
ZigZag Decoding: Combating Hidden Terminals in Wireless

Networks

by

Shyamnath Gollakota

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

May 23, 2008

Certified by. .

Dina Katabi

Associate Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by .

Terry P. Orlando

Chairman, Department Committee on Graduate Students

2

ZigZag Decoding: Combating Hidden Terminals in Wireless Networks

by

Shyamnath Gollakota

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

This thesis presents ZigZag, an 802.11 receiver that combats hidden terminals. ZigZag
exploits 802.11 retransmissions which, in the case of hidden terminals, cause successive
collisions. Due to asynchrony, these collisions have different interference-free stretches at
their start, which ZigZag uses to bootstrap its decoding.

ZigZag makes no changes to the 802.11 MAC and introduces no overhead when there
are no collisions. But, when senders collide, ZigZag attains the same throughput as if the
colliding packets were a priori scheduled in separate time slots. We build a prototype of
ZigZag in GNU Radio. In a testbed of 14 USRP nodes, ZigZag reduces the average packet
loss rate at hidden terminals from 82.3% to about 0.7%.

Thesis Supervisor: Dina Katabi
Title: Associate Professor of Computer Science and Engineering

3

4

Acknowledgments

If the only prayer you said in your whole life was, “thank you,” that would suffice.

Meister Eckhart

I am fortunate to have Dina as my adviser. Her excitement, perseverance and motivation

are more than contagious. Working with Dina was not only fun but also a tremendous

learning experience. I hope to learn a lot more from her in the next few years.

I am grateful to Grace, Nate, Rahul, Sachin, Srikanth and Szymon for their wonderful

company. They made a huge effort to make me comfortable in my first year at MIT. I really

appreciate the gesture. Special thanks to Sachin for showing me the ropes during my first

term at MIT, and for working with me on ANC.

I just cannot express enough gratitude to my parents, Vikram and Rohini for their

endless love and support. I could not have adapted to life at MIT without their patience.

Finally, thanks to all my friends!

5

6

Contents

1 Introduction 13

1.1 ZigZag Overview . 14

2 Related Work 17

2.1 Collisions in WLAN and Mesh Networks. 17

2.2 Communication and Information Theory: 18

3 A Communication Primer 19

3.1 Practical Issues . 20

3.1.1 Frequency Offset and Phase Tracking 20

3.1.2 Sampling Offset . 20

3.1.3 Inter-Symbol Interference (ISI) . 20

4 ZigZag Design and Implementation 21

4.1 Scope . 21

4.2 ZigZag Decoding . 24

4.2.1 Is It a Collision? . 24

4.2.2 Did the AP Receive Two Matching Collisions? 26

4.2.3 How Does the AP Decode Matching Collisions? 26

4.2.4 Estimating and Tracking the System Parameters 28

4.3 Dealing with Errors . 30

4.4 Backward Compatibility . 31

4.5 Beyond Two Interferers . 33

4.6 Complexity . 35

4.7 Summary . 35

7

5 Evaluation 37

5.1 Experimental Environment . 37

5.2 Setup . 39

5.3 Micro-Evaluation . 40

5.4 Does ZigZag Decoding Work? . 42

5.5 Scenarios with Capture Effect . 43

5.6 Testbed Throughput and Loss Rate . 45

5.7 Many Hidden Terminals . 47

5.8 Summary . 47

6 Future Work and Conclusion 49

A Proof of Lemma 4.4.1 53

B Proof of Assertion 4.5.1 55

8

List of Figures

1-1 A Hidden Terminals Scenario. 14

1-2 ZigZag Decoding. ZigZag decodes first chunk 1 in the first collision, which is interference

free. It then subtracts chunk 1 from the second collision and decodes chunk 2, which it can

then subtracts from the first collision and decodes chunk 3, etc. 16

1-3 Interference Cancellation and Joint Decoding Require Inefficient Rates. The

figure shows the classic illustration of the capacity region of the multi-user channel. Points

outside the shaded area are undecodable because the combined rate of the two senders

exceeds the capacity. If Alice and Bob transmit close to the best rate supported by the

medium in the absence of interference, R, their combined rates will be (R,R), which is

outside the capacity region, and hence cannot be decoded. 16

4-1 ZigZag applies to various collision patterns. The figure shows a variety of collision

patterns that ZigZag resolves. The top three patterns are decoded chunk-by-chunk. The

forth pattern refers to a capture effect which occurs because Alice’s power at the AP is

significantly higher than Bob’s. The last pattern occurs when Alice’s power is significantly

higher than Bob’s, but Bob’s power is also significantly higher than necessary for his bit

rate. 22

4-2 Detecting Collisions by Correlation with the Known Preamble. The correlation

spikes when the correlated preamble sequence aligns with the preamble in

Bob’s packet. This allows the AP to detect the occurrence of a collision and

where exactly it starts. 26

4-3 ZigZag decodes then re-encodes a chunk. Before subtracting a decoded chunk, like

chunk 1, ZigZag needs to re-encode the bits to create an image of chunk 1’, as received in

the second collision. 27

9

4-4 Errors Die Exponentially Fast. The error causes the AP to sum yA instead of sub-

tracting it. Hence, the error propagates from yA to the estimate ŷB , i.e., from one chunk

to the next, only when the angle between the two vectors is smaller than 60o , which occurs

with probability 1

3
. 31

4-5 ACKing. The figure shows how ZigZag can send 802.11 synchronous acks. 32

4-6 Applying ZigZag to Three Collisions. 33

4-7 Failure Probability v/s number of colliding nodes The probability that the linear

time algorithm cannot decode general configurations of collisions as function of the different

number of nodes involved in the collision. 34

5-1 Testbed Topology. The dots refer to GNURadio nodes. 39

5-2 Effects of Residual Frequency Offset and ISI. 40

5-3 Comparison of Bit Error Rate (BER). ZigZag delivers packets that are as correct as

if they were sent in separate time slots. Further, if both backward and forward decoding

are used, the BER is lower than if collisions did not occur. 43

5-4 Normalized Throughput in Scenarios with Capture Effects. The figure plots the

throughput of the hidden terminals Alice and Bob, as Alice moves closer to the AP, i.e., as

SINR ≈ SNRA − SNRB increases. It shows that ZigZag achieves higher throughput than

both 802.11 and the Collision-Free Scheduler. ZigZag is also fairer than current 802.11

where Bob cannot get any packets through. 44

5-5 Normalized Throughput for the Whole Testbed. The figure shows a CDF of the

throughputs in our testbed for pairs of competing flows, for both hidden and non-hidden

terminal scenarios. ZigZag improves the average throughout in our testbed by 31%. . . . 45

5-6 Loss Rate for the Whole Testbed. The figure shows a CDF of the packet loss rate in

our testbed for pairs of competing flows, for both hidden and non-hidden terminal scenarios.

ZigZag improves the average loss rate in our testbed from 18.9% to 0.2%. 45

5-7 Scatter Plot of Flow Throughputs. The figure shows a scatter plot of ZigZag and

802.11 throughputs for each sampled sender-receiver pairs. ZigZag helps when there is a

hidden terminal scenario but never hurts. 46

5-8 CDF of Loss Rate at Hidden Terminals. The figure zooms on scenarios with full or

partial hidden terminals. ZigZag reduces the average loss rate for hidden terminals in our

testbed from 82.3% to about 0.7%. 46

10

5-9 ZigZag’s Performance with Three Hidden Terminals. Cumulative distribution of

the throughput of three hidden terminals. 47

6-1 Unconventional Hidden Terminals involving four nodes. 50

6-2 Hidden Terminals with multiple receivers. 51

B-1 P1 must contain both P2 and P3. Otherwise we violate the constraint that P1 is the

longest packet. 56

B-2 The only possible collision patterns possible. 56

11

12

Chapter 1

Introduction

The small force that it takes to launch a boat into the stream should not be confused with

the force of the stream that carries it along.

- Friedrich Nietzsche

Collisions and hidden terminals are known problem in 802.11 networks [9, 22, 19, 2,

23, 26, 37]. Measurements from a production WLAN show that 10% of the sender-receiver

pairs experience severe packet loss due to collisions [9]. Current 802.11 WLANs rely on

carrier sense (CSMA) to limit collisions–i.e., senders sense the medium and abstain from

transmission when the medium is busy. This approach is successful in many scenarios,

but when it fails, as in the case of hidden terminals, the impact on the interfering senders

is drastic; the senders either repeatedly collide and their throughputs plummet, or one

sender captures the medium preventing the other from getting packets through [22, 19,

37]. Figure 1-1 shows a typical hidden terminal scenario, where Alice and bob, unable to

sense each other, transmit simultaneously to the AP, causing packet collisions. The 802.11

standard proposes the use of RTS-CTS to counter collisions wherein every node requests

reservation of the channel and transmits only if it successfully acquires the reservation.

However, experimental results show that enabling RTS-CTS significantly reduces the overall

throughput [19, 37, 40, 2] because of the high communication overhead incurred. Hence

WLAN deployments and access point (AP) manufacturers disable RTS-CTS by default [1,

29]. Ideally, one would like to address this problem without changing the 802.11 MAC or

affecting senders that do not suffer from hidden terminals.

13

Alice BobAP

Figure 1-1 – A Hidden Terminals Scenario.

1.1 ZigZag Overview

ZigZag is a new 802.11 receiver that increases WLAN resilience to collisions. ZigZag requires

no changes to the 802.11 MAC and introduces no overheard in the case of no collision. In

fact, in the absence of collisions, ZigZag acts like a typical 802.11 receiver. But, when

senders collide, ZigZag achieves the same performance as if the colliding packets were a

priori scheduled in separate time slots.

ZigZag exploits a subtle opportunity for resolving collisions, an opportunity that arises

from two basic characteristics of 802.11:

1. An 802.11 sender retransmits a packet until it is acked or timed out, and hence when

two senders collide they tend to collide again on the same packets.

2. 802.11 senders jitter every transmission by a short random interval,1 and hence colli-

sions start with a random stretch of interference free bits.

To see how ZigZag works, consider the hidden terminal scenario in Fig. 1-1, where Alice

and Bob, unable to sense each other, transmit simultaneously to the AP, causing collisions.

