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ABSTRACT
As statistical machine learning algorithms and techniques
continue to mature, many researchers and developers see
statistical machine learning not only as a topic of expert
study, but also as a tool for software development. Extensive
prior work has studied software development, but little prior
work has studied software developers applying statistical
machine learning. This paper presents interviews of eleven
researchers experienced in applying statistical machine
learning algorithms and techniques to human-computer
interaction problems, as well as a study of ten participants
working during a five-hour study to apply statistical machine
learning algorithms and techniques to a realistic problem.
We distill three related categories of difficulties that arise
in applying statistical machine learning as a tool for
software development: (1) difficulty pursuing statistical
machine learning as an iterative and exploratory process,
(2) difficulty understanding relationships between data and
the behavior of statistical machine learning algorithms,
and (3) difficulty evaluating the performance of statistical
machine learning algorithms and techniques in the context
of applications. This paper provides important new insight
into these difficulties and the need for development tools that
better support the application of statistical machine learning.
Author Keywords
Statistical machine learning, software development.
ACM Classification Keywords
H5.2 Information Interfaces and Presentation: User Interfaces;
D2.6 Programming Environments: Integrated Environments.

INTRODUCTION AND MOTIVATION
Statistical machine learning has emerged as an important
tool in the development of modern software. For example,
the explosion of information available on the Web has
motivated work on interfaces that better support common
tasks by automatically identifying relationships within and
among Web pages [11, 13]. Concern for demands on
human attention imposed by computing and communication
systems has prompted the examination of sensor-based
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statistical models of human interruptibility [7, 12]. The
complexity of modern software has led to the exploration
of statistical techniques for detecting bugs and anomalous
behavior in deployed systems [2, 28]. Advances in low-cost
sensing have prompted work on activity modeling and
location-aware computing to enhance the limited input and
output capabilities of mobile devices [17, 19].

Statistical machine learning algorithms and techniques
remain an important topic of expert study, but the above
examples have the common characteristic that they are
focused on applying existing algorithms and techniques
to solve a problem of interest. In this sense, there
are many researchers and developers who see statistical
machine learning not as a topic of study, but rather as a
tool for software development. Extensive prior research
has explored the general difficulties faced by software
developers [14, 15, 18, 24, 25], but little work has studied
the application of statistical machine learning in software
development. Instead, existing statistical machine learning
tools (e.g. [22, 27]) have generally been developed by
and for statistical machine learning experts, whose primary
interest is often in developing and evaluating new statistical
machine learning algorithms and techniques. But the
application of statistical machine learning is no longer
limited to such experts, and so it is important to understand
the difficulties that developers face when applying statistical
machine learning as a tool for software development.

This paper takes a two-pronged approach to examining
the difficulties that arise in applying statistical machine
learning as a tool for software development. We
first interview eleven researchers, each of whom has
significant experience applying statistical machine learning
algorithms and techniques to human-computer interaction
research problems. We then study ten participants
working during a five-hour study to apply statistical
machine learning algorithms and techniques to a realistic
problem. Our interviews and our study reveal three related
categories of difficulties: (1) difficulty pursuing statistical
machine learning as an iterative and exploratory process,
(2) difficulty understanding relationships between data and
the behavior of statistical machine learning algorithms,
and (3) difficulty evaluating the performance of statistical
machine learning algorithms and techniques in the context
of applications. Analyzing detailed screen and workspace
captures of the work of study participants in the context of



difficulties distilled from our interviews, this paper provides
important new insight into these difficulties and discusses
implications for new tools to better support the application
of statistical machine learning.

RELATED WORK
Several texts provide appropriate introductions to statistical
machine learning algorithms and techniques [10, 23]. One of
the most well-studied areas of statistical machine learning is
the learning of a function y = f(x1, . . . , xn). Depending on
whether y is a continuous or nominal variable, this problem
is known as either regression or classification. Both are
considered supervised learning, because a set of labels are
provided as part of training data at the time the function
is learned. Variables x1, . . . , xn are known as features,
and each should capture some useful aspect of the problem
being modeled. Importantly, features are assumed as input
to statistical machine learning algorithms, and must be
provided by the developer.

Existing tools for the application of statistical machine
learning provide a library of implementations of common
statistical machine learning algorithms, with Weka being a
well-known and widely-used example [27]. Environments
like YALE [22] provide additional support for configuring
experiments to compare the performance of different
potential algorithms. Such tools can save a statistical
machine learning expert significant implementation effort,
but they provide little guidance to developers who are
not already familiar with how to successfully employ the
provided algorithms. The body of this paper further
discusses difficulties faced by developers in using current
tools, as our second study includes the use of Weka as part
of solving a classification problem.

