

Content and Hierarchy in Pixel-Based Methods
for Reverse Engineering Interface Structure

Morgan Dixon, Daniel Leventhal, and James Fogarty
Computer Science & Engineering

DUB Group, University of Washington
{mdixon, dlev, jfogarty}@cs.washington.edu

ABSTRACT
The rigidity and fragmentation of GUI toolkits are
fundamentally limiting the progress and impact of interaction
research. Pixel-based methods offer unique potential for
addressing these challenges independent of the
implementation of any particular interface or toolkit. This
work builds upon Prefab, which enables the modification of
existing interfaces. We present new methods for hierarchical
models of complex widgets, real-time interpretation of
interface content, and real-time interpretation of content and
hierarchy throughout an entire interface. We validate our new
methods through implementations of four applications:
stencil-based tutorials, ephemeral adaptation, interface
translation, and end-user interface customization. We
demonstrate these enhancements in complex existing
applications created from different user interface toolkits
running on different operating systems.

Author Keywords
Prefab, pixel-based reverse engineering, content, hierarchy.

ACM Classification Keywords
H5.2. Information interfaces and presentation: User Interfaces.

General Terms
Human Factors

INTRODUCTION AND MOTIVATION
Nearly every modern graphical user interface (GUI) is
implemented using some form of GUI toolkit. Toolkits
provide libraries of widgets and associated frameworks that
reduce the time, effort, and amount of code needed to
implement an interface. Although these toolkits have
enabled many successes of the past forty years of
human-computer interaction research and practice [19], the
current state of toolkits has become stifling [8, 12, 21].

Specifically, researchers and practitioners are limited by the
rigidity and fragmentation of existing toolkits. Rigidity
makes it difficult or impossible for an application developer
to modify a toolkit’s core behaviors. Similarly, application
rigidity generally precludes modification and customization
of existing interfaces (except in limited ways envisioned
and supported by an application’s original developer).

Fragmentation results from the fact that people generally
use many different applications built with a variety of
toolkits. Each is implemented differently, so it is difficult to
consistently add new functionality. Researchers are often
limited to demonstrating new ideas in small testbeds, and
practitioners often find it difficult to adopt and deploy ideas
from the literature. These challenges limit the progress and
impact of interaction research [8, 12, 21].

Because all GUIs ultimately consist of pixels, researchers
have proposed methods for enhancing existing interfaces
based only upon pixel-level interpretation. Pixel methods
were initially proposed to support research in interface
agents and programming by example [23, 25, 26, 32, 33].
More recent research examines broader opportunities for
pixel-based methods: ScreenCrayons supports annotation of
documents and visual information in any application [22],
Sikuli applies computer vision to interface scripting and
testing [3, 31], Hurst et al. use pixel-based methods to
improve the accessibility API’s target detection [15], and
Prefab enables real-time modification of existing interfaces
based on pixel-level interpretation [4].

The capabilities of these and other pixel-based systems are
inherently defined and limited by a system’s ability to
meaningfully interpret raw interface pixels. This paper
advances state-of-the-art systems by presenting the first
pixel-based methods for real-time interpretation of interface
content and hierarchy. Specifically, we build upon Prefab’s
pixel-based models of widget layout and appearance [4].
We first introduce the use of hierarchy to characterize
complex widgets. We then introduce content regions and
show how they enable efficient recovery of widget content.
Finally, we show how these insights can be combined to
recover a hierarchical interpretation of an entire interface.
We validate our novel methods in a set of applications that
demonstrate new capabilities enabled by interpretation of
content and hierarchy, and we discuss future research
opportunities suggested by this work.

Figure 1 illustrates several applications enabled by our new
pixel-based methods. A pixel-based implementation of
Kelleher and Pausch’s Stencils-based tutorials [16] uses
interface hierarchy to robustly reference specific widgets
(i.e., differentiating among identical widgets by their
position in the hierarchy). Our implementation of Findlater
et al.’s Ephemeral Adaptation [5] is independent of interface
implementation and leverages our models of content
regions to create the necessary gradual onset animations. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

translantion enhancement highlights our real-time
identification of interface content by extracting text,
translating it, and re-painting it in the interface’s original
look and feel. Finally, adding customization to an existing
interface illustrates support for managing occlusion and
rendering new content using our pixel-based models.

The contributions of this work to pixel-based methods are:

• Methods for hierarchical models of complex widgets.
These improve model implementation, example-based
prototype creation, and runtime widget detection.

• Methods for modeling widget content regions. These
enable efficient runtime recovery and interpretation of
widget content.

• Methods for example-based parameterization of widget
content regions. This is challenging because examples
include content that should not be part of a prototype.

• Methods for recovering the content and hierarchy of an
entire interface. This enables DOM-like interpretations
of interfaces independent of their implementation.

