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Abstract 

End-user interactive machine learning is a promising tool 
for enhancing human productivity and capabilities with 
large unstructured data sets. Recent work has shown that we 
can create end-user interactive machine learning systems for 
specific applications. However, we still lack a generalized 
understanding of how to design effective end-user 
interaction with interactive machine learning systems. This 
work presents three explorations in designing for effective 
end-user interaction with machine learning in CueFlik, a 
system developed to support Web image search. These 
explorations demonstrate that interactions designed to 
balance the needs of end-users and machine learning 
algorithms can significantly improve the effectiveness of 
end-user interactive machine learning. 

 Introduction   

End-user interactive machine learning is the process by 

which people define concepts that can be recognized by an 

intelligent system. These concepts provide the building 

blocks needed for configuring complex automated 

behaviors on large data sets. People define concepts by 

iteratively providing examples of objects matching a 

desired concept and inspecting feedback presented by the 

system to illustrate its current understanding (left in Figure 

1). Defining concepts via examples enables end-user 

personalization of intelligent systems while circumventing 

the interpretation or manipulation of low-level 

computational representations. 

 Recent work has demonstrated several applications of 

end-user interactive machine learning systems. Fails and 

Olsen’s (2003) Crayons system supports interactive 

training of pixel classifiers for image segmentation in 

camera-based applications. Dey et al.’s (2004) a CAPpella 

enables end-user training of a machine learning system for 

context detection in sensor-equipped environments. Ritter 

and Basu (2009) demonstrate interactive machine learning 

in complex file selection tasks. Each of these provides 

initial evidence of the utility of interactive machine 
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learning, but we still lack a generalized understanding of 

how to design effective end-user interaction with 

interactive machine learning systems. For instance, which 

examples should a person provide to efficiently train the 

system? How should the system illustrate its current 

understanding? How can a person evaluate the quality of 

the system’s current understanding in order to better guide 

it towards the desired behavior?   

 A traditional active learning approach to interaction can 

meet the needs of the machine learning system by forcing a 

person to label training examples that provide the greatest 

information gain. However, treating a person like a passive 

information oracle can create a frustrating user experience 

(Baum and Lang 1992). On the other hand, a design that 

neglects the learning system in favor of end-user flexibility 

may be equally frustrating if a person cannot effectively 

train the system. Effective solutions must therefore balance 

the needs of both the end-user and the machine.  

 This paper presents three explorations of designing 

effective end-user interaction with machine learning in 

CueFlik, a system we developed to support Web image 

search (Fogarty et al. 2008). Our results show that well 

designed interactions can significantly impact the 

effectiveness of the interactive machine learning process. 

In addition, while our explorations are grounded in 

CueFlik, we intentionally designed our methods to be 

independent of CueFlik, image-specific features, and 

image search. As a result, our findings should generalize to 

other domains suitable for example-based training. 

CueFlik 

CueFlik (Figure 1) allows end-users to interactively define 

visual concepts (e.g., “product photos”, “pictures with 

quiet scenery”, “pictures with bright psychedelic colors”) 

for re-ranking web image search results. End-users train 

CueFlik by providing examples of images with and without 

the desired characteristics. These examples are used to 

learn a distance metric as a weighted sum of component 

distance metrics (including histograms of pixel hue, 

saturation, luminosity, edges, global shape and texture). 

Formally, CueFlik minimizes an objective function 



separating positive examples from negative examples 

while keeping examples in the same class close together:  

 
where D(i, j) is the distance metric computed as a weighted 

sum of CueFlik’s component metrics. The first two terms 

correspond to within-class distances. Minimizing the 

function therefore favors weights that collapse the positive 

and negative classes. The third term considers all 

examples, thus favoring maximum separation of classes. 

 CueFlik uses provided examples to update its distance 

metric. It then uses a nearest-neighbor classifier to re-rank 

images according to their likelihood of membership in the 

positive class. Throughout the iterative training process, 

CueFlik presents examples illustrating its current 

understanding of the desired concept and end-users decide 

how to proceed with improving system understanding. 

Designing Effective Interactions with CueFlik 

There are many possible ways to design the various 

interactions during the end-user interactive machine 

learning process. In our explorations with CueFlik, we 

attempt to move beyond previous naïve or ad-hoc 

approaches by designing general techniques that balance 

the needs of both end-users and machine learning 

algorithms. The techniques we present here target three 

important aspects of the end-user interactive machine 

learning process: (1) effectively illustrating the current 

version of a learned concept (Fogarty et al. 2008), (2) 

guiding end-users to select training examples that result in 

higher quality concepts (Amershi et al. 2009), and (3) 

enabling effective and lightweight end-user exploration of 

multiple potential models (Amershi et al. 2010). 