When Alice’s packet collides with Bob’s, both senders retransmit their packets causing a

second collision, as shown in Fig. 1-2. Further, because of 802.11 random jitters, the two

collisions are likely to have different offsets, i.e., ∆1 6= ∆2. Say that the AP can compute

these offsets (as explained in §4.2.1), the AP can then find a chunk of bits that experience

interference in one collision but is interference-free in the other, such as chunk 1 in Fig. 1-

2. A ZigZag AP uses this chunk to bootstrap its decoder. In particular, since chunk 1 is

interference-free in the first collision, the AP can decode it using a standard decoder. The

AP then subtracts chunk 1 from the second collision to decode chunk 2. Now, it can go

back to the first collision, subtract chunk 2, decode chunk 3, and proceed until both packets

are fully decoded.

ZigZag is a novel approach to decoding collisions, different from prior work on inter-

ference cancellation [34, 17] and joint decoding [32]. Basic results on the capacity of the

1Each transmission picks a random slot between 0 and CW [38].

14

multi-user channel show that if the two hidden terminals transmit at the rate supported by

the medium in the absence of interference, i.e., rate R in Fig. 1-3, the aggregate information

rate in a collision, being as high as 2R, exceeds capacity, precluding any decoding [32, 12].

Thus, interference cancellation and joint decoding, designed for cellular networks with non-

bursty traffic and known users [34, 5], have a fundamental limitation when applied in 802.11

networks: they require a sender to change the way it modulates and codes a packet accord-

ing to whether the packet will collide or not. This leaves 802.11 senders with the following

tradeoff: either they tune to a suboptimal rate that works in the presence of collision, though

not every packet will collide, or they send at the best rate in the absence of collision, but

accept that the network cannot use these methods to resolve collisions. In contrast, with

ZigZag, the senders need not make such a tradeoff. ZigZag allows the senders to transmit

at the best rate supported by the medium in the absence of collisions, R. However, if colli-

sions occur, ZigZag decodes pairs of collisions that contain the same packets. The average

information rate in such a collision pair is 2R/2 = R. This rate is both decodable and as

efficient as if the two packets were scheduled in separate time slots.

ZigZag has the following key features.

• It works with various modulations: When its a chunk’s turn to be decoded, the chunk

has already been rid of interference. Thus, ZigZag can employ a standard 802.11

decoder as a black-box to decode the chunks, which allows it to work with collisions

independent of their underlying modulation scheme (i.e., bit rate).

• It is backward compatible: A ZigZag receiver can operate with unmodified 802.11

senders and requires no changes to the 802.11 protocol (see §4.4 for how to send

acks).

• It generalizes to more than a pair of colliding packets, as explained in §4.5 and exper-

imentally demonstrated in §5.7.

• It has a lower bit error rate than if the packets were sent in separate time slots.

This might sound surprising, but this is possible because every bit is received twice,

once in every collision, and thus has twice as much chance to be decoded correctly.

ZigZag applies the decoding algorithm both in the forward and backward directions

and combines the results to reduce decoding errors.

15

∆1 ∆2

1 1

22

3 3

44

Pa

Pb

Pa

Pb

Figure 1-2 – ZigZag Decoding. ZigZag decodes first chunk 1 in the first collision, which
is interference free. It then subtracts chunk 1 from the second collision and decodes chunk 2,
which it can then subtracts from the first collision and decodes chunk 3, etc.

RAlice’s Avg. Rate

B
ob

’s
 A

vg
. R

at
e

(R,R)
R

Rmax

Rmax

Figure 1-3 – Interference Cancellation and Joint Decoding Require Inefficient
Rates. The figure shows the classic illustration of the capacity region of the multi-user
channel. Points outside the shaded area are undecodable because the combined rate of the
two senders exceeds the capacity. If Alice and Bob transmit close to the best rate supported
by the medium in the absence of interference, R, their combined rates will be (R,R), which
is outside the capacity region, and hence cannot be decoded.

We have implemented a ZigZag prototype in GNU Radio, and evaluated it in a 14-node

testbed, where 12% of the sender-receiver pairs are hidden terminals, 8% sense each other

partially, and 80% sense each other perfectly. Our results reveal the following findings.

• The loss rate averaged over scenarios with partial or perfect hidden terminals decreases

from 82.3% to less than 0.7%, with some severe cases where the loss rate goes down

from 100% to zero.

• Averaging over all sender-receiver pairs, including those that do not suffer from hid-

den terminals, we find that ZigZag improves the average throughput by 31% when

compared to current 802.11.

• At all SNRs, ZigZag’s bit error rate (BER) is lower than if the colliding packets were

scheduled in separate time slots. The average reduction in bit error in comparison to

scheduling packets separately is 1.4x.

16

Chapter 2

Related Work

One faces the future with one’s past.

- Pearl Buck

Related work falls in the following two areas.

2.1 Collisions in WLAN and Mesh Networks.

The closest to our work is by Halperin et al. [16] who articulate the benefits of decod-

ing 802.11 collisions. ZigZag however is significantly different from the approach in [16].

Halperin et al. use joint decoding, which, as explained in §1, requires the senders to trans-

mit a priori at the low rate required for decoding in the presence of collisions, though not

every packet will collide. Additionally, the system works by modeling the collision signal.

The complexity of such a model increases significantly at high modulation schemes, and is

also exponential in the number of colliding packets. In contrast, ZigZag does not require the

senders to send differently depending on whether a packet will collide, can work with various

802.11 modulations, and is linearly extendable to more than a pair of colliding packets.

Our work is also related to analog network coding (ANC) [21]. ANC, however, does

not deal with general collisions or hidden terminals. An ANC receiver can decode collisions

only if it already knows one of the two colliding packets. In principle, one can combine

ANC and ZigZag to create a system that addresses hidden terminals, and collects network

coding gains.

Additionally, prior works have studied wireless interference [30, 15, 9, 22, 19, 2, 23, 26,

17

37], and proposed MAC modifications to increase resilience to collisions [41, 11, 20, 6, 4, 28].

In comparison, this work presents mechanisms that decode collisions rather than avoiding

them, and works within the 802.11 MAC rather than proposing a new MAC.

2.2 Communication and Information Theory:

The idea of decoding interfering users has received much interest in information and com-

munications theories [32, 34, 8, 33, 36, 35]. The main feature that distinguishes ZigZag

from prior works in those areas is that ZigZag resolves 802.11 collisions without requiring

any scheduling, power control, synchronization assumptions, or new codes.

Among the deployed systems, CDMA receivers decode a user by treating all other users

as noise [8]. A CDMA solution for hidden terminals in WLANs, however, would require

major changes to 802.11 including the use of power control and special codes [5, 8]. Fur-

thermore, CDMA is known to be highly suboptimal in high SNR regimes (e.g., worse than

TDMA [32]), which are typical in WLANs [14].

Finally, interference cancellation is a known approach for decoding interfering users

in CDMA cellular networks [5]. Interference cancellation applies only under specific con-

straints. As stated in §1, the senders’ information rates must stay below capacity. Addition-

ally, practical systems require either that the interfering senders have significantly different

powers [34], or they have different levels of coding [17, 32]. ZigZag includes interference

cancellation as a special case, and uses it only when the senders’ powers and rates permit.

ZigZag, however, does not rely on interference cancellation as the main means of decoding

and thus works when interference cancellation does not apply.

18

Chapter 3

A Communication Primer

Only by acceptance of the past, can you alter it.

- T. S. Eliot

A wireless signal is typically represented as a stream of discrete complex numbers [27]. To

transmit a packet over the wireless channel, the transmitter maps the bits into complex

symbols, in a process called modulation. For example, the BPSK modulation (used in

802.11 at low rates) maps a “0” bit to e jπ = −1 and a “1” bit to e j0 = 1. The transmitter

generates a complex symbol every T seconds. In this paper, we use the term x[n] to denote

the complex number that represents the nth transmitted symbol.

The received signal is also represented as a stream of complex symbols spaced by the

sampling interval T . These symbols differ, however, from the transmitted symbols, both in

amplitude and phase. In particular, if the transmitted symbol is x[n] the received symbol

can be approximated as:

y[n] = Hx[n] + w[n], (3.1)

where H = heγ is also a complex number, whose magnitude h refers to channel attenuation

and its angle γ is a phase shift that depends on the distance between the transmitter and

the receiver, and w[n] is a random complex noise.1

If Alice and Bob transmit concurrently their signals add up, and the received signal can

be expressed as:

y[n] = yA[n] + yB [n] + w[n],

1This models flat-fading quasi-static channels.

19

where yA[n] = HAx[n] and yB [n] = HBxB [n] refer to Alice’s and Bob’s signals after

traversing their corresponding channels to the AP. Note that the above does not mean that

we assume the nth symbol from Alice combines with the nth symbol from Bob. The notation

is only to keep the exposition clear.

3.1 Practical Issues

A few practical issues complicates the process of estimating the transmitted symbols from

the received symbols: frequency offset, sampling offset, and inter-symbol interference. Typ-

ically, a decoder has built-in mechanisms to deal with these issues [27].

3.1.1 Frequency Offset and Phase Tracking

It is virtually impossible to manufacture two radios centered at the same exact frequency.

Hence, there is always a small frequency difference, δf , between transmitter and receiver.

The frequency offset causes a linear displacement in the phase of the received signal that

increases over time, i.e.,

y[n] = Hx[n]e j2πnδfT + w[n].

Typically, the receiver estimates δf and compensates for it.

3.1.2 Sampling Offset

The transmitted signal is a sequence of complex samples separated by a period T . However,

when transmitted on the wireless medium, these discrete values have to be interpolated into

a continuous signal. The continuous signal is equal to the original discrete samples, only

if sampled at the exact same positions where the discrete values were. Due to lack of

synchronization, a receiver cannot sample the received signal exactly at the right positions.

There is always a sampling offset, µ. Further, the drift in the transmitter’s and receiver’s

clocks results in a drift in the sampling offset. Hence, decoders have algorithms to estimate

µ and track it over the duration of a packet.

3.1.3 Inter-Symbol Interference (ISI)

While Eq. 3.1 makes it look as if a received symbol y[n] depends only on the corresponding

transmitted symbol x[n], in practice, neighboring symbols affect each other to some extent.

20

Practical receivers apply linear equalizers [24] to mitigate the effect of ISI.

21

22

Chapter 4

ZigZag Design and Implementation

I saw the angel in the marble and carved until I set him free.