• Validation of our methods in a set of novel pixel-based
applications. These demonstrate our core methods and
also illustrate opportunities to leverage our methods in
addressing other challenges, such as robustly
referencing widgets, re-rendering interfaces from
pixel-based models, and managing interface occlusion.

RELATED WORK
This paper’s pixel-based interpretation of interface content
and hierarchy is implemented within the Prefab system [4].
To provide a context for our current contributions, we first
discuss several relevant aspects of prior research and then
review key components of the Prefab system.

Interpreting and Customizing Existing Interfaces
Our work is informed by GUI toolkit research [19].
For example, Hudson and Smith propose toolkit support for
separating interface style from content, drawing an analogy
to painting the same text with different fonts [13]. Hudson
and Tanaka develop toolkit methods for painting stylized
widgets, including an eight-part border defined by fixed
corners and variable edges [14]. Our reverse engineering
strategy turns such methods for painting interfaces on their
heads: an eight-part model can be used to characterize
many widget borders regardless of whether they were
painted using Hudson and Tanaka’s method. This paper is
based on similar insights regarding tree-based interface
layout and common approaches to painting variable content
within widgets. We thus leverage knowledge of toolkit
methods but remain independent of any particular toolkit.

Extensive research has examined interface customization.
Most is limited to the web, where the Document Object
Model (DOM) provides a structured representation of an
interface. ChickenFoot [2] and CoScripter [18] are classic
examples, and systems like Highlight extend these ideas to
task-centric re-authoring for mobile devices [20]. Systems
like Clip, Connect, Clone [6], d.mix [10], and Vegemite
[17] demonstrate promising end-user mash-up methods.

For non-web interfaces, structure analogous to the DOM is
provided the accessibility API. Stuerzlinger et al.’s research
on User Interface Facades uses the accessibility API to
enable runtime interface modification [27]. Compared to
pixel-based methods, accessibility APIs are advantageous
because they can access information that is not visible, such
as items contained in a closed drop-down menu. Direct
access to an interface’s underlying data also removes the

Kelleher and Pausch present the use of stencils to provide
tutorials directly within the context of an interface [16]. This is a
screenshot of our pixel-based implementation of a tutorial for
downloading résumé templates in Microsoft Office 2010.

We present a GUI translator that works solely from an interface’s pixels. Our translator
identifies, interprets, and translates textual content while maintaining the same look and
feel as the original application. Here is a portion of a Google Chrome Options dialog
running in Microsoft Windows 7, translated from English into French.

Findlater et al.’s Ephemeral Adaptation improves targeting
performance by reducing visual search while maintaining spatial
consistency [5]. Likely targets appear as normal, but unlikely
targets are initially missing and slowly fade in. This is a
screenshot from our implementation of the technique in the
context of a Skype settings dialog box running on Mac OS X.

Our methods enable end-user customization of everyday interfaces. We implemented a
technique that allows end-users to aggregate commonly used widgets of a tab control
into a “favorites” tab. This is shown here in the context of the Skype settings dialog.
Clicking on stars (left) adds the corresponding widgets to the “favorites” tab (right).

Figure 1: We introduce new pixel-based methods to reverse engineer interface content and hierarchy in real time. These methods
enable a new range of advanced behaviors that are agnostic of an application’s underlying implementation. All of these
enhancements are implemented in the Prefab system and are discussed in greater detail later in this paper and in our associated video.

possibility for recognition errors. On the other hand,
accessibility APIs require additional implementation effort
to correctly expose hooks into an interface’s underlying
state. Toolkits generally attempt to provide default
implementations, but many widgets are missing from the
accessibility API because of application failures to
implement necessary hooks. Hurst et al. found roughly 25%
of widgets are completely missing from the accessibility
API’s view on many common applications [15]. The
severity of this problem is magnified by the fact that it can
be corrected only by an application’s original developer
(or somebody else with the application source). Pixel
methods have the critical advantage that they do not require
cooperation from the original application. The application
exposes its pixels as normal, and anybody can then use
those pixels as a basis for additional functionality. For
example, Hurst et al. show a hybrid technique that uses
pixel-based methods to augment the accessibility API to
improve target boundary detection [15]. Our current work
focuses on pixel-based methods, presenting advances
toward a DOM-like representation obtained entirely from
pixels without cooperation of an underlying application.
Deeper exploration of additional hybrid techniques is an
important opportunity for future work.