 We present the results of our interaction evaluations in 

terms of two key measures: quality of end-user-trained 

concepts and their efficiency in training. For study details, 

please refer to our original publications. 

Illustrating the Current Learned Concept 

A fundamental issue in end-user interactive machine 

learning is illustrating the system’s current understanding 

of a learned concept. An effective illustration can help 

people asses the quality of the current concept and in turn 

inform whether and how they proceed in training.  

 We examined two methods for illustrating CueFlik’s 

current version of a learned concept: single versus split 

presentation (Fogarty et al. 2008). The single method 

provides access to the entire set of images, ranked by their 

likelihood of membership in the positive class (right in 

CueFlik interface, Figure 1). The split method instead 

shows only the best and worst matching images in the set 

(left in CueFlick interface, Figure 1). The best matches 

show a small number of high-certainty positive images 

(extremely close to positive training examples). The worst 

matches show a small number of high-certainty negative 

images (extremely close to negative training examples).  

 In addition, we experimented with integrating active 

learning examples into both the single and split 

presentations interfaces. These examples were chosen 

using standard active learning heuristics for selecting 

examples that provide the system with the most 

information gain (e.g., examples the system is currently 

most uncertain about, such as examples near the boundary 

of the positive and negative classes). 
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Figure 1. In end-user interactive machine learning (left), a person iteratively provides a system with training examples for a desired 

concept. Those examples train a classifier that is applied to the remaining data. A person then inspects presented data and decides how to 

best proceed with refining the classifier. CueFlik (right) supports end-user interactive machine learning in Web image search. 

 

 



 From our evaluation, we found that participants using 

the split presentation created CueFlik concepts of 

significantly higher quality, using significantly fewer 

training examples, in significantly less time than 

participants using the single method.  One explanation of 

this is that the split presentation encouraged participants to 

focus on whether the system’s understanding was mostly 

correct (i.e., whether the best and worst matches 

corresponded to their desired concept). In contrast, 

presenting the entire set of images (single) exposes 

participants to images for which the system is more 

uncertain (e.g., images in the middle of the ordered set). 

These images may have led participants to find relatively 

minor inconsistencies, prompting them to continue adding 

examples and take more time. Furthermore, as people label 

more of these uncertain images, CueFlik may begin to 

learn irrelevant aspects of those examples. Interestingly, 

neither the presence nor absence of active learning 

examples (i.e., examples that are theoretically intended to 

provide the machine with the most information about the 

model being trained) had a significant effect on participant 

ability to train models. These findings suggest further 

exploration of how to best guide people to select effective 

training examples during interactive machine learning. 

Soliciting Effective Training Examples 

Our initial exploration showed that the split method of 

presenting examples led participants to train better 

concepts. This result mixes two possible explanations for 

the improvement: (1) the use of a split presentation with a 

small number of examples illustrating the positive and 

negative regions during interactive refinement of a learned 

concept, and (2) that those examples were selected as 

representative of the positive and negative regions because 

of their high-certainty. We hypothesized that the first of 

these explanations is indeed important. However, because 

high-certainty examples are extremely similar to already 

labeled examples, they provide little additional information 

to the machine learning algorithm during training.  

We examined two strategies for selecting small sets of 

examples of high-value to the machine learning algorithm 

that also provide the end-user with an intuitive overview of 

the positive and negative regions of a space defined by a 

learned concept (Amershi et al. 2009). Our first strategy 

presents a global overview, selecting examples to provide 

good coverage of the positive and negative regions (left in 

CueFlik interface, Figure 1). We use a sensor-placement 

strategy (Krause et al. 2008) to select examples, i, that 

maximize the mutual information gain between currently 

selected, S, and unselected, U, examples (and are therefore 

of high quality from the learner’s perspective): 
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To achieve this, we take a Gaussian Process perspective 

and select examples that maximize: 
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where KS,S is the similarity matrix among S, KU-i,U-i is the 

similarity matrix among U excluding i, and Ki,S, KS,i, Ki,U-i, 

and KU-i,i are each similarity vectors between i and the 

respective sets (Amershi et al. 2009). Intuitively, examples 

maximizing this ratio are most dissimilar to selected 

examples and most representative of those unselected. 

Our second strategy emphasizes projected overviews, 

selecting instances that illustrate variation along major 

dimensions of the positive and negative regions. We first 

obtain a set of principle dimensions in each region and then 

select examples along each. We use a non-linear projection 

technique similar to Principal Component Analysis to 

compute principle dimensions, as this best respects the 

structure of the underlying data (Amershi et al. 2009). To 

select instances that best illustrate the intended variation 

(i.e., provide coverage of a single principal dimension but 

also vary as little as possible in all other dimensions), we 

modify our sensor placement strategy to maximize: 
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where K is the similarity matrix for the principal dimension 

for which we are currently selecting a set of representative 

examples and    is the similarity matrix for all of the other 

principal dimensions (Amershi et al. 2009).  

