

Both Alice and Bob know the two salts, the one they received

and the one they sent. They XOR the two salts to obtain the

random key.

Given this choice of key, we can completely ignore eaves-

droppers in region 1, where
Pj→e

Ps→e
≤ 1. Specifically, an eaves-

dropper cannot obtain the key unless she correctly decodes

both salts. Yet, for any eavesdropper either the power received

from Alice is larger than the power received from Bob or the

opposite. Since Bob acts as the jammer for the first salt and

Alice acts as the jammer for the second salt exactly one salt

will fall in region 1. Yet, the eavesdropper needs to xor both

salts to get the key.

(b) Dealing with Region 3 (i.e.,
Pj→e

Ps→e
≥ 9.) Region 3 oc-

curs in locations where the jamming power is too high. This is

problematic because the eavesdropper can identify the jammed

samples with high probability and hence obtain a low BER. So

the solution to this problem is to reduce the jamming power

so that the ratio
Pj→e

Ps→e
stays relatively small. The problem how-

ever is that for any power value that the jammer picks, there

exist eavesdropping locations for which the ratio
Pj→e

Ps→e
is too

high and other locations for which the ratio is too low. Thus,

Sender Receiver

Jamming 

Power

1P

Timeout

.

.

2P

.

.
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Figure 5—Making iJam location independent. The sender transmits a salt

and its repetition and waits for acks. In the absence of an ack, the sender

timeouts, discards the unacked salt and transmits a new random salt.

the jammer cannot cover all eavesdropping locations with one

setting for the jamming power.

To address the above problem, iJam uses L different power

levels to jam. Specifically, instead of transmitting one random

salt in each direction, iJam transmits L salts in each direction

(L salts from Alice to Bob and L salts from Bob to Alice).

As before, the OFDM symbols corresponding to each of these

salts are repeated twice.

As shown in Fig. 5, the jammer jams each salt and its rep-

etition using a different power level. In particular, the jammer

jams the first salt (and its repetition) using the maximum power

supported by the hardware P1. It jams the second salt using a

power P2 = P1

9
, and the third salt using a power P3 = P2

9
, and

so on until it jams the Lth salt with a power level PL = PL−1

9
. Af-

ter exchanging L random salts in each direction, the two nodes

generate the key by XOR-ing all 2L salts together. Note that

the adversary cannot correctly decode the key. This is because,

for every adversary location, there exists at least one salt for

which the power ratio satisfies the condition, 1 ≤
Pj→e

Ps→e
≤ 9.

We note the following two points:

• First, since the receiver may fail to decode a salt, we need

the receiver to acknowledge every salt and the sender to

continue sending salts until the receiver acknowledges L

such salts. The key is then generated by xor-ing only the

acked salts.

• Second, the number of jamming levels, L, can be computed

given an upper and lower bounds on the jamming power.

The upper bound is set to the maximum power supported

by the hardware and the lower bound to the noise power.

Given typical values for the maximum 802.11 power and

the noise power we estimate L to be about 10 different

power levels.4

4802.11 transmits around 15dBm and have a noise floor around -95dBm [4].

This translates to about 10-11 different power levels.



5.3 BER Magnification

Now that we have made iJam location independent, we ad-

dress the next challenge. In particular, we would like to mag-

nify the BER at the eavesdropper to be close to 50%, so that

the eavesdropper gets no more information than she would get

from a random guess.

To do so, we again use the XOR technique from the pre-

vious section. Specifically, instead of transmitting just one salt

(and its repetition) at every power level, the transmitter trans-

mits a train of M salts. The final salt for each power level is

then constructed by XOR-ing all these M salts. Say, the BER

in each of the individual salt is x, the probability that the ith

bit is uncorrupted in all M salts decreases exponentially with

M as (1− x)M . This exponential trend enables us to quickly

increase the BER at the eavesdropper to about 50%.

As in the previous section, if the receiver fails to decode a

particular salt, it does not acknowledge the salt. Unacked salts

are discarded, and the key is created by xor-ing only acked

salts.

5.4 Making iJam work at BPSK SNRs

Finally, as shown in Fig. 4, we cannot transmit salts using

BPSK over OFDM because of its low BER. So we need an

alternate mechanism to transmit salts to a receiver that has low

SNR and for which 802.11 would typically use BPSK over

OFDM.