- Michalangelo

4.1 Scope

ZigZag is a new 802.11 receiver that can decode collisions. Its design is focused on addressing

hidden terminals in WLANs. ZigZag’s benefits extend to mesh networks, where having

receivers that can decode collisions could enable more concurrent transmissions and hence

higher spatial reuse. Exploring mesh benefits is, however, beyond the scope of this work.

ZigZag adopts a best effort design; in the absence of collisions it acts like current 802.11

receivers, but when collisions occur it tries to decode them. Of course there are scenarios

where collision decoding may fail, but since ZigZag does not introduce any overhead for the

case of no collision, its presence can only increase the throughput of the WLAN. In §4.4,

we explain how one can deploy ZigZag in a WLAN by changing only the access points and

without modifying the clients.

ZigZag resolves a variety of collision patterns. The main idea underlying its decoding

algorithm is to find a collision free chunk, which it exploits to bootstrap the decoding

process. Once the decoder is bootstrapped the process is iterative and at each stage it

produces a new interference-free chunk, decodable using standard decoders. For example,

as explained in §1, ZigZag can decode the pattern in Fig. 1-2 by decoding first chunk 1 in

the first collision, and subtracting it from the second collision, obtaining chunk 2, which it

decodes and subtracts from the first collision, etc. Using the same principle, ZigZag can

23

∆1

Pa

Pb

Pa

Pb

∆2

1 1

22

(a) Overlapped Collisions

∆1

Pa

Pb

2

1

Pa

Pb

∆2

1

2

(b) Flipped Order

∆1

Pa

Pb

Pa

Pb∆2

1 1

22

(c) Different Sizes

Pa1

Pb1

Pa2

Pb13 3

1 2

(d) Alice’s Packets Enjoy the Capture Effect

Pa

Pb

1

2

(e) Single Decodable Collision; Inefficient Bit Rates

Pa1

Pb1 Pb13 3

1

(f) Bob’s packet is collision-free in the retransmission

Figure 4-1 – ZigZag applies to various collision patterns. The figure shows a variety
of collision patterns that ZigZag resolves. The top three patterns are decoded chunk-by-
chunk. The forth pattern refers to a capture effect which occurs because Alice’s power at
the AP is significantly higher than Bob’s. The last pattern occurs when Alice’s power is
significantly higher than Bob’s, but Bob’s power is also significantly higher than necessary
for his bit rate.

24

decode other patterns like those in Fig. 4-1. In particular, it can decode patterns where the

collisions overlap as in Fig. 4-1a, and patterns in which colliding packets change order as in

Fig. 4-1b, or even patterns where the packets have different sizes, as in Fig. 4-1c.

ZigZag exploits collision patterns that arise from capture effects. Say that Alice’s power

at the AP is significantly higher than Bob’s, and hence her packets enjoy the capture

effect [37]. Currently such a scenario translates into significant unfairness to Bob whose

packets do not get through [22, 19, 37]. Like current APs, a ZigZag AP decodes every packet

from Alice, the high power sender. Unlike current APs however, ZigZag subtracts Alice’s

packet from the collision signal and try to decode Bob’s packet. However, if Alice’s power

is excessively high, even a small imperfection in subtracting her signal would contribute a

significant noise to Bob’s, preventing correct decoding of his packets. In this case, the next

collision will involve a new packet from Alice and Bob’s retransmission of the same packet,

as shown in Fig. 4-1d. ZigZag decodes Alice’s new packet and subtracts it to obtain a second

version of Bob’s packet, which may also contain errors. ZigZag however combines the two

faulty versions of Bob’s packet to correct the errors. This is done using Maximal Ratio

Combining (MRC) [7], a classic method for combining information from two receptions to

correct for bit errors.1

In addition, whenever the powers permit, ZigZag decodes patterns that involve a single

collision like those in Fig. 4-1e. This occurs when Alice’s power is significantly higher than

Bob’s, and both senders happen to transmit at a bit rate lower than the best rate supported

by the channel. In this case, ZigZag can apply interference cancellation [34], i.e., ZigZag

decodes Pa and subtracts it from the received signal to decode Pb, decoding both packets

using a single collision.

Finally, ZigZag can also decode patterns which involves a single collision and a single

packet, as shown in Fig. 4-1(f). Note, that this is a special case of the general pattern

shown in fig.4-1(a) and can occur in two scenarios. In the first, Alice and Bob are not

hidden terminals but start transmitting in the same slot and end up colliding. However,

due to random backoff and because they can sense each other, Bob’s packet is collision-free in

1To get a feel for how MRC works, consider the case where the senders use the BPSK modulation, which
maps a “0” bit to -1 and a “1” bit to +1. If the AP receives two versions of the i th bit. The first version is
-0.2 and the second is +0.5, then assuming the channel has not changed between the two receptions, MRC
estimates the bit as the average of these two receptions i.e., (0.5−0.2)/2 = 0.1 > 0, and hence it decodes the
bit as a “1” bit. For further information about MRC and symbol combining methods, we refer the reader
to [7, 39].

25

the retransmission. In the second scenario, Alice and Bob are hidden terminals but either

because of very small packet size or a very large backoff window, only Bob retransmits.

ZigZag can decode both Alice’s and Bob’s packet at the same time. First, a ZigZag receiver

decodes Bob’s collision-free packet and then subtracts it from the collision to get Alice’s

packet.

ZigZag can also decode collisions that involve more than a pair of packets, which we

discuss in §4.5.

4.2 ZigZag Decoding

We explain ZigZag decoding using the hidden terminal scenario in Fig. 4-3, where Alice and

Bob, not able to sense each other, transmit simultaneously to the AP, creating repeated

collisions. Later in §4.5, we extend our approach to a larger number of colliding senders.

Like current 802.11, when a ZigZag receiver detects a packet it tries to decode it, as-

suming no collision, and using a typical decoder. If decoding fails (e.g., the decoder loses

synchronization or the decoded packet does not satisfy the checksum), the ZigZag receiver

will check whether the packet has suffered a collision, and proceed to apply ZigZag decoding.

4.2.1 Is It a Collision?

To detect a collision, the AP exploits that every 802.11 packet starts with a known pream-

ble [38]. The AP detects a collision by correlating the known preamble with the received

signal. Correlation is a popular technique in wireless receivers for detecting known signal

patterns [8]. Say that the known preamble is L samples. The AP aligns these L samples

with the first L received samples, computes the correlation, shifts the alignment by one

sample and re-computes the correlation. The AP repeats this process until the end of the

packet. The preamble is a pseudo-random sequence that is independent of shifted versions of

itself, as well as Alice’s and Bob’s data. Hence the correlation is near zero except when the

preamble is perfectly aligned with the beginning of a packet. Fig. 4-2 shows the correlation

as a function of the position in the received signal. The measurements are collected using

GNURadios (see §5.1). Note that when the correlation spikes in the middle of a reception,

it indicates a collision. Further, the position of the spike corresponds to the beginning of

the second packet, and hence shows ∆, the offset between the colliding packets.

26

The above argument is only partially correct because the frequency offset can destroy

the correlation, unless the AP compensates for it. Assume that Alice’s packet starts first

and Bob’s packet collides with it starting at position ∆. To detect Bob’s colliding packet,

the AP has to compensate for the frequency offset between Bob and itself. The frequency

offset does not change over long periods, and thus the AP can maintain coarse estimates of

the frequency offsets of active clients as obtained at the time of association. The AP uses

these estimates in the computation.

Mathematically, the correlation is computed as follows. Let y be the received signal,

which is the sum of the signal from Alice, yA, the signal from Bob, yB , and the noise term

w. Let the samples s[k], 1 ≤ k ≤ L, refer to the known preamble, and s∗[k] be the complex

conjugate. The correlation, Γ, at position ∆ is:

Γ(∆) =

L∑

k=1

s∗[k]y[k + ∆]

=

L∑

k=1

s∗[k](yA[k + ∆] + yB [k] + w[k])

The preamble, however, is independent of Alice’s data and the noise, and thus the correlation

between the preamble and these terms is about zero. Since Bob’s first L samples are the

same as the preamble, we obtain:

Γ(∆) =
L∑

k=1

s∗[k]yB [k]

=

L∑

k=1

s∗[k]HBs[k]e j2πkδfBT

= HB

L∑

k=1

|s[k]|2e j2πkδfBT

Since a frequency offset exists between Bob and the AP, i.e., δfB 6= 0, the terms inside the

sum have different angles and may cancel each other. Thus, the AP should compute the

value of the correlation after compensating for the frequency offset, which we call Γ′. At

27

Pa
Pb

∆
Moving correlation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1000 2000 3000 4000 5000 6000

C
or

re
la

tio
n

Position in Received Signal

Figure 4-2 – Detecting Collisions by Correlation with the Known Preamble. The
correlation spikes when the correlated preamble sequence aligns with the preamble in
Bob’s packet. This allows the AP to detect the occurrence of a collision and where
exactly it starts.

position ∆ this value becomes:

Γ′(∆) = HB

L∑

k=1

|s[k]|2e j2πkδfBT × e−j2πkδfBT

= HB

L∑

k=1

|s[k]|2.

The magnitude of Γ′(∆) is the sum of energy in the preamble, and thus it is significantly

large, i.e., after compensating for the frequency offset, the magnitude of the correlation

spikes when the preamble aligns with the beginning of Bob’s packet, as shown in Fig. 4-2.

Imposing a threshold enables us to detect whether the AP received a collision signal and

where exactly the second packet starts.

4.2.2 Did the AP Receive Two Matching Collisions?

Now that it is clear that the received signal is the result of collision, the AP searches for a

matching collision, i.e., a collision of the same two packets. The AP stores recent unmatched

collisions (i.e., stores the received complex samples). It is sufficient to store the few most

recent collisions because, in 802.11, colliding sources try to retransmit a failed transmission

as soon as the medium is available [38].

We use the same correlation trick to match the current collision against prior collisions.

Assume the AP is trying to match two collisions (P1,P2), and (P ′

1,P
′

2). Without loss of

generalization, let us focus on checking whether P2 is the same as P ′

2. The AP already

28

∆1 ∆2

1 1’
22’

3 3’
44’

Pa

Pb

Pa

Pb

Figure 4-3 – ZigZag decodes then re-encodes a chunk. Before subtracting a decoded
chunk, like chunk 1, ZigZag needs to re-encode the bits to create an image of chunk 1’, as
received in the second collision.

knows the offset in each collision, i.e., ∆ and ∆′. The AP aligns the two collisions at the

positions where P2 and P ′

2 start. If the two packets are the same, the samples aligned in

such a way are highly dependent (they are the same except for noise and the retransmission

flag in the 802.11 header), and thus the correlation spikes. If P2 and P ′

2 are different, their

data is not correlated and the correlation does not spike at that alignment.