A number of systems have explored the packaging
of appropriate features with statistical machine learning
algorithms to ease development in particular domains.
For example, Fails and Olsen developed Crayons, a
tool for creating camera-based systems using pixel-level
classifiers [4, 5]. Crayons uses a coloring metaphor
to collect labeled training data, then learns a decision
tree classifier using features based on integral images.
Hartmann et al. developed Exemplar [9], which supports
the interactive specification of sensor-based recognizers
through a combination of signal filters and a dynamic time
warping algorithm. Fogarty and Hudson developed Subtle
[6], a system focused on the sensing capabilities of typical
laptop computers that uses operator-based feature generation
with wrapper-based feature selection to automatically create
classifiers based on labels provided by an application.
Maynes-Aminzade et al. present Eyepatch, a tool for
developing camera-based interactions that includes support
for training different types of vision-based classifiers [20].

Such tools demonstrate the potential for the application of
statistical machine learning algorithms and techniques, but
they generally achieve their success by highly constraining
both their application domain and the approaches that a
developer can take to a problem. One of the most common
constraints is to limit the developer to providing training
data, an approach taken by both Crayons and Subtle. Both

systems package a set of features and algorithms that work
well in their domains, allowing the developer to provide
examples of the concept they want to model. But if the
packaged features and modeling algorithm are not a good
fit for the model that a developer wants to learn, such
tools provide little recourse. Similarly, Exemplar allows a
developer to explicitly manipulate parameters to a dynamic
time warping algorithm, but provides little support for
determining whether this is the appropriate algorithm for
a problem and no support for experimenting with other
potential algorithms. In short, systems constrained in
such ways provide a low floor (a low barrier to entry)
at the expense of a low ceiling (the point at which the
tool’s assumptions and constraints become an obstacle to
addressing a problem) [21]. In contrast, this work explores
support for the end-to-end development of systems based on
the application of statistical machine learning algorithms and
techniques. By examining the difficulties that developers
encounter, we aim to inform the development of new tools
that provide both a low floor and a high ceiling.

Ko et al. identify six learning barriers faced by novice
developers [16]. Although our focus is on experienced
software developers who are not experts in the application
of statistical machine learning algorithms and techniques,
analogous barriers arise. For example, a developer who
cannot conceive of how to frame a problem as a matter
of learning a function y = f(x1, . . . , xn) is encountering
a barrier analogous to Ko et al.’s design barriers. Our
work complements such work, examining in greater depth
the unique difficulties encountered in the application of
statistical machine learning.

Other areas of related work include studies of engineering
and creative design processes [3, 26], the challenges
of effective information visualization [1], and work in
knowledge discovery and data mining [8]. We note that
results in all of these areas will inform the design of new
tools to better support the effective application of statistical
machine learning as a tool for software development. But
we also note that statistical machine learning continues to
grow in importance as a tool for software development, and
so tools supporting the effective application of statistical
machine learning warrant careful attention. As an analogy,
it is clear that user interface toolkits and studies of the
development of user interface software have been critical
to advancing human-computer interaction [21]. Because
statistical machine learning continues to emerge as an
important tool in human-computer interaction and in other
fields, our work aims to enable similar long-term impact via
a first set of empirical studies examining the difficulties that
developers face in appplying statistical machine learning.

STUDY OVERVIEWS
As noted in our introduction, we take a two-pronged
approach to examining the difficulties that arise in
applying statistical machine learning. We first conduct
semi-structured interviews of eleven researchers experienced
in applying statistical machine learning to human-computer
interaction research problems. These interviews provide
high-level insight into the difficulties faced by developers.



Based on this high-level insight, we then design and
conduct a laboratory think-aloud examining ten participants
working during a five-hour period to apply statistical
machine learning algorithms and techniques to a realistic
problem. We chose this combination of approaches because
the development of software based on statistical machine
learning algorithms and techniques typically takes place
over an extended period of time, on the order of weeks
to months. Starting with interviews allows a high-level
exploration of difficulties that arise in applying statistical
machine learning, and our lab study then probes exactly
how how those difficulties manifest as developers work on
a problem. This section introduces our interviews and our
study, deferring results until later sections.

Semi-Structured Interviews
We interviewed eleven researchers with significant experience
applying statistical machine learning algorithms and
techniques to human-computer interaction problems. To
avoid confusion when discussing our two groups of
participants, this paper refers to our interview participants
as IP1 through IP11. As an indication of the breadth of
their experience, we note that these researchers have worked
on such problems as intelligent digital photo management,
vision-based facial expression recognition, availability
modeling in instant messaging, EEG-based recognition of
brain activity, RFID-based activity recognition for elder care
applications, accelerometer-based activity recognition for
fitness applications, mixed-initiative pen-based text input,
programming-by-demonstration approaches to text editing,
interactive tools for creating camera-based interfaces,
automated network packet diagnosis, and models of musical
style. Each interview participant has published multiple
papers in top venues. Participants were selected to include
a mixture of backgrounds, including researchers from the
statistical machine learning community who are focused
on human-computer interaction applications and researchers
from the human-computer interaction community who have
incorporated statistical machine learning in their work.