The most relevant prior work is therefore that examining
pixel-based interface interpretation. Classic work by
Zettlemoyer et al. examined widget identification in IBOTS
and VisMap [32, 33] for interface agents and programming
by example [23, 25]. Their methods require code-based
descriptions of individual widgets, and Zettlemoyer et al.
report 40% of VisMap code is specific to particular
Microsoft Windows widgets. Our methods use examples to
describe widget appearance, making it possible to scale to
address the fragmentation of current interfaces. Perhaps
more importantly, continued development of Zettlemoyer
et al.’s methods in Segman found their performance
insufficient for real-time demands of interactive
applications [26]. In an interactive context, Olsen et al.’s
ScreenCrayons leverages the universality of pixels to
associate ink annotations with images of interfaces, but
does not interpret those images [22]. Tan et al.’s WinCuts
allows subdivision of windows with a copy-paste metaphor,
but does not attempt to interpret or modify content [29].
Yeh et al.’s Sikuli uses template matching and voting based
on invariant local features to identify occurrences of a
target in an image of an interface (requiring 200msec to
find all occurrences of a single target) [3, 31]. None of
these existing pixel-based methods are capable of real-time
interpretation of content and hierarchy, and so none are
capable of the demonstrations presented in this paper.

Prefab
Prefab modifies the apparent behavior of existing interfaces
using pixel-based interpretation with input and output
redirection. Figure 2 illustrates a basic mechanism, where
(1) a source window bitmap is captured, (2) the source
image is interpreted, (3) the modified interface is presented

in a target window (with the source potentially hidden
using virtual desktop methods), (4) input in the target is
mapped back to the source, which then (5) generates new
output that is captured and used to update the target. Prefab
is the first system to combine pixel-based methods with
input and output redirection, allowing it to modify an
interface independent of that interface’s implementation.

This requires interpreting images of an interface many
times per second, which Prefab accomplishes using four
major types of components: models, prototypes, parts
(including features and regions), and constraints.

Models consist of abstract parts and concrete constraints on
those parts. A typical model might include several
constraints requiring that parts are adjacent. The parts are
abstract, so a model does not describe any particular widget
or set of widgets. Instead, a model describes a pattern for
composing parts to create a widget.

Parts can be either features or regions. A feature stores an
exact patch of pixels (exact colors in an exact arrangement).
A region stores a procedural description of an area (e.g.,
painting a gradient or a repeating pattern). Because the
same parts can be arranged in multiple ways, they alone do
not describe any particular widget or set of widgets.

Prototypes parameterize a model with concrete parts, thus
characterizing both the arrangement and the appearance of
those parts. A prototype therefore describes a particular
widget or set of widgets (e.g., the Mozilla Firefox Home
toolbar button, all Microsoft Windows 7 Steel buttons).

Figure 2: Prefab combines pixel-based interpretation with
input and output redirection, allowing it to modify an
interface independent of that interface’s implementation.
This requires real-time pixel-based interpretation.

Figure 3: This Prefab prototype for Microsoft Windows 7
Steel buttons is an example of an eight-part model. Four
features define the corners, each edge is defined by a
region, and constraints require the parts form a rectangle.
This prototype recognizes all Microsoft Windows 7 Steel
buttons, independent of their interior content.

Figure 3 presents an example eight-part prototype that
parameterizes an abstract model of an eight-part border with
parts corresponding to a Microsoft Windows 7 Steel button.
It recognizes all Microsoft Windows 7 Steel buttons,
independent of their interior content. Prototypes that assign
different pixels to its parts can recognize different styles of
buttons or different widgets that paint a border. Prefab is
implemented as a library of prototypes with methods for
applying those prototypes to identify widgets. Specifically,
Prefab locates all features in a pass over an image and then
tests the regions and constraints of potential prototypes.

Creating a prototype by manually specifying the parts of a
model is possible, but tedious and error-prone. Prefab helps
by fitting prototypes from examples. We have found that
the most appropriate prototype for a widget is typically the
one which requires the fewest pixels to explain its
appearance. The intuition behind this approach is similar to
the minimum description length principle, a formalization
of Occam’s Razor in machine learning [24]. Prefab uses a
branch-and-bound search to determine what assignment of
parts to a model best explains an example. For example, the
prototype in Figure 3 is learned from a single example of a
Microsoft Windows 7 Steel button. This ability to quickly
create new prototypes is important to Prefab’s potential for
scaling to address GUI toolkit fragmentation.

INTERPRETING CONTENT AND HIERARCHY
This section addresses key challenges facing Prefab and
other pixel-based systems. We first address the complexity
of widgets with multiple components by introducing
hierarchical models. We then address the difficulty of
modeling unpredictable content by leveraging knowledge of
containment in content regions. Finally, we combine and
extend these ideas to enable efficient interpretation of the
content and hierarchy of an entire interface.

Hierarchical Models
The eight-part model in Figure 3 was the most complex
model explored in Prefab’s initial development. Although
Prefab’s original methods can characterize many widgets,
significant challenges arise when considering more
complex models needed to represent widgets consisting of
multiple components. Figure 4 illustrates this by comparing
the modeling of a slider with that of a scrollbar.