4.2.3 How Does the AP Decode Matching Collisions?

Say that the AP found a pair of matching collisions like those in Fig. 4-3. Note that Fig. 4-3

is the same as Fig. 1-2 in the introduction except that we distinguish between two images

of the same chunk that occur in different collisions, e.g., chunk 1 and chunk 1’. By now the

AP knows the offsets ∆1 and ∆2, and hence it can identify all interference-free symbols and

decode them using the standard method.

Next, the AP performs ZigZag decoding, which requires identifying a bootstrapping

chunk, i.e., a sequence of symbols marred by interference in one collision and interference-

free in the other. Say that the first collision has the larger offset, i.e., ∆1 > ∆2, the

bootstrapping chunk then is located in the first collision starting at position ∆2 and has a

length of ∆1 − ∆2 samples. This is chunk 1 in Fig. 4-3.

The rest of the decoding works iteratively chunk-by-chunk. In each iteration, the AP

decodes a chunk, re-encodes the decoded symbols and subtract them from the other collision.

For example, in Fig. 4-3, the AP decodes chunk 1 from the first collision, re-encodes the

symbols in chunk 1 to create an image of chunk 1’, which it subtracts from the second

collision to obtain chunk 2. The AP iterates on the rest of the chunks as it did on chunk 1,

until it is done decoding all chunks in the colliding packets.

(a) The Decoder. ZigZag can use any standard decoder as a black box. Specifically,

the decoder operates on a chunk after it has been rid from interference, and hence can use

standard techniques. This characteristic allows ZigZag to directly apply to any modulation

29

scheme as it can use any standard decoder for that modulation as a black box. Further, the

two colliding packets may use different modulation (different bit rates) without requiring

any special treatment.

(b) Re-Encoding a Chunk. Now that the AP knows the symbols that Alice sent in

chunk 1, it uses this knowledge to create an estimate of how these symbols would look

after traversing Alice’s channel to the AP, i.e., to create an image of chunk 1’, which it can

subtract from the second collision.

In §4.2.4 we explain how the AP computes channel parameters, but for now, let us

assume that the AP knows Alice’s channel, i.e., HA, δfA, and µA. Denote the symbols in

chunk 1 by xA[n] . . . xA[n + K]. A symbol that Alice sends, xA[n], is transformed by the

channel to yA[n] where:

yA[n] = HAxA[n]e j2πδfAT . (4.1)

The AP would have received yA[n] had it sampled the signal exactly at the same loca-

tions as Alice. Because of sampling offset, the AP samples the received signal µA seconds

away from Alice’s samples. Thus, given the samples yA[n] . . . yA[n + K], the AP has to

interpolate to find the samples at yA[n + µA] . . . yA[n + K + µA].

To do so, we leverage the fact that we have a band-limited signal sampled according to

the Nyquist criterion. Nyquist says that under these conditions, one can interpolate the

signal at any discrete position, e.g., n + µA, with complete accuracy, using the following

equation [27]:

yA[n + µA] =
∞∑

i=−∞

yA[i]sinc(π(n + µA − i)),

where sinc is the sinc function. In practice, the above equation is approximated by taking

the summation over few symbols (about 8 symbols) in the neighborhood of n.

Now that the AP has an image of chunk 1’ as received, it subtracts it from the second

collision to obtain chunk 2, and proceeds to repeat the same process on this latter chunk.

4.2.4 Estimating and Tracking the System Parameters

The receiver has to estimate the system’s parameters for both Alice and Bob using the

preamble. Without loss of generality, we focus our discussion on Bob, i.e., we focus on

the sender that starts second. This is the harder case since the preamble in Bob’s packet,

30

typically used for channel estimation, is immersed in noise. We need to learn HB , µB , and

δfB .

(a) Channel. Again we play our correlation trick, i.e., we correlate the received samples

with the known preamble. Recall that the correlation at the peak is:

Γ′(∆) = HB

L∑

k=1

|s[k]|2.

The AP knows the magnitude of the transmitted preamble i.e., it knows |s[k]|2. Hence,

once it finds the maximum value of the correlation over the collision, it substitutes in the

above equation to compute HB .

(b) Frequency Offset. The frequency offset does not change significantly over a long

period. Since decoders already estimate the frequency offset, an initial coarse estimate can

be computed using any prior interference free packet from the client (e.g., the association

packet).

However, this coarse estimate is not sufficient since any residual errors in estimating

δf translate into linear displacement in the phase that accumulates over the duration of a

packet. Any typical decoder tracks the signal phase and corrects for the residual errors in

the frequency offset. Since ZigZag uses a typical decoder as a black box, it need not worry

about tracking the phase while decoding. Additionally, as it reconstructs an image of a

received chunk, ZigZag tracks the phase in the reconstructed image of a chunk. Consider

as an example, reconstructing an image of chunk 1’. First we reconstruct the image using

the current estimate of the frequency offset, as explained in §4.2.3(b). Next we subtract

that image from the second collisions to get chunk 2. Now, we reconstruct chunk 2 and

subtracted from the second collision, creating an estimate of chunk 1’, which we term chunk

1”. We compare the phases in chunk 1’ and chunk 1”. The difference in the phase is caused

by the residual error in our estimate of the frequency offset. We update our estimate of the

frequency offset as follows:

δf = δf + αδφ/δt ,

where α is just a small multiplier, δφ is the phase error which accumulated over a period

δt .

(c) Sampling Offset. The procedure used to update and track the sampling offset is

31

fairly similar to that used to update and track the frequency offset. Namely, the black-box

decoder naturally tracks sampling offset when decoding a chunk. When reconstructing the

image of a chunk, like chunk 1’, we use the differences between chunk 1’ and 1” to estimate

the residual error in the sampling offset and track it.2

(d) Inter-Symbol Interference. When we reconstruct a chunk to subtract it from the

received signal, we need to create as close an image of the received version of that chunk

as possible. This includes any distortion that the chunk experienced because of multipath

effects, hardware distortion, filters, etc. To do so, we need to invert the linear filter (i.e.,

the equalizer) that a typical decoder uses to remove these effects. The filter takes as input

the decoded symbols before removing ISI, and produces their ISI-free version, as follows:

x[i] =

L∑

l=−L

hl xISI [i + l],

where the hl ’s are known as the filter taps. For our purpose, we can take the filter from

the decoder and invert it. We apply the inverse filter to the symbols x[n] before using them

in Eq. 4.1 to ensure that our reconstructed image of a chunk incorporates these distortions.

4.3 Dealing with Errors

Up to now, we have described the system assuming correct decoding. But what happens

if the AP makes a mistake in decoding a symbol? For example, in Fig. 4-3, say the AP

mistakenly decodes the first bit in chunk 1 as a “0” bit, when it is actually a ”1” bit. Since

chunk 1 is subtracted from the second collision to obtain chunk 2, the error will affect the

first symbol in chunk 2. This in turn will affect the first symbol in chunk 3, and so on. Does

that mean that a decoding error in one chunk propagates to subsequent chunks?

In the rest of this section, we will show the following:

• If a symbol error occurs while decoding, it may affect later chunks, but this propaga-

tion does not persist but rather decays exponentially fast.

• If the receiver applies ZigZag decoding on both the forward and backward directions

and combines the results, the decoding error is less than if the two packets were sent

in separate time slots.

2The error in the sampling offset is computed using the Muller-and-Muller algorithm [27].

32

(a) Errors Die Exponentially Fast. Assume the AP makes a mistake in decoding

some symbol yA, and tries to use the erroneous symbol to decode yB by subtracting the

decoded vector from the received signal y = yA +yB .3 Say that the senders use the BPSK

modulation and recall that BPSK maps a “0” bit to -1 and a “1” bit to +1. Let us see how

such error affects BPSK.

In the worst case, and as shown in Fig. 4-4, the error causes the AP to add the vector

instead of subtracting it, and hence will estimate ŷB as y + yA = yB + 2yA. In BPSK, the

AP will decode yB to the wrong bit only if the estimate ŷB has the opposite sign as the

original vector. This will happen only if the angle between the two vectors yB and yA is

less than −60o . Since the vectors yB and yA are independent, they can have any angle with

respect to each other. Thus, the error occurs with probability less than 60

180
= 1

3
. Thus, in

BPSK, errors die exponentially fast at a rate 2

3
.

Similarly, we can show exponential error decay for other modulations (4-QAM, 16-QAM,

etc.).

(b) Forward and Backward Decoding. The ZigZag algorithm described so far decodes

forward. In Fig. 1-2, it starts with chunk 1 in the first collision and proceeds until both

packets are decoded. However, clearly the figure is symmetric. The AP could wait until

it received all samples, and start decoding backward. If the AP does so, it will have two

estimates for each symbol. It combines these estimates to reduce errors using MRC [7, 39],

a classic method for diversity combining. In practice, we do not decode all the way forward

and then all the way backward. We do it on a chunk-by-chunk basis, using the most recently

decoded chunk as a bootstrapping chunk for backward decoding.

Our experimental results in §5.4 show that the combination of forward and backward

decoding produces less errors than if the two colliding packets were sent in their separate

slots. This may sound surprising at first. However, since every symbol gets sent twice (in

the first and the second collisions), it has a better chance to be decoded correctly. The

forward and backward decoding, exploits this by obtaining two copies of every symbol, one

in the forward pass and the other in the backward. Combining these two copies, allows us

to be more resilient to decoding errors than if the two packets are sent in separate time

slots.

3We ignore the noise term w since it has a random effect on the error and can equally emphasize it or
correct it.

33

- 60o

yB

y yA

+1-1

yB

Figure 4-4 – Errors Die Exponentially Fast. The error causes the AP to sum yA

instead of subtracting it. Hence, the error propagates from yA to the estimate ŷB , i.e., from
one chunk to the next, only when the angle between the two vectors is smaller than 60o ,
which occurs with probability 1

3
.