 We compared our new overview-based strategies to the 

best performing strategy from our initial work (i.e., the 

high-certainty strategy presenting the best and worst 

matches). We found that our overview-based strategies of 

presenting high-value examples guided participants to 

select better training examples and train significantly 

higher quality concepts than the high-certainty strategy. 

However, we also found that participants spent more time 

training when using the overview-based strategies. 

 During our evaluation, we observed that participants 

often continued providing additional training examples 

even when they did not seem to be further improving a 

concept. This obviously increases the training time and we 

believed it could also negatively impact final concept 

quality. We therefore further analyzed the point where 

participants obtained their best learned concept. This 

showed that our overviews led participants to train better 

best concepts in the same amount of time and with fewer 

examples than the high-certainty strategy. This analysis 

also showed that all of our interfaces suffered from some 

model decay (from best to final concepts). Participant 

feedback indicated they were often unable to revert back to 

previous model states during training when quality started 

to decay (e.g., “it was weird, sometimes it would start out 

doing really well, but as I kept going it did worse”). Our 

overviews, however, helped to reduce the magnitude of 

this decay compared to the high-certainty condition. 



Examining Multiple Potential Models 

Participants in our second exploration were unable to 

revert back to previous models when they observed that 

CueFlik was not behaving in the desired manner.  We 

hypothesized that this was partly due to an implicit 

assumption in prior research about how people should 

interact with machine learning. Machine learning systems 

learn by generalizing from examples of object classes. 

Prior research has thus focused interaction on prompting a 

person to answer “what class is this object?” (e.g., Tong 

and Chang 2001). Such an approach permits simulated 

experiments with fully-labeled datasets. However, treating 

a person simply as an oracle neglects human ability to 

revise and experiment. We therefore propose that a person 

instead consider “how will different labels for these objects 

impact the system in relation to my goals?”  

 Our third exploration examines the impact of end-user 

comparison of multiple potential models during the 

interactive machine learning process (Amershi et al. 2010). 

Comparison of multiple alternatives is a proven technique 

in human-computer interaction but has not been explored 

in the context of people interacting with machine learning. 

We examine this with a history visualization showing 

recently explored models and support for revision (see 

CueFlik interface in Figure 1). The history contains a plot 

of each model’s estimated reliability, updated after every 

end-user interaction (e.g., labeling examples). Model 

reliability is measured using leave-one-out-cross-validation 

on the current set of training examples. The history also 

shows snapshots of each model’s top ranked images for 

visual comparison. Revision can be achieved by removing 

examples directly, via undo/redo, and by clicking directly 

within the history to revert back to previous models.  

Our evaluation showed that the history visualization led 

participants to spend more time and perform more actions 

to train concepts without improving overall model quality. 

Although the plot used an accepted metric to estimate 

model reliability (leave-one-out-cross-validation accuracy), 

end-users seemed to use it less like an tool for helping 

them interpret model quality and more like a quantity to 

maximize (e.g., “I wanted the graph to go up instead of 

concentrating on [the results]”). This emphasizes the need 

to consider a person’s understanding of the limitations (and 

benefits) of accepted machine learning techniques when 

designing interactive machine learning systems.  

Our evaluation also found that participants readily 

adopted revision mechanisms, making use of them in 68% 

of their tasks when it was available. Revision also led 

participants to achieve better quality final models in the 

same amount of time than when revision was not available.   

Furthermore, examining and revising actions is consistent 

with how people expect to interact with applications. One 

participant commented that without revision “it felt a little 

like typing on a keyboard without a backspace key”. 

 While revision led our participants to create better 

quality final models, we still observed some decay in all 

conditions. This problem of helping people determine 

appropriate stopping points is related to the machine 

learning problem of identifying overfitting. Therefore, a 

perspective that considers both the human and the machine 

introduces new opportunities for solving these and other 

open problems in interactive machine learning.  

Conclusion 

In this work we explore how to design effective end-user 

interaction with interactive machine learning systems. 

While important problems remain, our explorations with 

CueFlik demonstrate that careful designs considering the 

needs of both end-users and machine learning algorithms 

can significantly impact the effectiveness of end-user 

interaction. Moreover, many of our techniques are not 

specific to image search or features of images. Techniques 

like overview-based example selection or revision of 

previous models can therefore potentially impact a wide 

variety of machine learning based applications. 
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