Figure 4a shows a five-part model of a slider, consisting of
a feature for the thumb, features for the trough endpoints,
and regions for the variable-length trough. This model
effectively characterizes many sliders. Although a scrollbar
might seem to have a similar layout, Figure 4b shows that
scrollbars vary the size of their thumb to illustrate what
portion of the scrollable area is currently within view.
A single feature is therefore insufficient for characterizing
the scrollbar thumb, so we replace the feature with eight
parts describing a thumb of varying size. If we want our
model to represent the buttons at either end of the scrollbar,
we also need to replace the end features with eight parts.
Figure 4c shows the resulting model, which characterizes

the components of these scrollbars but has become too
complex for practical use. It is difficult to correctly
implement, and its many parameters create a high
branching factor that makes it computationally expensive to
fit prototypes from examples. The effort to implement and
optimize complex models can be justified when they
characterize a wide variety of widgets, but this model still
does not characterize some common scrollbars. For
example, Figure 4d shows a scrollbar from Mac OS X’s
Cocoa toolkit painted with both scroll buttons together.

The solution to these modeling challenges comes from the
insight that complex widgets are typically defined by a
hierarchy of simpler widgets. We introduce hierarchical
models of widget layout, as illustrated with a scrollbar
model in Figure 4e. This extends Prefab’s original notion of
delegating regions to procedural code (e.g., a gradient or a
repeating pattern) by allowing delegation to another model.
Portions of a hierarchy can be re-used in implementing
multiple models. A model can account for portions of the
hierarchy appearing in different arrangements or being
optionally absent. The hierarchy can also be used when
fitting prototypes from examples, with annotations of
simpler components (e.g., the scrollbar thumb) constraining
a search of the overall hierarchy. At runtime, hierarchical
prototypes are identified by locating simpler components
and then testing constraints and regions in the hierarchy.

4a: Prefab’s original methods support a five-part model of sliders.

4b: Scrollbars vary their thumb size, so cannot be modeled with five parts.

4c: This model accounts for the presence of scroll buttons and the

varying size of the scroll thumb, but is too complex for practical use.

4d: Other types of scrollbars arrange buttons differently,

which would require still greater complexity in the above model.

4e: Hierarchical models simplify the implementation,

example-based parameterization, and recognition of complex widgets.

Figure 4: This paper introduces hierarchical models of
widget layout, improving Prefab’s support for complex
widgets defined by hierarchies of simpler components.

Content Regions
Prefab’s pixel-based methods are built on the insight that
the pixels of a widget are procedurally defined. This is
critical to Prefab’s real-time performance, as it allows exact
feature matching as a basis for prototype detection. But
some interface content varies dramatically and cannot
easily be identified through exact matching. For example,
modern toolkits often employ sub-pixel rendering and
anti-aliasing techniques in text rendering. This improves
readability, but also modifies text’s pixel-level appearance
in unpredictable ways. The same characters can be rendered
as many different combinations of pixels. Prefab’s original
methods therefore could not address the recovery of widget
content (e.g., Figure 3’s prototype can identify Microsoft
Windows 7 Steel buttons, but cannot recover their label).

We address this challenge by building upon several insights.
First, toolkits construct interfaces as trees. Second, content
appears at the leaves of a tree (i.e., labels and icons do not
contain other widgets). Every piece of content is therefore
contained within a parent. Third, the parents of these leaf
nodes paint simple backgrounds (often a single color,
sometimes a simple gradient). This is critical to interface
usability, as a person must be able to easily see the content
painted over that background. Instead of directly modeling
unpredictable content, we introduce content regions that
model the much simpler background of a parent and
efficiently identify content using runtime differencing.

Figure 5 illustrates a nine-part model of a border with an
interior content region (i.e., it is identical to the eight-part
model from Figure 3 except for the addition of the interior
content region). The model’s constraints require that the
content region describe every pixel not accounted for by the
corner features or the edge regions. In this case, a prototype
of the Microsoft Windows 7 Steel Button parameterizes the
content region with a single repeating column. At runtime,
content is obtained by differencing the repeating column
against pixels inside the button’s content area. Figure 5
illustrates this differencing with red pixels in an example
button. A character recognition algorithm is then applied to
recover the text “Close”. Because such character

recognition is relatively expensive, it is important to note
that our content region method identifies a small portion of
an interface to which more expensive methods are applied.
Its computation can also be cached, as there is no need to
re-execute an interpretation of identical content pixels.

Parameterizing Content Regions by Example
Recall that Prefab supports the use of examples to create
prototypes. Parts are assigned by a search minimizing the
number of pixels needed to describe those examples in a
manner consistent with the model. Like other regions,
content regions are modeled as procedural methods for
pixel generation (e.g., painting a single color, repeating a
pattern, painting a gradient). Prefab’s original methods
cannot be applied to content regions because each example
contains unpredictable content. A simple part cannot
characterize this content, and so the search fails to fit a
good prototype that generalizes from the example.