4.4 Backward Compatibility

It would be beneficial if ZigZag decoding requires no changes to senders. In this case, one

can improve resilience to interference in a WLAN by purely changing the APs, and without

requiring any modifications to the clients (e.g., laptops, PCs, PDAs). Compatibility with

unmodified 802.11 senders requires a ZigZag receiver to ack the colliding senders once it

decoded their packets; otherwise the senders will retransmit again unnecessarily. Recall that

an 802.11 sender expects the ack to follow the packet, separated only by a short interval

called SIFS [38]; Can a ZigZag receiver satisfy such requirement?

The short answer is “yes, with a high probability.” To see how, consider again the

example where Alice and Bob are hidden terminals, and say that the AP uses ZigZag to

decode two of their packets, Pa1 and Pb1, as shown in Fig. 4-5. The AP acks the packets

according to the scheme outlined in Fig. 4-5. Specifically, by time t1, the AP has fully

decoded both Pa1 and Pb1. Even more, by t1 the AP has performed both forward-decoding

and backward decoding for all bits transmitted so far, i.e., all bits except the few bits at the

end of Pb1.
4 Thus, at t1 the AP declares both packets decoded. It waits for a SIFS and acks

packet Pa1. Though the ack collides with the tail of packet Pb1, the ack will be received

correctly because Alice cannot hear Bob’s transmission. Bob too will not be disturbed by

the AP’s ack to Alice because practical transmitters cannot receive and transmit at the

same time. The AP then transmits some random signal to prevent Alice from transmitting

her next packet, Pa2, before Bob’s packet is acked. The AP knows how long this padding

signal should be since it already has a decoded version of Bob’s packet and knows its length.

4This assumes that the receiver tries in parallel to use standard decoding and ZigZag, and takes whichever
succeed and passing the checksum.

34

A
C

K

S
IF

S
A

C
K

Pa2

P
ad

di
ng

D
IF

S
 +

 C
W

A

Pb2

DIFS + CWB

∆1

Pa1

Pb1

Pa1

Pb1

∆2

S
IF

S

Timet1 t2

Figure 4-5 – ACKing. The figure shows how ZigZag can send 802.11 synchronous acks.

1

2

3

1

2

3

1

2

3

P1 P1P1

P2 P2 P2

P3 P3P3

(a) Three Collisions

1

2

3

1

2

3

1

2

3

P1 P1P1

P2 P2P2

P3 P3 P3

(b) Irregular Three Collisions

Figure 4-6 – Applying ZigZag to Three Collisions.

After Bob finishes his transmission the AP acks him as well.

One question remains, however, would the offset between the two colliding packets suffice

to send an ack? Said differently, in Fig. 4-5, how likely is it that t2−t1 > SIFS+ACK . If this

is unlikely, the AP cannot send both acks synchronously. One can show that, given 802.11

standard timing, the likelihood that the time offset between the two packets is sufficient to

send an ack is quite high. We can easily compute this likelihood for the different versions

of 802.11. For the common deployment of backward compatible 802.11g, we prove in the

appendix the following.

Lemma 4.4.1 In 802.11g, the probability that the time offset between two colliding packets

is sufficient for sending an ACK is higher than 93.7%.

Thus, a ZigZag receiver can resolve most collisions without any modification on the sender

side. If the senders can be modified, ZigZag uses this to reduce the above probability to

zero. Specifically, a ZigZag AP identifies ZigZag-aware senders during association. The AP

always tries to send synchronous acks but if that fails and the sender is ZigZag-aware, the

AP sends the ack asynchronously.

35

4.5 Beyond Two Interferers

Our description, so far, has been limited to a pair of colliding packets. ZigZag, however,

can resolve a larger number of colliding senders. We start by showing via an example how

to extend ZigZag to deal with three colliding senders. We then generalize the approach to

any number of senders.

Consider the scenario in Fig. 4-6a, where we have three collisions from three different

senders. We refer to the colliding packets by P1, P2 and P3, and collision signals by C1,

C2 and C3. The figure shows a possible decoding order. We can start by decoding chunk

1 in the first collision, C1, and subtract it from C2 and C3. As a result, chunk 2 in C2

becomes interference-free and thus decodable. Next, we subtract chunk 2 from both C1 and

C3. Now, chunk 3 in C3 becomes interference-free; so we decode it and subtract it from

both C1 and C2. One can use a similar approach to the three collisions in Fig. 4-6b. The

idea is to find a decoding order such that, at each point, at least one of the three collisions

has an interference-free chunk ready for decoding.

The following greedy algorithm tries to find a chunk decoding order for any number of

collisions.

• Step 1: For each of the collisions, decode all the overhanging chunks that are

interference-free.

• Step 2: Subtract the known chunks wherever they appear in all collisions.

• Step 3: Decode all the new chunks that become interference free as a result of Step

2.

• Repeat the last two steps until all the chunks from all the packets are decoded.

In order to evaluate how well the above linear time greedy algorithm works, we run a

simulation of the 802.11a MAC. Every 802.11 node randomly picks a slot in its congestion

window (cw) to transmit the packet. Figure 4-7(a) shows the probability of failure for the

algorithm, when the nodes pick randomly from a fixed congestion window (cw). The plot

supposes our intuition that as the congestion window increases, the probability of packets

colliding differently increases, thus reducing the failure probability. Figure 4-7(b) shows the

36

 1e-04

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9

F
ai

lu
re

 P
ro

ba
bi

lit
y

Number of Nodes

cw=8
cw=16
cw=32

(a) With every node picking from a constant Congestion Window (cw)

 1e-05

 1e-04

 0.001

 0.01

 2 3 4 5 6 7 8 9

F
ai

lu
re

 P
ro

ba
bi

lit
y

Number of Nodes

Exp Backoff

(b) With every node using Exponential Backoff

Figure 4-7 – Failure Probability v/s number of colliding nodes The probability that
the linear time algorithm cannot decode general configurations of collisions as function of the
different number of nodes involved in the collision.

probability of failure when the nodes use exponential backoff5. The plots show that the

algorithm has a very low failure probability, in general, for collisions involving more than

two packets.

But, when does the algorithm fail? Although, we do not have a perfect failure char-

acterization for any number of senders, it turns out that for three senders, as long as the

collisions do not satisfy the following condition, the algorithm fails to correctly decode.

• If Pi denotes the packet from the i th transmitter, then for any pair of the packets Pi

and Pj , there exists 2 collisions such that the packets have combined differently (in

terms of offsets) in these 2 collisions.

This is analogous to a linear system of n equations and n unknowns. The collisions

are the linear equations, whereas the packets are the n unknowns. The system is solvable

if the equations are linearly independent, i.e., one cannot derive one collision by linearly

combining the other collisions.

We prove the following assertion for three colliding packets, in the appendix.

5Exponential backoff in 802.11 works by doubling the congestion window everytime there is a collision,
starting with a minimum congestion window, CWmin = 31. In addition, the congestion window is not
allowed to exceed a fixed constant, CWmax = 1023.

37

Assertion 4.5.1 As long as the above conditions are satisfied and there are undecoded

chunks left out, the above algorithm always succeeds in decoding the three packets.

Note that in practice, imperfections in the implementation limit the maximum number

of colliding senders that can be correctly decoded. In §5.7, we show experimental results

for scenarios with three interfering senders.

4.6 Complexity

ZigZag is linear in the number of colliding senders. In comparison to current decoders,

ZigZag requires only two parallel decoding lines so that it can decode two chunks in the

same time that it would take a current decoder to decode one chunk. Furthermore, most of

the components that ZigZag uses are typical to wireless receivers. ZigZag uses the decoders

and the encoders as black-boxes. Correlation, tracking, and channel estimation are all

typical functionalities in a wireless receiver [27, 8].

4.7 Summary

We have presented ZigZag, a new 802.11 receiver designed to solve the problem of hidden

terminals in wireless networks. Since ZigZag is a physical layer solution for a network

layer problem, we describe the various physical and network layer issues which have to

be accounted for in order to make ZigZag work. ZigZag exploits 802.11 retransmissions

which, in the case of hidden terminals, cause successive collisions. Due to asynchrony,

these collisions have different interference free stretches at their start, which ZigZag uses to

bootstrap its decoding. We introduce the notion of forward and backward decoding which

enables us to reduce the bit error rate. A ZigZag receiver can operate with unmodified

802.11 senders and requires no changes to the 802.11 protocol. Finally, we show that

ZigZag generalizes to more than a pair of colliding packets.

38

Chapter 5

Evaluation

It is much more difficult to measure nonperformance than performance.

- Harold S. Geneen

5.1 Experimental Environment

We evaluate ZigZag in a 14-node GNURadio testbed. The topology is shown in Fig. 5-1.

Each node is a commodity PC connected to a USRP GNU radio [18]. Software radios

implement all of the wireless communication system in software (modulation, coding, etc.),

thus providing a suitable platform for evaluating new receiver designs.

(a) Hardware and Software Environment. We use the Universal Software Radio

Peripheral (USRP) [18] for our RF frontend. USRP is a generic RF frontend developed

specifically for the GNU Radio SDR. We use the RFX2400 daughterboards which operate

in the 2.4GHz range. The software for the signal processing blocks is from the open source

GNURadio project [10].

(b) Modulation. ZigZag uses a modulation/demodulation module as a black-box and

hence can work with a variety of modulation schemes. Our implementation, however, uses

Binary Phase Shift Keying, BPSK , which is the modulation scheme that 802.11 uses at low

rates.

(c) Configuration Parameters. We use the default GNURadio configuration, i.e., on

the transmitter side DAC Rate is 128e6 samples/s, Interpolation Rate is 128, number of

samples per symbol is 2. On the receiver side, the ADC rate is 64e6 samples/s and the

Decimation Rate is 64. Given the above parameters and a BPSK modulation, the resulting

39

bit rate is 500kb/s. Each packet consists of a 32-bit preamble, a 1500-byte payload, and

32-bit CRC.

(d) Implementation Flow Control. On the sending side, the network interface pushes

the packets to the GNU software blocks with no modifications. All the action is at the

receiver. First, the packet is detected using standard methods built in the GNURadio

software package. Second, we try to decode the packet using the standard approach (i.e.,

using the BPSK decoder in the GNURadio software). If standard decoding fails, we use

the algorithm in §4.2.1 to detect whether the packet has experienced a collision, and where

exactly the colliding packet starts. If a collision is detected, the receiver matches the packet

against any recent reception, as explained in §4.2.2. If no match is found, the packet is

stored in case it helps decoding a future collision. If a match is found, the receiver performs

chunk-by-chunk decoding on the two collisions, as explained in §4.2.3. Note that even when

the standard decoding succeeds we still check whether we can decode a second packet with

lower power (i.e., a capture scenario).