To deliver packets to such a receiver, while maintaining

a high BER at the eavesdropper, the transmitter uses 4-QAM

over OFDM. However, since 4QAM has a much higher BER at

the low SNRs at which BPSK operates, the receiver is likely to

see many bit errors in the whole packet. To counter this effect,

an iJam sender splits a salt into several sub-salts and sends a

CRC checksum for each sub-salt. Since sub-salts are smaller,

they are much more likely to be correctly received than a com-

plete salt despite the higher BER of 4-QAM. The receiver only

acknowledges and uses correct sub-salts for constructing the

final salt.

In our implementation a sub-salt is 128 bits. In §9.4, we
show that using this value, iJam can successful establish keys

with receivers whose SNR is as low as 6 dB, which is at the

lower end of the operational regime for BPSK over OFDM [8].

5.5 Summary

To summarize, say Alice and Bob want to exchange a se-

cret key. Alice transmits to Bob L sequences of M salts, and

Bob jams each of these L sequences with a different power

level. Similarly, Bob transmits to Alice L sequences ofM salts,

and Alice jams each of these L sequences with a different

power level. The final key is generated by XOR-ing all 2ML

salts together.

To reach low SNR receivers that typically require BPSK

over OFDM, an iJam sender transmits its salts using 4QAM.

It however divides each salt into several sub-salts and sends

a CRC checksum for each sub-salt. The salt is constructed

by concatenating successful received sub-salts. The rest of the

Figure 6—Locations of Testbed Nodes

protocol stays the same as above.

6 STITCHING SAMPLES AT THE RECEIVER

An iJam receiver takes the clean samples from the original

OFDM symbol and its repetition and combines them to cre-

ate a single clean OFDM symbol. However, naively combin-

ing the samples across the two symbols does not work. This is

because the oscillators at the sender and receiver tend to have

small differences that result in a frequency offset,∆f [14]. The

frequency offset changes the phase of the received signal over

time. In particular, the phase of the OFDM signal increases by

2π∆f every sample. Say that a transmitted OFDM symbol has

the samples: y1, y2, · · · , yN . The frequency offset causes the

symbol to be received as (after channel compensation):

y1e
2π∆f , y2e

4π∆f , · · · , yNe
2Nπ∆f

If the symbol repetition is D samples away from the original

symbol, the repetition is received as:

y1e
2(D+1)π∆f , y2e

2(D+2)π∆f , · · · yNe
2(D+N)π∆f

By comparing the above two equations, it is clear that one

cannot simply stitch samples from a symbol and its repetition

without correcting for phase differences. We note however that

the phase of every sample differs by exactly 2Dπ∆f between

the original samples and their repetition. So, an iJam receiver

multiplies all the samples in the repetition signal by e−2Dπ∆f

before combining. It can easily do this because it knows D and

also can estimate the frequency offset, ∆f , using standard cor-

relation techniques [11]. After correcting for this phase, the

iJam receiver can combine samples across a symbol and its

repetition. The resulting signal now looks like a proper OFDM

signal which it can be decoded by a standard OFDM decoder.

7 PRACTICAL JAMMING

An iJam jammer needs to corrupt complementary samples

in the original OFDM symbol and its repetition. The reader

might think that, to achieve this, the jammer needs to be syn-

chronized with the transmitter. iJam however does not require

such synchronization. Since an OFDM symbol and its repe-

tition are sent back-to-back, all that an iJam jammer needs

to know is the boundaries between OFDM symbols. Symbol

boundaries are naturally detected by existing OFDM decoding

algorithms. Once it locates symbol boundaries, iJam can pair

a sample with its repetition because they are separated by the

duration of a symbol.
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Figure 7—Effectiveness of Jamming at eavesdropper. For all modulation schemes, the BER is maximized when the power ratio is between 1 and 9.

8 IMPLEMENTATION

We implement iJam using USRP2. We use the RFX2400

daughterboards which operate in the 2.4 GHz range. We build

our prototype on top of the GNU Radio software. We use an

802.11-like physical layer, with 64 OFDM sub-carriers. We

implement a receiver-cum-jammer by keeping both the trans-

mit and receive chains running and connected to the antenna

for the duration of each packet. This allows us to jam while re-

ceiving. The jamming signal is set to zero whenever the hard-

ware wants to receive a clean signal sample, and is non-zero

otherwise.5

9 RESULTS

We evaluate iJam in a representative indoor testbed. The

testbed has 20 nodes in both line-of-sight and non-line-of-sight

locations, as shown in Fig. 6.