Each participant recalled two to three prior projects that
included the application of statistical machine learning
algorithms and techniques. They then described the lifecycle
of the project, from conception to completion, as well as
how the application of statistical machine learning related
to other aspects of the project. We asked participants to
diagram their process while describing the project, and we
elicited further discussion and clarification by concurrently
annotating and editing their diagrams. After discussing this
first project, participants compared and contrasted it with
the other projects they had initially discussed. Interviews
lasted for between 40 and 90 minutes, and we captured audio
recordings for later transcription and review.

Interview Results Overview
Although we defer the bulk of discussion until after the
presentation of our think-aloud study, several results from
our interviews directly inform the design of our think-aloud
study. First, our interviews revealed that the application
of statistical machine learning is a highly iterative and
exploratory process. A typical process requires the

formulation of a learning problem, collection of appropriate
training data, the extraction of features from the data, the
selection of a modeling algorithm, and experimentation to
determine whether the resulting system meets the needs of
the application. Although these steps describe a set of linear
dependencies, our participants emphasized the fact that the
actual development of a system is much more exploratory
than such linear dependencies suggest. This led us to ensure
that our think-aloud study examined this entire process (as
opposed to, for example, focusing only on developer model
selection given a predetermined set of features). Second,
our interviews revealed the importance of understanding
relationships between data and the behavior of statistical
machine learning algorithms in order to decide how to
proceed. We therefore desired a modeling problem that
can be effectively solved using many different approaches,
as opposed to one that forced participants towards a single
effective solution. Third, our interviews revealed difficulties
with evaluating the performance of statistical machine
learning in the context of applications, as our interview
participants felt that they must often manage concerns other
than the straightforward notion of model accuracy. We
therefore designed our think-aloud study to examine two
other concerns that interview participants raised, a need for
systems to work well when used by different people and
a need to consider computational cost and implications for
responsiveness when developing interactive applications.

Think-Aloud Study
Based on the difficulties described by our interview
participants, we designed the Digits task to examine
how these difficulties manifest as developers work
on a problem. This subsection presents the task,
the development environment used by participants, our
experimental procedure, and our participants.

The Digits Task
Illustrated in Figure 1, the Digits task has participants
create a image-based classifier of handwritten digits,
recognizing digits between 0 and 9. We chose this task
after experimenting with several possibilities, finding that
the task is easy enough for participants to produce a
reasonable classifier within a matter of hours, but hard
enough that participants employ a variety of strategies and
create classifiers of varying performance. Regarding our
just-discussed second requirement for a task (that it can
be effectively solved using many different approaches), we
note both that image-based handwritten digit recognition is
a well-studied problem with many known approaches. Good
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Figure 1. Our Digits task requires recognition of
handwritten digits. Participants collect data, extract

features from the images, apply statistical machine learning
algorithms, and evaluate the effectiveness of their system.
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Figure 2. The toolset used by participants in our think-aloud study.

results were obtained by participants who placed varying
degrees of emphasis upon data collection, feature creation,
and model exploration. Finally, the use of an image-based
task provides a natural visual representation of data, and
early experimentation with other tasks indicated this was
critical to tasks being tractable in the time allotted.

Development Environment
Participants worked using a toolset, illustrated in Figure 2,
that included the entire process of collecting training data,
extracting features from the images, choosing a modeling
algorithm, and then interactively testing their model in a
simple application. This toolset is typical of the tools that
our interview participants discussed using in their work.

The first component is a data collection application.
Participants used this application with a stylus and a
1024x768 Wacom Cyntiq tablet display. By selecting the tab
corresponding to a digit between 0 and 9, participants could
create labeled instances of that digit. Digits were captured
as 125x125 monochrome images and as normalized 20x20
grayscale images (see Figure 1). Participants could create
and manipulate multiple data files containing such images,
and could view how a model classified the images in a file.

The second component is the Eclipse development
environment for Java, used to extract features from the
digit images. Existing statistical machine learning tools
(including Weka, discussed next) generally parse feature
values from simple tabular file formats. Our interview
participants reported using typical software development
tools to create small programs that parse their raw data
(images in the Digits task), compute feature values, and
store those feature values in a format appropriate for their
statistical machine learning tool. Because our focus is
the application of statistical machine learning, and because
the development of such parsers can be an error-prone
and time-consuming process, we provided participants with
a codebase that parsed the file format used by the data
collection tool, provided stub methods to compute features
based on the original 125x125 monochrome images and
the normalized 20x20 grayscale images, then stored the
resulting feature values in an appropriate file format. As a
part of introducing the study, participants were shown where
and how to edit the feature creation stubs.