(e) Compared Schemes. We compare the following:

• ZigZag: This is a ZigZag receiver as described in §4.2 augmented with the backward-

decoding described in §4.3.

• Current 802.11: This approach uses the same underlying decoder as ZigZag but

operates over individual packet.

• Collision-Free Scheduler: This approach also uses the same basic decoder but

prevents interference altogether by scheduling each sender in a different time slot.

(f) Metrics. We employ the following metrics:

• Bit Error Rate (BER): The percentage of incorrect bits averaged over every 100 pack-

ets.

• Packet Loss Rate (PER): This is the percentage of incorrectly received packets. We

consider a packet to be correctly received if the BER in that packet is less than 10−3.

This is in accordance with typical wireless design, which targets a maximum BER of

10−3 before coding (and 10−5 after coding) [3, 31].1

1For example, 802.11a target packet error rate (PER) is 0.1 for a packet size of 8000 bits. Given a
maximum uncoded BER of 10−3, practical channel codes like BCH Code(127,99) and BCH Code(15,5)
achieve the desired PER.

40

Figure 5-1 – Testbed Topology. The dots refer to GNURadio nodes.

• Throughput: This is the number of delivered packets normalized by the GNU Radio

transmission rate. Again a packet is considered delivered if the uncoded BER is

less than 10−3. In comparison to packet loss rate, the throughput is more resilient to

hidden terminals in scenarios that exhibit capture effects. This is because the terminal

that captures the medium transmits at full rate and gets its packets through, causing

unfairness to the other sender, but little impact on the overall throughput.

5.2 Setup

Since ZigZag acts exactly like current 802.11 receivers except when a collision occurs, our

evaluation focuses on scenarios with hidden terminals, except in §5.6 where we experiment

with various nodes in the testbed irrespective of whether they are hidden terminals. In

every run, two or more senders transmit 500 packets to an access point. The AP (i.e.,

the receiver) logs the received signal and the logs are processed offline with the evaluated

receiver designs.

Software radios are incapable of accurately timing their carrier sense activity (CSMA)

because they perform all signal processing functionalities in user mode on the PC. To

approximate CSMA, we take the following measures. First, we setup an 802.11a node next

to each of our USRP nodes. The objective is to create an 802.11a testbed that matches

the topology in our USRP testbed but uses standard 802.11a cards, and copy the results of

carrier sense from it to our USRP testbed.

For each USRP experiment, we check whether the corresponding 802.11a nodes can

carrier sense each other. Specifically, we make each pair of the 802.11 nodes transmit at full

speed to a third node considered as an AP, log the packets, and measure the percentage of

packets each of them delivers to the AP. Next, we try to recreate the same behavior using the

corresponding USRP nodes, where each packet that was delivered in the 802.11 experiments

41

 0

 1

 0 2000 4000 6000 8000 10000 12000

E
rr

or
?

Bit #

(a) Error Distribution due to Residual δf .

1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 6 11 16
S

of
t v

al
ue

Bit #
(b) ISI Prone Symbols

Figure 5-2 – Effects of Residual Frequency Offset and ISI.

results in a packet delivery in the USRP experiments between the corresponding sender-

receiver USRP pairs. Lost 802.11 packets are divided into two categories: collisions and

errors. Specifically, a lost 802.11 packet that we can match with a loss from the concurrent

sender is considered as a collision loss. Other losses are considered as medium errors and

ignored. We try to make each USRP experiment match the collisions that occurred in

the corresponding 802.11a experiment by triggering as many collisions as observed in the

802.11a traces. The USRP experiments are run without CSMA. Each run matches an 802.11

run between the corresponding 802.11 nodes. Each sender first transmits the same number

of packets that the corresponding 802.11 correctly delivered in the matching 802.11 run.

Then both senders transmit together as many packets as there were collision packets in the

matching 802.11 run.

Software radios also cannot time 802.11 synchronous acks. Given the 802.11a traces, we

know when a collision will occur, and that the sender should retry the packet, in which case

the sender transmits each packet twice. However, if the ZigZag AP manages to decode using

a single collision, we ignore the retransmission and do not count it against the throughput.

5.3 Micro-Evaluation

We examine the role of various components of ZigZag.

(a) Correlation as a Collision Detector: We estimate the effectiveness of the correlation-

based algorithm (§4.2.1) in detecting the occurrence of collisions. Our implementation sets

42

Table 5.1 – Micro-Evaluation of ZigZag’s components

Correlation
False Positives 3.1%
False Negatives 1.9%

Frequency Pkt size(Bytes) 800 1500
& Success With 99.6% 98.2%

Phase Tracking Success Without 89% 0%

ISI Filter
SNR 10dB 20dB

Success With 99.6% 100%
Success Without 47% 96%

the threshold to Γ′(Delta) > β × L × SNR, where β is a constant, L is the length of the

preamble and SNR is a coarse estimate of the SNR of the colliding sender, which could be

obtained from any previously decoded packets or from one of the sender’s interference free

chunks. For our testbed, β = 0.6-0.7 balances false positives with false negatives. Higher

values eliminate false positives but make ZigZag miss some collisions, whereas lower values

trigger collision-detection on clean packets. Note that neither false positives nor false neg-

atives produce end-to-end errors. The harm of false positive is limited to computational

resources, because in ZigZag marking a packet as a collision does not prevent correct decod-

ing of that packet. The algorithm behaves as if the packet suffered capture effect and hence

is decodable despite being marred by collision. False negatives, on the other hand, make

ZigZag miss opportunities for decoding collisions but do not produce incorrect decoding.

Our evaluation sets β = 0.65.

For SNRs in [6-20]dB, we run the collision detector on sets of 500 non-collision packets

and 500 collisions, and report the results in Table 5.3. The average false positive rate (pack-

ets mistaken as collisions) is 3.1% and the average false negative rate (missing collisions) is

1.9%. Thus, the collision detector is pretty accurate for our purpose.

(b) Frequency and Phase Tracking: We evaluate the need for the frequency and

phase tracking described in §4.2.4b. We disable our tracking algorithm (but leave the

decoder unchanged) and provide the encoder with an initially accurate estimate of the

frequency offset (as estimated by the decoder). We run ZigZag with and without tracking

on 500 collision-pairs of 1500B packets. We find that without tracking none of the colliding

packets is decodable (BER > 10−3), whereas with tracking enabled, 98.2% of the colliding

packets are decodable.

Fig. 5-2(a) explains this behavior. It plots the error as a function of the bit index in

43

one of the colliding packets (black shades refer to errors). It shows that the first 6000 bits

are decoded correctly, but as we go further the bits start getting flipped, and eventually

most of the bits are in error. This is expected since even a small residual error in the

frequency offset causes a phase rotation that increases linearly with time. Hence after some

time the phase becomes completely wrong causing high decoding error rates. This effect is

particularly bad for long packets since the errors accumulate over time. Table 5.3 shows

that while ZigZag can decode 89% of the 800Byte packets without phase tracking, none of

the 1500Byte packets is successfully decoded unless we enable phase tracking.

(c) Effect of ISI: Fig. 5-2(b), shows a snapshot of the ISI-affected received bits in our

testbed. Recall that BPSK represents a “0” bit with -1 and a “1” bit with +1. The figure

shows that the value of a received bit depends on the value of its neighboring bits. For

example, a “1” bit tend to take a higher positive value if it is preceded by another “1”, then

if the preceding bit is a “0” bit.

We evaluate the importance of compensating for these distortions using the inverse filter

described in §4.2.4d. We try to decode 500 collision pairs at different SNRs, with the filter

on and off. Table 5.3 shows that while the filter is not important at relatively high SNRs,

i.e., 20dB , it is necessary in low SNR regimes. This is expected as at low SNRs, the decoder

has to combat both higher noise and ISI distortions.

5.4 Does ZigZag Decoding Work?

We start our evaluation with the basic hidden terminal scenario in Fig. 1-1, where Alice

and Bob cannot sense each other and hence transmit simultaneously to the AP. We would

like to check whether ZigZag decoding could make it look as if there were no interference

and the two senders have been a priori allocated separate time slots. To do so, we look at

the bit error rate (BER) as a function of SNR. This is a typical metric in designing wireless

receivers [31, 3, 32]. Metrics like throughput or packet loss rate cannot distinguish between

a completely erroneous packet and a packet that was discarded because of a single incorrect

bit that could have been cheaply corrected with coding, whereas the BER provides a more

detailed picture of the received data.

Fig. 5-3 plots the BER as a function of SNR. The scenario in our experiment is sym-

metric, i.e., Alice and Bob have the same SNR. The plots are only for ZigZag and the

44

 1e-05

 1e-04

 0.001

 0.01

 5 6 7 8 9 10 11 12

B
it

E
rr

or
 R

at
e

Signal to Noise Ratio (dB)

Collision-Free Scheduler
One Pass ZigZag

ZigZag

Figure 5-3 – Comparison of Bit Error Rate (BER). ZigZag delivers packets that are
as correct as if they were sent in separate time slots. Further, if both backward and forward
decoding are used, the BER is lower than if collisions did not occur.

Collision-Free Scheduler because 802.11 in this scenario performed extremely poorly with

BER close to 0.5. The figure reveals two basic results.

• At all SNRs, ZigZag decoding allows the receiver to decode collisions keeping the bit

error close to the BER when the two packets are sent in separate time slots.

• With forward and backward decoding, the BER averaged over the explored SNRs is

1.4x lower than if we had no interference at all. Thus, two collisions are more resilient

to bit errors than two packets sent in separate time slots.

5.5 Scenarios with Capture Effect

In contrast to the previous experiment where Alice and Bob have the same SNR at the AP,

we now consider scenarios where one of the senders has a higher SNR, and thus can fully

or partially capture the medium [25, 19]. Again we consider a scenario where Alice and

Bob concurrently transmit to the same AP. We start from a setting where both senders are

equal distance from the AP, i.e. SNRA = SNRB and hence, SINR = SNRA − SNRB = 0.

Gradually, we move Alice closer to the AP. As Alice moves closer, her SNR at the AP

increases with respect to Bob’s, making it easier for the AP to capture Alice’s signal. We

plot the result of this experiment in Fig. 5-4, for the case when the nodes use a Collision-Free

Scheduler, current 802.11, and ZigZag.