We address this problem by defining the cost of a potential
prototype as the sum of two components: model cost and
content cost. As before, the model cost is the number of
pixels used to define the parts of a prototype. The content
cost is the number of pixels in an example that do not match
the prototype specified by a content region. The intuition
behind this approach is that minimizing the sum requires
the search to both describe the background and identify the
foreground. Because we lack a meaningful method for
generating that unpredictable foreground, we pay full cost
for the pixels it occupies. Note that this is a generalization
of Prefab’s original method, as content cost is always zero
in models without content regions.

As an example, Figure 5’s prototype sets the width and
height of each corner feature to three, top and bottom edge
depths to one, and left and right edge depths to two. The
content region is a repeating column of pixels. With these
settings (selected by the branch-and-bound search), the

Figure 5: This prototype for Microsoft Windows 7 Steel
buttons is an example of a nine-part model. Our nine-part
model is identical to the eight-part model in Figure 3
except for the addition of an interior content region. This
prototype’s content region has been parameterized as a
single repeating column. At runtime, content within a
button is obtained by differencing the repeating column
against the pixels inside the button’s content area.

Model Cost = 43 pixels Content Cost = 1132 pixels

Model Cost = 55 pixels Content Cost = 215 pixels

Figure 6: These are both valid nine-part prototypes for a
single example of a Microsoft Windows Vista Steel button.
They incur total costs of 1175 and 270 pixels. Prefab thus
prefers the nine-part prototype shown in Figure 5, which
costs only 246 pixels and is also more general. Note that
Figure 5’s prototype also identifies the correct content.

prototype has a model cost of 57 (9 for each corner, 6 for
the edges, and 15 for the content region). The text results in
a content cost of 189 (the red pixels shown on the right side
of Figure 5), yielding a total cost of 246 pixels.

In contrast, Figure 6 shows two other prototypes the search
might consider for the same example. The first has the same
corners and edges but attempts to fit a single color to the
background of the content region. This improves its model
cost to 43, but the poor match results in a content cost of
1142 and a total cost of 1175 pixels. The second example
has the correct content region with the corner and edge
configuration from Figure 3 (which was fit to an eight-part
model that does not consider content). Specifically, notice
its left and right edges are 1 pixel wide. This results in a
model cost of 55 (9 for each corner, 4 for the edges, and 15
for the content region), but the content cost is increased to
215 by two 13-pixel columns at either end of the content
region. Its total cost is 270 pixels. These and other
prototypes are rejected, with the search ultimately selecting
the configuration from Figure 5 as the best fit.

Note that the content region in Figure 5 has actually
resulted in a better characterization of the prototype’s other
parts. Without a content region, there is no reason for
Prefab to determine that the left and right edges of this
example are two pixels wide (and so it finds the prototype
form Figure 3). The inclusion of a content region has in this
case lead Prefab to produce a prototype that describes
every pixel in the example. Our validating applications
present implications of this more complete interpretation.

Interpreting Content and Hierarchy in an Entire Interface
The intuition behind our methods for individual widgets can
be extended to support pixel-based interpretation of content
and hierarchy in an entire interface. Instead of considering
content only in terms of text within a button, the necessary
insight is that every widget is content relative to its parent.
Our challenge is to recover the content and hierarchy of the
entire interface while retaining Prefab’s performance. We
implement this in four steps, as illustrated in Figure 7.

We first apply Prefab’s library of prototypes to locate
widgets. This uses feature-based detection to identify a set
of widget occurrences. We then organize the detected
occurrences into a tree. The root is the image itself
(typically a top-level window in Prefab’s current input and
output framework). The tree is constructed using constraints
provided by each occurrence’s model. These typically
enforce spatial containment within a content region of the
occurrence. The primary exception is for widgets that float
above an interface (e.g., tooltips, popup menus, drop-down
boxes). Tagging prototypes of these widgets allows our tree
construction algorithm to link them directly to the root.

This organizes occurrences that were detected using our
feature-based methods, but we still need to apply our
differencing method to locate unpredictable content from
content regions. It is important this differencing respect the

existing hierarchy (i.e., nested widgets must consider the
proper background and must not generate spurious content
in areas owned by children). Our current implementation
uses a post-order traversal. We generate a composite
background image when traversing down the tree, then test
and mark pixels when traversing back up the tree. Widgets
only test pixels within their content regions that were not
marked by children. Identified content is interpreted and
added as a child of the widget that detected it.