The third component is Weka, a well-known and
widely-used statistical machine learning tool [27]. Weka

provides a large library of feature visualizations, filters, and
modeling algorithms. Participants used Weka to load the
tabular feature files output by their feature creation code,
to apply potential modeling algorithms, and to evaluate
model accuracy using standard evaluation techniques (such
as ten-fold cross-validations).

The last component is a simple interactive calculator
application used for testing the system. This application
used the participant’s feature creation code and a
Weka-exported model to interactively classify pen input. We
included this for two reasons. First, many of our interview
participants reported that “trying it out” was an important
part of their process of applying statistical machine learning.
Providing this application closed the loop and allowed
participants to interact with the model they created. Second,
the interactive use of a model exposes important aspects
of that model that are not captured when only considering
accuracy, most notably the computational cost of the features
used by the model. Participants were told their models
needed to work well in an interactive context, and if the
features or the algorithm used by a participant were too
computationally expensive, a noticeable lag would result.

Procedure
Participants worked in a small office free of distractions, and
they were asked to think aloud as they worked. Links to the
Java API and the Weka API were provided, and participants
were free to use any resources they felt would be helpful.
Nearly all chose to use the Web to find information about
features, and several downloaded code to compute features.
The workstation included a 24” Dell 2407WFP display
running at 1900x1280 and the Wacom Cyntiq tablet display
running at 1024x768. Participants were free to use the
available monitor space however they chose. Most used the
primary display for interacting with the Eclipse development
environment and with Weka, thus using the tablet display
almost exclusively for interacting with the pen-based data
collection and calculator applications. Commercial screen
capture software continuously captured the desktop, a video
camera recorded the physical environment, and custom
software took continuous snapshots of the files in participant
workspaces. To minimize the impact of the computational
demands of statistical machine learning tools and our
capture software, participants worked alone on a computer
with two quad-core Xeon processors (at 2.66 GHz) and four
gigabytes of RAM.



Each session started with a tutorial, familiarizing participants
with the toolset by stepping them through the collection of
a handful of labeled digit images, the extraction of a simple
feature, the creation of a simple model, and the interactive
use of that model in the calculator application. They were
then given two hours to collect data, develop features, and
create the best classifier they could. After a break, we
provided participants with 200 labeled digit images collected
from four different people (5 examples of each digit per
person). We provided this data to see how participants
would use it in developing their system. Participants then
had another two hours to continue developing their system,
using both the data we provided and data they collected.
Participants were told that their classifier would be evaluated
according to its accuracy for digits sketched by other people
(subject to the constraint that it worked fast enough for
interactive use). Participants received a $50 gift certificate
for participation, and the participant who created the best
model received an additional $50 gift certificate.

Participants
We recruited ten participants, all computer science graduate
students. To avoid confusion when discussing our two
groups of participants, this paper refers to our think-aloud
participants as TAP1 through TAP10. We chose this
population after early experimentation showed that people
with no prior exposure to statistical machine learning
algorithms and techniques could make very little progress
within such a short period of time. All of our participants
therefore had previous classroom exposure to statistical
machine learning algorithms and techniques. They also
reported prior experience developing in Java and using the
Eclipse IDE. Four out of the ten had previously used Weka,
and three of those four had worked with Weka’s API. This
population is consistent with the goals of our work, as we are
not focused on novice software developers. We are instead
focused on people who already have some idea of how to
apply statistical machine learning, but are not necessarily
highly-trained experts in statistical machine learning.

Think-Aloud Results Overview
Figure 3 presents the final accuracy of each think-aloud
participant’s system, as well as a plot of the evolution of
the accuracy of each participant’s system over the course
of each of the two-hour portions of the study. These
accuracies have been computed using 2000 labeled digits
collected from 20 different people (10 examples of each
digit per person), none of which were provided to any of the
think-aloud participants. The plots were computed by scripts
that created and tested models based on our automatically
captured continuous snapshots of participant workspaces.
TAP2’s system made heavy use of a set of files outside the
environment we captured, and so we are unable to plot the
accuracy of TAP2’s models over time.

MACHINE LEARNING AS AN EXPLORATORY PROCESS
A number of dependencies exist when developing an
application based on learning a function y = f(x1, . . . , xn).
A developer must define a formulation of y that is
appropriate for their application. Training data must be

Figure 3. The final accuracy of each think-aloud
participant’s model, as well as a plot of the accuracy of each
participant’s model over the course of each two-hour session.

collected and labeled according to y. Features x1, . . . , xn

need to be defined and extracted from the raw data. Each
of these depends on the previous, and a modeling algorithm
can be applied to learning y = f(x1, . . . , xn) only after all
of these dependencies have been met.