9.1 Do empirical results match analysis and simulation?

We would like to confirm that, in practice, the impact of

jamming at the eavesdropper follows the theoretical predic-

tions from §5.1. In particular, we want to check how an opti-

mal hypothesis testing eavesdropper performs in the testbed,

as a function of the ratio of the power it receives from the

jammer and sender,
Pj→e

Ps→e
. To perform this experiment, we ran-

domly pick nodes from the testbed to be the sender and the re-

ceiver/jammer. For each choice of sender and receiver/jammer

nodes, we place the eavesdropper at various random locations

and also control the jamming power, in order to span the whole

range of power ratios. The ability of the eavesdropper to de-

code a salt from the sender depends on the SNR of the sender’s

signal in the absence of the jammer. Thus, we consider eaves-

dropper locations that cover the range of 802.11 SNRs.

We plot the results of this experiment for 4-QAM, 16-

QAM and 64-QAM over OFDM in Fig. 7. The x-axis shows

the power ratio,
Pj→e

Ps→e
. The y-axis shows the BER. Each of the

lines represents the sender’s SNR at the eavesdropper, in the

absence of jamming. The bold lines show the theoretical BER

for a hypothetical eavesdropper who gets a noiseless signal (in-

finite SNR) from the sender. The figure reveals the following:

• First, the BER at the eavesdropper follows the theoretical

predictions from §5.1. The BER is low when the ratio is

5Note that a receiver-cum-jammer does not mean that the wireless radio can

transmit and receive concurrently. In particular, whenever the receiver sends

a non-zero jamming signal, the corresponding received sample is corrupted

because the transmit power overwhelms the receive chain at that moment.

either too high or too low. Further, the BER is at or close

to its maximum when the ratio,
Pj→e

Ps→e
, is between 1 and 9,

and this works independent of the modulation used.

• Second, interestingly the adversary’s measured bit error

rates (the thin lines in Fig. 7) are larger than the simu-

lated/analytical BERs (the thick lines in Fig. 7). The reason

is that the analysis/simulation ignores channel noise which

increases the BER created by jamming and improves iJams

ability to prevent the attacker from decoding.

9.2 How well does iJam magnify the adversary’s BER?

In §5.3, we provided a mechanism that allows iJam to mag-

nify the adversary’s BER to 50%. In particular, at each power

level, the sender transmits M salts and amplifies the BER

by XOR-ing these salts. Here, we evaluate how iJam’s BER

amplification performs with different modulations. Since, the

value of M should be sufficient to magnify the BER to 50%

in all cases, we consider the most powerful eavesdropper, i.e.,

an eavesdropper that has the lowest BER in the absence of

jamming. From Fig. 7, this corresponds to locations where the

eavesdropper has a high SNR from the sender, and where the

power ratio is either of the extremes, i.e., 1 or 9. Thus, to com-

pute the maximumM, we only consider these eavesdropper lo-

cations. In each experiment, the sender transmits 10000 salts.

Fig. 8 shows the value of the BER as a function ofM. It reveals

the following.

• For all modulation schemes, iJam can magnify the BER to

50% by picking an appropriate value for M.

• At 16-QAM and 64-QAM, iJam requires about 15 to 30

salts to achieve a BER of 50%, while 4-QAM needs about

90 salts to approach the same BER. This is expected be-

cause, the original BER for 16-QAM and 64-QAM is much

higher than 4-QAM, and hence it takes more transmissions

with 4-QAM to achieve the same BER.

• The total time for iJam to transmit a salt across all power

levels is small. Specifically, iJam needs M (15 for 64-

QAM, 30 for 16-QAM, 90 for 4-QAM) salts per power

level, and 10 power levels in total. Since each salt is 512

bits, multiple salts can fit in a single 1500 byte 802.11

packet. Thus, iJam requires around 14 packets for 64-

QAM, 28 packets for 16-QAM and 84 packets at 4-QAM.

Even including additional MAC overheads such as DIFS,

contention window etc., each packet takes less than 1ms to

deliver. Thus, a 512 bit salt can be delivered within 14-84

ms. Since the final secret key is generated by XOR-ing the
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Figure 9—Comparison of Receiver Bit Error Rate (BER). The figure

shows that, for all modulations and SNRs, the BER at the intended receiver,

in the presence of jamming is similar to that without jamming. The figure also

shows that phase correction is critical for iJam to work.

salts in the two directions, iJam can generate a 512 bit se-

cret key in 28-168ms. This corresponds to a secrecy rate of

3 to 18 Kb/s.