The resulting tree includes all detected widgets arranged by
their containment. Additional organization can be added by
considering that siblings in this visual tree may suggest an
additional component in a logical tree. For example, several
pieces of text might be grouped together and then related to
an adjacent checkbox. Prior research has developed
methods for semantic grouping of widgets [7]. Given our
focus on pixel-based detection of the visual tree, we
perform logical grouping using a set of heuristics.

VALIDATION THROUGH APPLICATIONS
This paper presents new methods for real-time pixel-based
interpretation of widget content and hierarchy. Because this
is a new capability, there is no reasonable comparison to
other approaches for obtaining the same effect. We instead
validate and provide insight into our work through a set of
demonstrations. We select these with the goal of illustrating
a range of complexity in applying our methods.

All of our applications are implemented in Microsoft’s C#
running on Microsoft Windows 7 and using redirection
provided by Prefab. We use remote desktop software to
demonstrate enhancements running on Mac OS X
interfaces. Prefab thus continues to run on the Microsoft
Windows 7 machine, adding its enhancements based
entirely on the pixels delivered through the remote desktop
connection. We apply enhancements to a variety of
well-known applications to highlight that our methods are
independent of the underlying implementation.

Figure 7: We interpret interface content and hierarchy by
detecting widget occurrences, applying containment to
construct a tree, finding content within widgets, and
logically grouping nodes within the tree.

Stencils-Based Tutorials
Kelleher and Pausch’s Stencils-based tutorials provide help
directly within applications using translucent stencils with
holes to direct a person’s attention to the correct interface
component [16]. Such an enhancement is difficult to
broadly deploy because of the rigidity and fragmentation of
existing applications and toolkits. It is beyond the
capabilities of previous pixel-based systems because
authoring such a tutorial requires support for referencing
specific interface elements. For example, there may be
several buttons of identical appearance within an interface,
but only one of them is the appropriate next action.

Figure 1 and our associated video show our Prefab
implementation of Stencils-based tutorials. The tutorial
instructs a person on how to download résumé design
templates in Microsoft Word 2010. Our video highlights the
real-time responsiveness enabled by our new methods.

Stencils-based tutorials are a straightforward application of
widget hierarchy. Knowledge of the full hierarchy allows us
to reference widgets using simple path descriptors on the
tree. We implemented this demonstration by building
prototypes to identify the majority of widgets in Microsoft
Office 2010. For example, we used nine-part models to
characterize many of the containers and buttons. We also
used one-part models to identify less structured content
(e.g., the icons used to represent different types of
templates). These one-part models are typically easy to
construct (i.e., a model of the background of their parent
makes it trivial to segment the one-part example). We
converted Prefab’s hierarchical interpretations into an XML
format, allowing the use of XPath descriptors to reference
widgets within the hierarchy. Tutorials are thus authored as
a list of XPath descriptors paired with textual instructions
for each step. Additional capabilities could be developed,
and we have not yet explored the best approach to an
authoring tool, but this demonstration highlights our use of
the pixel-based hierarchy to reference specific widgets.

Ephemeral Adaptation
Findlater et al. developed Ephemeral Adaptation, an
adaptive technique that improves performance by reducing
visual search time and maintaining spatial consistency [5].
Ephemeral Adaptation helps draw visual attention to likely
targets in an interface. Specifically, likely targets appear as
normal within an interface, but unlikely targets are initially
missing and then slowly fade in. Despite the promise of this
technique, it has been difficult to evaluate in realistic use or
to widely deploy in everyday software. A pixel-based
implementation is beyond prior systems for two reasons. As
before, it requires the ability to reference specific widgets
(e.g., to monitor how frequently they are clicked in order to
model which are likely targets). In addition, this application
requires the ability to remove unlikely targets from the
interface and then render their gradual onset.

Figure 8 and our associated video show our implementation
of Ephemeral Adaptation using Prefab within a Skype

settings dialog box running in Mac OS X. Upon moving
between tabs, likely targets in each tab are initially visible.
Unlikely targets then fade in over time. This enhancement
uses a nine-part prototype of the tab pane and various
prototypes for each of the interior widgets. We use our
XPath descriptors to tally the frequency of interaction with
each widget and use a simple model of likely targets
(the most commonly-used widgets in each tab).

We render the gradual onset animation using the content
region from the tab’s nine-part model. Specifically, we
render tab background (i.e., the pixel-level appearance of its
content region) as an overlay at the location of each
unlikely widget. We then gradually fade this overlay from
opaque to transparent. This creates the illusion that the
widget is gradually fading into view. Note this technique
requires identifying all of the content throughout the
interface in order to appropriately animate its onset, a
capability not supported by prior pixel-based methods.