While this linear set of dependencies might suggest a
linear process in the application of statistical machine
learning algorithms and techniques, our interviews revealed
a fundamentally exploratory and iterative process. In
discussing and diagramming their previous projects,
interview participants emphasized the non-linearity of their
work and described situations where an apparent dead end
for a project was overcome by revisiting an earlier point
in their process. For example, IP6 described a long and
fruitless exploration of modeling algorithms in collaboration
with expert statistical machine learning colleagues. IP6’s
breakthrough came when they went back and questioned
whether their features were appropriate, and they then found
that the creation of new features led to good results with a
simple modeling algorithm. In their words, “We basically
tried a whole bunch of Weka experimentation and different
algorithms ... and nothing worked, so we decided that ...
maybe we should explore the feature space.” In another
example, IP5 described a frustration with the fact that a
set of features and a modeling algorithm worked well on
training data but poorly when deployed in an application.
In this case, their breakthrough was in realizing that their
system had latched onto the characteristics of a single person
who had provided the vast majority of their training data.
The collection of more training data led to significantly
improved results. As a final example, IP5 recounted a case
where they changed the definition of the learning problem
based on the performance of their system. A model was
generally performing well at recognizing a set of activities,
but often confused two related activities. Within the context



Figure 4. A comparison of the processes of two representative think-aloud participants. TAP1 makes steady progress by iteratively
exploring all portions of the problem, while TAP6 spends that first portion of the study overly focused on feature creation.

of the desired application, IP5 decided it was more important
to reliably recognize a set of activities than it was to
distinguish between the two particular activities that were
being confused. They therefore combined the two activities
into a single activity, modifying their application and their
definition of y to balance the needs of their application with
the performance of their inference components.

Our think-aloud study also revealed the importance of
exploratory and iterative development. Figure 4 contrasts
the process of two representative think-aloud participants.
TAP1’s continuous exploration of every component of
the modeling process yields steady progress, while TAP6
struggles in part because they become overly focused on
a subset of the modeling process. This is illustrated
via our labeling of what activities these participants were
performing at each point in the task, based on a manual
coding of our collected screen capture recordings. TAP1
starts by investing some effort into feature creation, then
begins a period of iteratively creating new training data,
revising their feature creation code, considering different
modeling algorithms, and testing the resulting system. This
iterative exploration can be seen in the very dashed nature of
TAP1’s activities, as the participant quickly moves through
all portions of the problem. In contrast, TAP6 spends almost
the entire first half of the task focused on feature creation
and makes relatively little progress, creating a model with
one of the lowest midpoint accuracies. Once provided
with additional training data (the 200 examples from four
people that we provided each think-aloud participant at the
midpoint of the task), TAP6’s model is noticeably improved
(and screen capture recordings show that TAP6 made no
significant changes to their features or their modeling
algorithm). TAP6 was unable to make this progress earlier
at least in part because they were overly focused on feature
creation and did not revisit their training data. TA1’s final
model is a top performer, while TAP6’s final model performs
poorly in comparison to other models.

Given these results, we note that our interview participants
from the statistical machine learning community generally
prefer to use a tool like Matlab to implement their entire
end-to-end system, often coding their own algorithms. The
decision to implement their own algorithms in a tool like
Matlab may at first seem like a simple matter of personal

preference, but our interview participants describe it as
important to determining how to best proceed in addressing a
problem. For example, I10 stated “I think it’s really valuable
to work in an interactive environment, [because] you can go
back and ask a data structure ‘what did you do?’ or you can
add three lines and save off the state in some way.” Similarly,
I10 said “If you have a black box that is a [statistical machine
learning algorithm] and it produces numbers in the end, then
you have no idea what actually happened. So you need to be
able to look inside the state of the algorithm and see what is
happening, just like you would a program.”

Commonly-used tools introduce gaps into the process of
applying statistical statistical machine learning in software
development. The toolset used in our think-aloud study
(recall Figure 2) is typical of commonly-used toolsets, as
Weka allows the application of statistical machine learning
algorithms without a need to implement or understand the
details of those algorithms. This is valuable, but comes at
the expense that gaps between tools impede exploratory and
iterative development.

One example of such a gap occurs when features x1, . . . , xn

are computed from raw data (generally by small custom
programs). When these features are loaded in a tool for
applying statistical machine learning algorithms, there is
typically no way to link the set of features to the raw data
from which they were computed. For example, participants
in our think-aloud study loaded the output of their feature
creation code in Weka, but once within Weka they were
unable to see the actual image of the digit associated with
each set of values x1, . . . , xn. This gap is a barrier to
debugging a system, and is typical of existing tools that have
chosen to be agnostic to how feature values were obtained
because they package only a portion of the exploratory and
iterative process of applying statistical machine learning
algorithms and techniques. Given this gap, our discussion
addresses the potential for tools that support the entire
process of applying statistical machine learning algorithms
and techniques.