9.3 Can an iJam receiver decode while jamming?

Here we show that iJam’s algorithm for stitching sam-

ples across a symbol and its repetition works. Specifically, we

check that the receiver in the presence of jamming can match

the BER of a jamming-free receiver at every SNR, and for ev-

ery modulation.

As before, we pick random node pairs in the testbed to

act as a sender and a receiver. For each pair of nodes, the

sender transmits packets using different modulations. The re-

ceiver transmits its jamming signal at maximum power as this

is the worst case scenario for decoding.

Fig 9 shows the BER as a function of the SNR for three

scheme: 1) jammer-free receptions, 2) iJam without the phase

correction algorithm from §6, and finally 3) iJam with phase

correction. The figure shows the following:

• Phase correction is crucial for iJam to work. Fig 9 shows

that the symbols are completely undecodable when phase

correction is not employed. This should not come as a sur-

prise because in the absence of phase correction, the phases

of the samples are incorrect and therefore the OFDM re-

ceiver gets most of the bits wrong.

• For all modulation schemes, the SNR at a iJam receiver is

similar both with and without jamming. This shows that
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Figure 10—Number of sub-salt transmissions required at BPSK SNRs.

The figure shows the number of sub-salts the sender transmits before the re-

ceiver at BPSK SNRs can correctly receive one sub-salt.

iJam can remove the effect of jamming precisely at the

receiver, and does not affect the ability of the receiver to

accurately decode across the entire range of SNRs, even

while the eavesdropper experiences a BER of around 50%.

9.4 Does iJam work at BPSK SNRs?

As mentioned earlier, because of its very low BER, iJam

does not use BPSK over OFDM. iJam instead uses the sub-

salts mechanism in §5.4 to deliver salts to locations which

traditionally require BPSK because of their SNR. Here, we

check if iJam can indeed do so. To test this, we consider pairs

of nodes in the testbed which require BPSK over OFDM to

communicate. For each pair, the sender transmits using 4QAM

over OFDM. To counter the high BER that results from oper-

ating 4QAM at BPSK SNRs, the iJam sender divides salts into

sub-salts of length 128 bits and sends a CRC for each sub-salt.

The sender transmits sub-salts until the receiver receives one

sub-salt that passes the CRC.

Fig. 10 plots the average number of different sub-salts the

sender transmits before the receiver correctly receives one of

them. The x-axis shows the SNR values of the sender signal

at the receiver. The SNR values span the typical BPSK opera-

tional regime (5-10dB) [8]. The figure shows that as the SNR

decreases, the sender needs to send more sub-salts before the

receiver can correctly receive one of them. While the number

of such sub-salts is higher at lower SNRs, this is an acceptable

overhead for the BPSK SNR locations. The key point to note,

however, is that iJam can use 4-QAM to confidentially deliver

salts even to receivers which traditionally require BPSK.

9.5 Aggregate Results from the Testbed

Finally, in this section, we use the representative indoor

testbed shown in Fig. 6 as a case study to investigate iJam’s

BER at an eavesdropper at various locations. Specifically, we

randomly pick two nodes from the testbed to be Alice and Bob

and run the complete protocol from §5.5. All the other nodes
eavesdrop on the channel. For each Alice-Bob location pair,

we run all three modulation schemes: 4-QAM, 16-QAM and

64-QAM over OFDM.

Fig. 11 plots a CDF of BER in the key as decoded by the

eavesdropper. The CDF is taken across all the eavesdropper

locations and different modulations. The figure shows that in

our testbed, iJam provides a median BER of 50% which is as
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Figure 11—Eavesdropper Bit Error Rate (BER) for the whole Testbed.

The median BER is 50% and the BER range is 40-60%, which shows that the

eavesdropper’s performance is close to a random guess.

good as randomly guessing the bits in the packet. Further, the

CDF is tightly concentrated around the median, i.e., the BER

of almost all eavesdroppers in the testbed is between 40-60%.

Thus, iJam can ensure that an eavesdropper cannot decode the

secret key.

10 CONCLUSION

This paper presents iJam, a novel PHY technique that en-

ables two wireless devices to communicate secret bits, in the

presence of an eavesdropper, and without encryption. iJam

works by strategically jamming the transmission so as to pre-

vent an eavesdropper from getting any information about the

secret key, while allowing only the intended receiver to de-

code the key accurately. We build a prototype of our design

and show that it can provide orders of magnitude higher se-

crecy rates than existing schemes.
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