Language Translation
In addition to pixel-based identification of interface content,
our methods can help enable real-time interpretation of
interface content. To demonstrate this, we implemented a
pixel-based enhancement that automatically translates the
language of an interface and then presents the translated
content in the same look and feel as the original interface.
Because of the rigidity and fragmentation of current tools,
interfaces usually must be translated by their original
developer (or somebody else with the application source).
Our methods allow anybody to translate an interface and
could thus form a basis for community-driven translation
(similar to advances in social accessibility [28]). To the best
of our knowledge, ours is the first method for real-time
translation of interfaces independent of their underlying
implementations. Although translation is not the same as
complete localization, it is an important step.

Figure 1 and our associated video show our translation
enhancement applied to a Google Chrome Options dialog
running on Microsoft Windows 7. The left image illustrates
a portion of the original dialog in English. The right image
shows that same portion of the dialog with the text
translated into French. Our associated video also includes a
Spanish translation of the same dialog. We implemented

Figure 8: Findlater et al.’s Ephemeral Adaptation
technique uses the gradual onset of unlikely targets to
facilitate easier targetting of likely targets [5]. This image
shows Findlater et al.’s original implementation of a menu
testbed together with our pixel-based implementation
within a Skype dialog running on Mac OS X.

this by interpreting textual content identified by our
methods, translating that text, and then rendering the new
text in the original interface. Our associated video shows
this enhancement running in real-time. This requires
identification and interpretation of content occur quickly
enough to handle the appearance and movement of content
within a scroll pane.

There are several potential approaches to interpreting
screen-rendered text [30]. Our current implementation uses
an ad hoc template matching method, leaving integration of
more advanced methods as an opportunity for future work.
Importantly, our methods separate the identification of text
from interpretation of that text. The interpretation of a
region of pixels can thus be cached to eliminate potentially
expensive re-interpretation of those same pixels (e.g., using
a hash of the pixels). In our video, each piece of text is
interpreted only the first time it appears. We then translate
it using a machine translation service. As the text moves
within the scroll pane, our content detection recovers the
same pixels and retrieves the text from cache.

To maintain the application look and feel, we paint the
translation into the original interface. This is implemented
by using each widget’s content region to render an overlay
masking its content (i.e., its English text). The translated
text is then rendered within the bounds of the original
content region. For example, Figure 9 shows a button
before its translated text is rendered. Because English text is
typically shorter than translated text, we adjust the font size
of the translated text to fit in the available region. Our next
demonstration explores a more sophisticated modification
of the interface to accommodate new content.

Interface Customization
Our pixel-based interpretation of interface hierarchy also
provides a framework for modeling some common forms of
occlusion in interfaces. Occlusion is at the very core of the
desktop metaphor, as it allows interfaces to limit the
complexity of presented interfaces via the illusion that
additional portions of the interface continue to exist even

when they are not visible. For example, tab controls use
occlusion to limit attention to related subsets of complex
interfaces. Existing pixel-based methods are strictly limited
to interpreting visible portions of an interface. The need to
observe an interface is inherent to pixel-based methods, but
we can use our knowledge of interface hierarchy to help
manage common forms of occlusion.

Figure 1 and our associated video present a demonstration
of this in the context of interface customization. Instead of
automatically adapting an interface according to widgets
that are likely to be used, this example allows people to
manually flag widgets as “favorites” for quick access.
Figure 1 shows this applied to the same Skype dialog box
from our Ephemeral Adaptation example. A small star is
added to each widget in the interface. Clicking this star
adds the widget to a “favorites” tab we added to the
interface. Viewing that tab presents all starred widgets and
allows interaction with each of them. As with all of our
demonstrations, this is implemented using pixel-based
interpretation with input and output redirection.

The management of occlusion is inherent to this example.
We enhance the hierarchy to store the most recently
observed version of each tab (using our XPath descriptors
to reference each tab and its contents). We annotate these
nodes in the hierarchy as stale to capture the fact they are
occluded. Figure 10 depicts a simplified snapshot of the
interpreted hierarchy with occluded nodes. If a “favorite”
widget is currently occluded in the source window, it is
painted using its stale version from the hierarchy. When a
person moves to interact with a widget, synthetic input
events are generated to bring that tab of the source window
into view (i.e., to ensure that portion of the hierarchy is
responsive to interaction via standard redirection
mechanisms). Synthetic events could also be generated to
regularly poll stale portions of the hierarchy, but this was
not needed in our demonstration.

This example also demonstrates the use of our pixel-based
methods to add new elements to the interface. Nine-part
models of the window, the tab button container, and the tab
pane are used to create a larger version of the window,

Figure 10: We use our knowledge of hierarchy to manage
widget occlusion in a tab pane. We store the most recently
observed image of each widget, annotating occluded
widgets to indicate those images are currently stale.