A second gap introduced by current tools that are agnostic
to how feature values are obtained is the need for developers
to implement or obtain implementations of commonly used
features. Our interview participants reported that they often



start their feature creation process by investigating what
features have worked well for other people with similar data.
Our think-aloud participants also used the Web to investigate
features that work well for problems similar to our Digits
task, with varying success. For example, TAP4 and TAP10
found discussions of the same feature when reviewing
related work. TAP4 was able to find an implementation of
that feature and successfully incorporate it into their system,
while TAP10 spent time looking for implementations but
eventually abandoned the feature. Informed by this gap, our
discussion addresses the potential for new tools to package
and support the reuse of common feature computations.

The final gap we discuss here is compounded over time
as a developer explores a problem. As developers collect
new data, explore new features, and consider different
modeling algorithms, a variety of intermediate artifacts are
created. These include raw data files, files containing the
results of various feature computations (including variations
on what raw data was used and what code was used
to compute features from the raw data), and different
models. But this experimental history is not supported
by current toolsets, and we observed our think-aloud
participants using fragile strategies to maintain a history of
their experimentation. For example, TAP1, TAP5, TAP9,
and TAP10 kept paper logs of configurations they had tried
and the accuracy they had obtained with those approaches
(interestingly, these four participants also produced some
of the best models). Participants also used filenames
like “LogitBoostWith8To18EvenWindow-Iter=10.model” to
attempt to document their exploration, though we note that
such a strategy is likely only effective in the short term
(the filename does not, for example, indicate what data was
used to train the model or what features were computed for
use in the model). Our discussion therefore discusses the
potential for new tools to explicitly support experimentation
and record keeping.

UNDERSTANDING DATA AND ALGORITHMS
Our interview participants noted that many people who
are new to the application of statistical machine learning
algorithms and techniques (sometimes including the
participants themselves at earlier points in their career) want
to treat statistical machine learning algorithms as black
boxes. Although no experienced software developer would
expect a sorting algorithm to be effective without being told
how to compare two objects, developers who are new to the
application of statistical machine learning sometimes expect
that it will somehow “just work.” This section discusses four
examples of the role of understanding in the application of
statistical machine learning algorithms and techniques.

IP2 has an extensive statistical machine learning background
and significant experience applying their background to
human-computer interaction problems. In describing their
general approach, they noted they initially focus on creating
promising features. IP2 reported that they understand the
workings of statistical machine learning algorithms to the
point that they can examine simple visualizations of feature
values and determine whether an algorithm is going to
work well. After collecting appropriate data, IP2 iteratively

creates and examines features. They generally do not apply a
learning algorithm until after they are confident their features
will work well. This approach represents one extreme, as the
participant feels that they understand modeling algorithms to
the point that they can simply inspect a set of features and
know whether they will work well in a model.

A second process emphasizing understanding and features
was described by IP1, a participant with a human-computer
interaction research background. This participant indicated
that they are not practiced in the application of statistical
machine learning algorithms, and so they instead often take
an approach based on manual specification of heuristics.
They described a process based in collecting data and
creating features (just like our other participants), but
then relating those features to desired behaviors using
manually-coded rules and manually-determined thresholds.
IP1 prefers this approach because, in the case where a system
does not perform as expected, they can manually examine
their features and step through their heuristics to determine
why the system failed. They can then address the failure
by adding a new feature or a new heuristic. So while IP1
felt that the heuristics they create might not perform as well
as a system would if it were developed using a modeling
algorithm, they preferred the heuristics because they enabled
a greater level of understanding and ability to debug.

We saw a similar use of simple algorithms for the sake
of understandability in the processes employed by some
of our think-aloud study participants. For example, TAP9
initially used a decision tree algorithm because it allowed
TAP9 to easily see what features were being used and what
relationships existed between features at different levels in a
tree. Later in the study, after TAP9 was no longer looking to
create new features, they transitioned to using more complex
models in search of increased performance. Their final
model (a boosted ensemble of support vector machines) did
indeed perform better than a decision tree, but would be near
impossible to manually inspect.

The previous examples demonstrate the importance of
understanding in the case where a system does not yet appear
to work correctly, but understanding is important even after
a system seems to work well. IP3 recounted a case where
they spent several months believing they had an effective
solution to a modeling problem that was examining analyses
of online forums. Another researcher had provided a data file
containing values for a number of features computed from
forum posts, and IP3 had developed a model that performed
well when tested using standard evaluation methodologies
(specifically, using cross-validation techniques). But IP3
then discovered that much of the reliability of the model was
based on a single feature, and that this feature did not appear
to be related to the concept they were modeling. Further
investigation revealed the forum had been heavily spammed
during the time when the dataset was being collected, and
that all of the spam messages were of the same class in IP3’s
formulation of the modeling problem. IP3 had therefore
accidentally built a spam detector. Although the model
did perform well at detecting spam forum posts, it was not
solving the problem that IP3 intended to solve.