Fig. 5-4 shows that ZigZag improves both throughput and fairness. In 802.11, when

Alice and Bob are equal distance from the AP, their signals collide, and neither can be

received. As Alice moves closer, her signal improves with respect to Bob’s. When Alice’s

signal is 4-6 dB higher than Bob’s, the capture effect starts, and we see a slight increase

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

A
lic

e’
s

T
hr

ou
gh

pu
t

Signal to Interference Ratio (SNR a - SNR b) (dB)

ZigZag
802.11

Collision-Free Scheduler

(a) Alice’s Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

B
ob

’s
 T

hr
ou

gh
pu

t

Signal to Interference Ratio (SNR a - SNR b) (dB)

ZigZag
802.11

Collision-Free Scheduler

(b) Bob’s Throughput

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

T
ot

al
 T

hr
ou

gh
pu

t

Signal to Interference Ratio (SNR a - SNR b) (dB)

ZigZag
802.11

Collision-Free Scheduler

(c) Total Throughput

Figure 5-4 – Normalized Throughput in Scenarios with Capture Effects. The
figure plots the throughput of the hidden terminals Alice and Bob, as Alice moves closer
to the AP, i.e., as SINR ≈ SNRA − SNRB increases. It shows that ZigZag achieves higher
throughput than both 802.11 and the Collision-Free Scheduler. ZigZag is also fairer than
current 802.11 where Bob cannot get any packets through.

in Alice’s throughput. As Alice gets even closer, Bob’s signal becomes irrelevant. Note,

however, that at all times Bob is never received at the AP with 802.11. In contrast, with

the Collision-Free Scheduler, both Alice and Bob get a fair chance at accessing the AP. But

the scheduler cannot exploit that as Alice gets closer, the capacity increases [32], making it

possible to decode both Alice and Bob.

ZigZag outperforms both current 802.11 and the Collision-Free Scheduler. When Alice

and Bob are equal distance from the AP, it ensures that they are both received, as if they

were allocated different time slots. As Alice moves closer to the AP, the capture effect starts

kicking off. As a result, the AP can decode Alice’s signal without the need for a second

collision. The AP then subtracts Alice’s signal from the collision and decode Bob’s packet,

and thus the total throughput becomes twice as much as the radio transmission rate. As

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
um

ul
at

iv
e

F
ra

ct
io

n
Throughput

ZigZag
802.11

Figure 5-5 – Normalized Throughput for the Whole Testbed. The figure shows a
CDF of the throughputs in our testbed for pairs of competing flows, for both hidden and
non-hidden terminal scenarios. ZigZag improves the average throughout in our testbed by
31%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

ZigZag
802.11

Figure 5-6 – Loss Rate for the Whole Testbed. The figure shows a CDF of the packet
loss rate in our testbed for pairs of competing flows, for both hidden and non-hidden terminal
scenarios. ZigZag improves the average loss rate in our testbed from 18.9% to 0.2%.

Alice gets even closer, her signal completely covers Bob’s signal making it impossible to

decode Bob’s packet. This experiment reveals the following:

• In scenarios with capture effects, ZigZag outperforms both 802.11 and the Collision-

Free Scheduler.

• Neither 802.11 nor the Collision-Free Scheduler can benefit from scenarios where the

network capacity is higher than the sum of the rates of the two senders. In contrast,

ZigZag can exploit such scenarios to double the throughput of the network, decoding

both hidden terminals using a single collision. Furthermore, ZigZag does not need

to be explicitly informed of the capacity of the network to exploit it. It naturally

transitions to exploit the increased capacity as the SNR increases.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Z
ig

Z
ag

802.11

Maximum density

Figure 5-7 – Scatter Plot of Flow Throughputs. The figure shows a scatter plot of
ZigZag and 802.11 throughputs for each sampled sender-receiver pairs. ZigZag helps when
there is a hidden terminal scenario but never hurts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

ZigZag
802.11

Figure 5-8 – CDF of Loss Rate at Hidden Terminals. The figure zooms on scenarios
with full or partial hidden terminals. ZigZag reduces the average loss rate for hidden terminals
in our testbed from 82.3% to about 0.7%.

5.6 Testbed Throughput and Loss Rate

In this section, we measure how much ZigZag improves the performance in our indoor

GNURadio testbed, shown in Fig. 5-1. The testbed has 14 nodes that form a variety

of line-of-sight and none-line-of-sight topologies. While up to now we have focused only

on scenarios with hidden terminals, in this section, we experiment with various testbed

nodes irrespective of whether they are hidden terminals. Specifically, we pick two senders

randomly. We pick an AP randomly from the nodes reachable by both senders. We mimic

CSMA as explained in §5.2 and make each sender transmit 100 packets to the AP. We

repeat the experiment with random set of sender pairs and different choice of APs. Among

the sender pairs that we sampled 12% are perfect hidden terminals, 8% can sense each other

partially, and 80% can sense each other perfectly.

First, we compare the throughput and loss rate under current 802.11 and ZigZag, for

the whole network. Fig. 5-5 plots a CDF of the aggregate throughput, i.e., the sum of the

throughput of each pair of concurrent senders. The figure shows that in our testbed, ZigZag

48

increases the average throughput by 31%. This improvement arises from two factors. For

all cases where the normalized aggregate throughput is less than 1, the improvement comes

purely from ZigZag’ s ability to resolve successive collisions. For cases where the aggregate

throughput is higher than 1, the improvement is caused by a combination of being able to

resolve a single collision whenever possible, and successive collisions otherwise. Note that

interference cancellation applies only to cases whose throughputs are between 1.5 and 2,

which are very few. Fig. 5-6 plots a CDF of the loss rates of individual sender-receiver pairs,

i.e., the flows we experimented with. The figure shows that in our testbed, ZigZag reduces

the average packet loss rate from 18.9% to 0.2%.

Next, we check that a ZigZag AP is always a conservative choice and does not hurt

any flow. Fig. 5-7 shows a scatter plot of the throughout of every sender-receiver pair in

our experiments, both under 802.11 and ZigZag. The figure shows that ZigZag consistently

improves the throughput and does not hurt any sender-receiver pair.

Next, we zoom on the hidden terminals in our testbed, which we define as sender pairs

that fail to sense each other fully or partially. Fig. 5-8 shows a CDF of the packet loss

rate in transfers that suffered such hidden terminal scenarios. The figure shows that ZigZag

improves the average loss rate for hidden terminals in our testbed from 82.3% to 0.7%.

Furthermore, for some severe cases, the packet loss rate goes down from 99-100% to about

zero.

5.7 Many Hidden Terminals

In §4.5 we generalized ZigZag to deal with more than a pair of colliding sources. Here,

we evaluate how ZigZag performs on three collisions. In this experiment, we have three

hidden terminals that transmit concurrently to a random AP. Fig. 5-9 shows the CDF of

the throughput under ZigZag. The figure shows that all three senders see a fair throughput

that is around one third of the medium throughput. Thus, even with more than a pair of

colliding senders, ZigZag performs almost as if each of the colliding senders transmitted in

a separate time slot.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
um

ul
at

iv
e

F
ra

ct
io

n
Throughput

Alice
Bob

Calvin

Figure 5-9 – ZigZag’s Performance with Three Hidden Terminals. Cumulative
distribution of the throughput of three hidden terminals.

5.8 Summary

ZigZag can provide significant gains in practice for hidden terminals. In this chapter, we

evaluate the performance of ZigZag using the Universal Software Radio Peripheral (USRP)

for our RF frontend. We show that, at all SNRs, ZigZag decoding allows the receiver to

decode successive collisions keeping the bit error close to the BER when the two packets are

sent in separate time slots. Further, ZigZag outperforms both 802.11 and the Collision-free

scheduler in scenarios with capture effects. In addition, ZigZag naturally exploits scenarios

where the network capacity is higher than the sum of the rates of the two senders. On a

indoor GNURadio testbed of 14 nodes, ZigZag reduces the average packet loss rate from

18.9% to 0.2%. Specifically, ZigZag improves the average loss rate for hidden terminals in

our testbed from 82.3% to 0.7%. Finally, we have shown that ZigZag generalizes to deal

with more than a pair of colliding sources.

50

Chapter 6

Future Work and Conclusion

The best thing about the future is that it comes only one day at a time.

- Abraham Lincoln

In this thesis, we present ZigZag, a new receiver design that decodes 802.11 collisions. We

show that ZigZag addresses the hidden terminal problem in WLANs, significantly improving

the throughput and loss rate.

While the results presented this thesis are very promising, more research is needed to

fully realize the potential of this inter-disciplinary approach. We believe, ZigZag can provide

benefits in scenarios other than those explored in the work. Here, we list a number of future

research topics that can help further develop this technology.

(a) Interaction with Coding: This thesis discusses how ZigZag decodes modulation-level

symbols. However, in practice, additional bit-level codes (like Convolutional codes and Reed

Solomon codes) are applied to increase the reliability of the packet. The performance of

ZigZag can be further enhanced by exploiting these bit-level codes. One could potentially

design an iterative algorithm which tries to reduce the bit error rate in every iteration.

The algorithm starts by applying ZigZag to get an initial estimate of the modulation-level

symbols. We then apply the decoding algorithm (say the Reed Solomon decoding algorithm)

on these modulation-level symbols to generate cleaner bits. We can now use these bits to

generate modulation-level symbols for use in ZigZag’s subtraction procedure to get cleaner

modulation-level symbols. Intuitively, iterating this procedure can reduce the bit error

rate. Designing and evaluating such an algorithm will be helpful in understanding ZigZag’s

interaction with coding.

51

Alice Bob

Calvin DaveAP

(a) Hidden Terminals involving four nodes.

3

2

1

4

3

4

1

2

Pa Pa

Pc P

PbPb

Pd P2 4 4 2Pc Pc
Pd Pd

(b) Collision pattern

Figure 6-1 – Unconventional Hidden Terminals involving four nodes.

(b) Beyond “Beyond two interferers”: Consider the scenario in Figure 6-1(a) where

Alice and Bob are hidden terminals with Calvin and Dave, but are not mutually hidden

terminals. Although there are more than two hidden terminals in this scenario, it is highly

unlikely that more than three packets collide at the same time. But a collision pattern as

shown in figure 6-1(b) can result in this case, where a total of four packets are involved in

four collisions but not more than two collide at a time. As shown, all the four packets can

be decoded by applying a similar procedure. Thus ZigZag can potential work in many more

scenarios than that discussed in this thesis. Characterizing the full potential of ZigZag is

an interesting question which would further bolster its potential.