In the first three examples discussed in this section,
participants employed approaches based in understanding
how data relates to a model. Though the exact processes
of IP2, IP1, and TAP9 vary significantly, they all took
approaches based in building up an understanding of their
data, their features, and how models interact with those
features. Our final example illustrated the risks of treating
portions of the process as a black box, as the dataset and
features underlying IP3’s work led to models that were
capturing a concept very different from what IP3 thought
they were capturing. Our interview participants from the
statistical machine learning community commented on the
tendency of people who are new to the application of
statistical machine learning to want to treat algorithms as
black boxes. IP10, for example, warns that statistical
machine learning algorithms cannot do “semantic things”
but that successful classification instead requires “really
seeing what is happening with the data.” IP4 similarly
cautions that if a person cannot understand at some level
the differences between data, then it will be difficult or
impossible to build a classifier that can. In contrast
to propagating the misconception that statistical machine
learning algorithms can be treated as black boxes, tools need
to support the role of the developer in exploring and solving
a problem. Our discussion comments on the potential for
new tools to emphasize visualizations of models, data, and
their relationships.

EVALUATING PERFORMANCE IN APPLICATIONS
In addition to difficulties creating systems based on the
application of statistical machine learning algorithms and
techniques, our interview participants discussed difficulties
evaluating the performance of such systems in the context
of applications. The statistical machine learning community
has developed a number of techniques for evaluating the
accuracy of models, but our interview participants felt that
they must often manage concerns outside the focus of
traditional evaluation metrics and methodologies.

One recurring difficulty is due to differences in data
collected from different people and a need to understand how
a system is likely to perform when deployed with people
other than those who provided the system’s training data. At
the core of this difficulty is the IID assumption, that data is
independently and identically distributed. Many commonly
used statistical machine learning algorithms and techniques
make this assumption, and the fact that different people
may wear a sensor differently or draw a digit differently
violates the assumption. Although this is not always
problematic, as statistical machine learning algorithms and
techniques often work well in spite of such violations of
their theoretical basis, our interview participants reported a
number of related difficulties. For example, IP5 recalled that
“the cross-validation would show ... 85% to 90% accuracy
.. and then you would try it ... it worked extremely well
for some people and not well for others.” In contrast to
developing a single model to work well across people, IP4
reported a strategy of creating multiple models. At the
beginning of a deployment, IP4 then tested which model
seemed to be the best fit for each person in the deployment.

Figure 5. A comparison of how well participant’s own tests indicated
their models performed, how well they performed on 2000 new

test digits, and how many training examples each participant used.

Our Digits task included providing participants with
training data from four different people so that we could
examine how participants used that data in constructing and
evaluating their models. Participants might, for example,
have trained their system using their own data and tested it
against the provided data. Or they might have conducted
cross-validations that trained a model using data from three
of the people, then tested against the data from a fourth.
Either of these approaches would have likely provided some
insight into how well their system will work with new
people. Instead, all participants trained a single model using
data from all four people (often adding data of their own),
then evaluated it using randomized 10-fold cross-validation.
While randomized cross-validation is a standard technique
for testing a system given a dataset for which the IID
assumption holds, it ignores the fact that the data was
collected from four people. TAP10 initially began to take
an approach based in training with data from three people
and testing against a fourth, but instead used randomized
cross-validation because it was easier within Weka.

The left side of Figure 5 shows one consequence of
think-aloud participants using cross-validation methodologies
that ignored the relationship among data collected from
the same person. In comparison to evaluations that the
participants performed, every model performs worse when
tested against our final set of 2000 digits. A paired
t-test indicates that participant estimates of how well their
models performed are significantly higher than performance
measures obtained using our 2000 test digits (t(9) =
5.96, p < .001). Such discrepancies can significantly
impact a developer’s process: TAP2, for example, quit
the task with time remaining because their evaluations
showed their model performing at 98.0% accuracy, though
its performance in our tests was much lower.

The most common strategy for addressing concerns related
to the IID assumption (or other data quality concerns) is to
collect large enough of a dataset that the concern no longer
applies. Indeed, state-of-the-art systems for recognition
problems like that in our Digits task are generally based
in using massive training datasets. Evidence of this can
also be seen by examining how many example instances
each of our think-aloud participants used in relation to how
closely their estimates of model performance matched our



final tests (see the right side of Figure 5). An analysis
of variance, excluding TAP8 (whose failure to produce an
effective model makes them an outlier for this analysis),
shows that the number of training examples each think-aloud
participant used had a significant effect on how well
their estimates of model performance corresponded to tests
performed using our 2000 test digits (F (1, 7) = 14.00, p <
.01). While the collection of large datasets is a powerful
approach, our interview participants noted that the cost of
such data collection can be prohibitive. For example, when
asked whether they collected more data to further explore a
problem, IP10 responded “No. It was way too hard. There
was no question.” Collecting more data is not always an
option, our discussion considers new approaches to tools that
help developers examine common data quality concerns.

In addition to concerns about how to effectively evaluate
model accuracy, our interview participants noted that
the application of statistical machine learning requires
addressing concerns other than accuracy. In discussing
modeling based on personal activity histories, IP11
discussed a need to balance the potential utility of a
feature against the privacy implications of collecting the
data that would be needed to compute the feature, saying
“this was kind of a tradeoff between what we would have
wanted to have and what we can have.” IP8 discussed the
computational cost of features, noting “If your document’s
large, then it takes a lot of time.” and “Part of [making
the algorithm faster] was to cut back on the features.”
In our think-aloud study, TAP2 faced a similar tradeoff,
as they used an algorithm to automatically generate a
large number of features and their full set of features was
too computationally expensive for interactive use. They
therefore used a feature selection algorithm to reduce the
number of features used by their algorithm. Interestingly,
their decision to use a feature selection algorithm based
on randomized 10-fold cross-validation using their entire
dataset (as opposed to configuring a feature selection process
to find features that work well across different people)
probably led to significant overfitting and hurt their model’s
performance when tested against our 2000 new test digits.
Our discussion considers potential new approaches to tools
to help developers address such concerns.

IMPLICATIONS AND DISCUSSION
First, it is clear that non-expert tools need to support
the entire exploratory and iterative process of applying
statistical machine learning algorithms. Existing tools that
focus exclusively on model selection (assuming features
as input, typically in a tabular file format) introduce
gaps into a process that requires concurrent exploration
of data, features, and models. Once data collection and
feature creation are embraced in an integrated tool for
the application of statistical machine learning algorithms
and techniques, a number of possibilities emerge. Our
interview participants reported that they often start by
finding what features have previously worked well in a
domain, and most of our think-aloud participants used Web
search engines to try to find features that work well for
problems like our Digits task. Integrated tools could provide
libraries of feature computations for well-studied domains,

perhaps employing a community database to enable the
sharing of new feature implementations. Beyond simply
providing a library of feature computations, integrated tools
could use automated analyses of a developer’s dataset to
identify features that seem appropriate, suggesting them to
the developer. Supporting the entire process also enables
support for automated record keeping and experimentation.
Instead of relying upon brittle strategies like embedding
the parameters of an experiment in the filenames of logs,
developers could focus on exploring their problem while
knowing that the tool will allow them to revisit and compare
different approaches they have explored.

Second, the successful application of statistical machine
learning algorithms and techniques requires understanding,
as opposed to the expectation that algorithms can be treated
as black boxes. An integrated tool should provide not
only visualizations of data, features, and models, but also
visualizations of their relationships. Whereas existing
tools generally output simple textual presentations of a
model evaluation (such as confusion matrices or accuracy
measures), an integrated tool should allow a developer to see
what data was misclassified and how the misclassification
occurred. For example, an integrated tool could support the
examination of a misclassification by showing what features
were branched upon within a decision tree or what data it
was compared to in a nearest-neighbor algorithm.

Third, developers applying statistical machine learning
algorithms and techniques are ultimately focused on the
success of their application. An integrated development tool
should therefore support a rapid and lightweight transition
from exploring the creation of a model to deploying that
model in an application, perhaps through automated support
for exporting a model and the feature computations it
relies upon in an executable format. This is in contrast
to the current need for developers to decide how to
migrate the ad-hoc and often inefficient feature computation
scripts they developed during model exploration. Although
randomized cross-validations are attractive when data meets
the IID assumption, tools also need to explicitly support
evaluations related to common concerns in realistic data
(such as relationships between data collected from the same
person). An integrated tool might even attempt to detect
the occurrence of such concerns in a dataset, confirming
its findings with a developer and suggesting appropriate
actions. Finally, tools should incorporate methods for
developers to consider aspects of features other than their
contribution to the accuracy of a model, such as a feature’s
computational costs or the privacy tradeoffs it implies.

Machine learning algorithms and techniques are increasingly
important, and this paper examines obstacles to developer
application of statistical machine learning. We are
focused on experienced software developers who see
statistical machine learning not as a topic of study,
but rather as a tool for software development. Our
interviews and our think-aloud study reveal three related
categories of obstacles: (1) difficulty pursuing statistical
machine learning as an iterative and exploratory process,
(2) difficulty understanding relationships between data and
the behavior of statistical machine learning algorithms,



and (3) difficulty evaluating the performance of statistical
machine learning algorithms and techniques in the context of
applications. By identifying and examining these obstacles,
this paper provides an important foundation for tools to
enable the application of statistical statistical machine
learning algorithms and techniques as a part of a software
development process.
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