(c) In Association with ANC: Our previous work on analog network coding (ANC)[21]

shows that we can increase the throughput if we allow a receiver to decode collision when it

already knows one of the colliding packets. It seems plausible that ZigZag can be combined

with ANC to collect network coding gains in addition to addressing hidden terminals.

(d) Hidden Terminals with Multiple Receivers: This thesis discusses how ZigZag is

helpful to solve hidden terminal problems that arise with a single receiver. However, ZigZag

could potentially be used in ad-hoc network where there are multiple receivers with hidden

terminals as shown in figure 6-2. We believe that ZigZag complimented with Successive

Interference Cancellation can potentially be applied here.

(e) Towards a General MAC for Ad-hoc Networks: ZigZag can provide benefits in

scenarios other than those explored in the work. For example, it motivates a more aggressive

MAC design that exploits concurrent transmissions in order to increase spatial reuse and

network throughput. We could envisage a MAC which has some components of carrier

52

BobAlice

Figure 6-2 – Hidden Terminals with multiple receivers.

sense, ZigZag decoding and ANC which allows a a receiver to improve concurrency, address

hidden terminals, and collect network coding gains all at the same time.

53

54

Appendix A

Proof of Lemma 4.4.1

Let us denote the duration of the slot time by S , ACK duration by ACK , SIFS duration

by SIFS , and the initial congestion window by CW . We need the offset between the

two colliding packets in the second collision to be greater than SIFS + ACK . Since in

the second collision, Alice and Bob randomly pick a slot in the congestion window of size

2CW , the probability that Alice picks a slot close enough to Bob to have an offset of less

than SIFS+ACK is upper bounded by SIFS+ACK
CW .S

. Thus the probability that the offset

between the packets suffices to send an ACK is lower bounded by 1 − SIFS+ACK
CW .S

. For

the backward-compatible 802.11g networks, the parameters are S = 20µs, ACK = 30µs,

SIFS = 10µs [13]. Substituting in the above equations, we find that the success probability

is at least 0.9375.

55

56

Appendix B

Proof of Assertion 4.5.1

We have to prove that as long as the following condition is satisfied, the greedy algorithm

will always succeed

Condition: If Pi denotes the packet from the i th transmitter, then for any pair of the

packets Pi and Pj , there exists 2 collisions, C1 and C2 such that the packets have combined

differently (in terms of offsets) in these 2 collisions.

Note that if the condition is met initially, then it will continue to be satisfied at any stage

into the greedy algorithm, after removing the known chunks of the packets from all the

collisions. Thus it is sufficient to prove that if the above condition is met, we can always

find a interference free chunk. Let us assume the contrary. Suppose the packets satisfy the

above condition, but do not have a interference free chunk. Let us pick the longest packet,

say P1 (pick one randomly in case of a tie). Since there are no interference-free chunks in

P1, both the beginning and the end of P1 are interference-prone.

Claim 1: Both P2 and P3 must be contained in P1 in all the collisions.

Let us suppose that some part of P2 is protruding out of P1, as shown in Figure B-1. Since

there are no interference free chunks, P3 must cover both the beginning of P2 and the end

of P3. This implies that the length of P3 is greater than P1, contradicting the fact that P1

is the longest packet.

57

��

����

��

Figure B-1 – P1 must contain both P2 and P3. Otherwise we violate the constraint
that P1 is the longest packet.

��

����
��

(a) Collision 1: P2 covers the beginning of P1 and P3 covers its end.

��

��

��
(b) Collision 2: P3 covers the beginning of P1 and P3 covers its end.

Figure B-2 – The only possible collision patterns possible.

Claim 2: There are, at the maximum, only two collisions which have no interference-

free chunks and satisfy Claim 1 and Condition.

Since there are no interference-free chunks, P2 and P3 must cover the beginning and the end

of P1 in all the collisions. There can be at only two configurations as shown in Figure B-2(a)

and Figure B-2(b), where this can happen while satisfying Claim 1 and Condition. Note

that if any of P2 or P3 has equal length as P1, there is only one such collision satisfying all

the constraints.

Thus, we conclude that there cannot exist three collisions which satisfy Condition and have

no interference free chunks.

58

Bibliography

[1] Broadcom Wireless LAN Adapter User Guide.

[2] Experimental Study of Hidden-node Problem in IEEE 802.11 Wireless Networks.

[3] ISL3873: Wireless LAN Integrated Medium Access Controller with Baseband Proces-

sor, 2000.

[4] N. Ahmed, V. Shrivastava, A. Mishra, S. Banerjee, S. Keshav, and K. Papagiannaki.

Interference Mitigation in Wireless LANs using Speculative Scheduling (extended ab-

stract). In ACM Mobicom, 2007.

[5] J. Andrews. Interference cancellation for cellular systems: A contemporary overview.

IEEE Wireless Communications, 2005.

[6] V. Bharghavan, A. J. Demers, S. Shenker, and L. Zhang. MACAW: A Media Access

Protocol for Wireless LAN’s. In ACM SIGCOMM 1994.

[7] D. G. Brennan. On the Maximal Signal-to-Noise Ratio Realizable from Several Noisy

Signals. Proc. IRE, 43:1530, October 1955.

[8] P. Castoldi. Multiuser Detection in CDMA Mobile Terminals. Artech house Publishers,

2002.

[9] Y.-C. Cheng, J. Bellardo, P. Benk, A. C. Snoeren, G. M. Voelker, and S. Savage.

Jigsaw: solving the puzzle of enterprise 802.11 analysis. In SIGCOMM, 2006.

[10] G. FSF. Gnu radio - gnu fsf project. http://www.gnu.org/software/gnuradio.

[11] C. L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to Hidden Terminal Problems

in Wireless Networks. In SIGCOMM, pages 39–49, 1997.

59

[12] R. G. Gallager. A Perspective on Multiaccess Channels. IEEE Transactions on Infor-

mation Theory, IT-31(2), 1985.

[13] M. Gast. 802.11 Wireless Networks. O’Reilly, 2005.

[14] J. Geier. Snr cutoff recommendations, 2005. http://www.wi-

fiplanet.com/tutorials/article.php/3468771.

[15] R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan. Understanding and Miti-

gating the Impact of RF Interference on 802.11 Networks. In SIGCOMM, 2007.

[16] D. Halperin, J. Ammer, T. Anderson, and D. Wetherall. Interference Cancellation:

Better Receivers for a New Wireless MAC. In Hotnets, 2007.

[17] J. Hou, J. Smee, H. D. Pfister, and S. Tomasin. Implementing Interference Cancellation

to Increase the EV-DO Rev A Reverse Link Capacity. IEEE Communication Magazine,

2006.

[18] E. Inc. Universal software radio peripheral. http://ettus.com.

[19] G. Judd and P. Steenkiste. Using Emulation to Understand and Improve Wireless

Networks and Applications. In NSDI, 2005.

[20] P. Karn. MACA–A New Channel Access Method for packet Radio. 9th Computer

Networking Conf., 1990.

[21] S. Katti, S. Gollakota, and D. Katabi. Embracing Wireless Interference: Analog Net-

work Coding. In ACM SIGCOMM 2007.

[22] S. Khurana, A. Kahol, and A. P. Jayasumana. Effect of Hidden Terminals on the

Performance of IEEE 802.11 MAC Protocol, 1998.

[23] A. Kochut, A. Vasan, A. Shankar, and A. Agrawala. Sniffing out the correct Physical

Layer Capture model in 802.11b, 2004.

[24] E. A. Lee and D. G. Messerschmitt. Digital Communications. Boston: Kluwer Aca-

demic, 1988.

[25] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. An Experimental

Study on the Capture Effect in 802.11a Networks, 2007.

60

[26] Y. Li, L. Qiu, Y. Zhang, R. Mahajan, Z. Zhong, G. Deshpande, and E. Rozner. Effects

of Interference on Wireless Mesh Networks: Pathologies and a Preliminary Solution.

In HotNets, 2007.

[27] H. Meyr, M. Moeneclaey, and S. A. Fechtel. Digital Communication Receivers: Syn-

chronization, Channel Estimation, and Signal Processing. John Wiley & Sons, 1998.

[28] A. Muqattash and M. Krunz. CDMA-Based MAC Protocol for Wireless Ad Hoc

Networks. In ACM MOBIHOC, 2003.

[29] Netgear. Reference Manual for the NETGEAR ProSafe 802.11g Wireless Access point

WG102.

[30] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Measurement-Based

Models of Delivery and Interference. In SIGCOMM, 2006.

[31] J. K. Tan. An Adaptive Orthogonal Frequency Division Multiplexing Baseband Modem

for Wideband Wireless Channels. Master’s thesis, MIT, 2006.

[32] D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge

University Press, 2005.

[33] D. Tse, P. Viswanath, and L. Zheng. Diversity-Multiplexing Tradeoff in Multiple Access

Channels. IEEE Transaction on Information Theory, pages 1859–74, 2004.

[34] S. Verdu. Multiuser Detection. Cambridge University Press, 1998.

[35] S. Verdu and S.Shamai. Spectral Efficiency of CDMA with Random Spreading. IEEE

Transaction on Information Theory, pages 622–40, 1999.

[36] A. J. Viterbi. Very Low Rate Convolutional Codes for Maximum Theoretical Perfor-

mance of Spread-Spectrum Multiple-Access Channels. IEEE Journal on Selected Areas

in Communications (JSAC), 8:641–649, May 1990.

[37] C. Ware, J. Judge, J. Chicharo, and E. Dutkiewicz. pages 159–163 vol.1.

[38] I. . WG. Wireless lan medium access control (mac) and physical layer (phy) specifica-

tions. Standard Specification,IEEE, 1999.

61

[39] G. Woo, P. Kheradpour, and D. Katabi. Beyond the Bits: Cooperative Packet Recovery

Using PHY Information. In ACM MobiCom, 2007.

[40] K. Xu, M. Gerla, , and S. Bae. Effectiveness of RTS/CTS Handshake in IEEE 802.11

Based Ad Hoc Networks. In Ad Hoc Network Journal, 2003.

[41] J. Zhu, X. Guo, S. Roy, and K. Papagiannaki. CSMA Self-Adaptation based on Inter-

ference Differentiation. In IEEE Globecom, 2007.

62