Original Widget

Rendered Widget

 Identified Content

“Personal Stuff” Interpreted Content

“Détails personnels” Translated Content

Translated Widget

Figure 9: We use our knowledge of interface content and
hierarchy to implement a translation enhancement that
preserves the look and feel of the original application. A
translated widget is rendered by compositing the
translated text with its prototype’s content region.

insert the new “favorites” tab button, and to render the
blank tab area into which “favorite” widgets are added.
Figure 1 and our associated video show the added tab
button and the extended window. We view this as an initial
peek into opportunities to fundamentally transform the
rigidity and fragmentation of existing interfaces.

DISCUSSION AND LIMITATIONS
This paper advances state-of-the-art pixel-based systems by
presenting the first methods for real-time interpretation of
interface content and hierarchy. We now briefly discuss
some important aspects of our pixel-based interpretation
and identify some opportunities for future work.

For the sake of clarity, this paper presents the simplest
description of our pixel-based methods for interpreting
interface content and hierarchy. A variety of optimizations
could improve performance. For example, the entire
interpretation process can be implemented using
lightweight incremental evaluation to compute exactly the
sub-tree of the hierarchy that could possibly have changed
between successive frames [11]. Many stages in the process
can allow a multi-core approach (e.g., siblings can detect
content simultaneously). Given these and other potential
optimizations, we generally do not expect performance to
be problematic in most applications. Our implementation
currently computes frame differences to efficiently detect
features and uses parallelization when interpreting content.
We currently re-compute the entire hierarchy whenever
Prefab identifies new features. Our associated video shows
multiple demonstrations that interpret content and hierarchy
in real interfaces of existing applications with computations
between frames typically under 100msec. We believe this is
sufficient for the applications we explore.

The preparation of our demonstrations highlighted another
advantage of our approach to interpreting interface content
and hierarchy. If our methods are applied to an interface
that contains widgets that are not already in Prefab’s
prototype library, the parents of those currently unknown
widgets identify their pixels as content. We used this fact to
quickly extract the examples used to create prototypes for
our demonstrations, and we believe it could provide a basis
for an improved prototype authoring tool.

Our translation demonstration currently uses an ad hoc
approach to text interpretation (exact matching against a
library of labeled character snippets). Off-the-shelf OCR
technologies are generally ineffective because of the
extreme low resolution of typical interface text. We
previously noted the availability of recognition methods for
screen-rendered text [30], but these are not optimized for
Prefab’s scenario. A deeper investigation of robust text
interpretation methods is an opportunity for future work.

We have noted the existence of prior work examining
logical grouping of interface elements [7]. It is unclear
whether these methods are compatible with the real-time
requirements of pixel-based interpretation. The tree-based

organization of interfaces and our ability to interpret visual
containment provides an important advantage: we can
likely consider only logical groupings of siblings. Based on
the hierarchies we have encountered in our work, there are
typically a small number of siblings in any given node
(i.e., most interface elements are intentionally designed to
contain a small number of content items). Our current
implementation uses simple heuristics to perform logical
grouping. For example, checkboxes are matched to their
corresponding content using a threshold on the proximity of
the nearest text. Future work can explore more advanced
approaches to creating logical groupings by matching
elements of an interface. Errors in an automated process
could be also corrected by storing annotations that record
the need for a specialized grouping (e.g., using our XPath
descriptors to override the default behavior).

This paper focuses on core methods for interpreting content
and hierarchy together with demonstrations of their value in
example applications. There is a significant opportunity for
future work that more thoroughly characterizes these and
other pixel-based methods. Such work might examine the
variety of widgets encountered in applications in the field,
how well pixel-based methods can characterize those
widgets, how many types of models and parts are
necessary, and which of those models and parts are most
broadly effective. Our pixel-based methods are the first to
rival the accessibility API in terms of completeness, so
comparisons between our methods and the accessibility API
may be appropriate. Such a comparison should preferably
go beyond simple frequency of failure to also probe the
nature of failure (e.g., its impact in applications, the
difficulty of correcting a failure). As in Hurst et al. [15],
there are likely significant opportunities for hybrid
approaches that combine the strengths of the accessibility
API with the strengths of pixel-based methods. The
contributions of this paper are a necessary step toward
future characterizations of pixel-based methods, and our
current validations are appropriate for this ongoing work.

Our interface customization demonstration dynamically
re-renders a dialog box at a different size to create room for
the “favorites” tab. This is possible because the nine-part
prototype that detects the dialog box describes all of the
pixels needed to generate it. To the best of our knowledge,
we are the first to demonstrate pixel-based methods to
create new widgets matching an existing interface. But not
all Prefab prototypes necessarily have this property. The
ability to seamlessly add new widgets to the interfaces of
existing applications would dramatically extend pixel-based
methods, and further examination of pixel-based methods is
an additional opportunity for future work.

Our customization demonstration illustrates one approach
to managing occlusion (using the hierarchy to maintain a
memory of occluded components). Tab controls are perhaps
the simplest case and this method may not immediately
generalize to other forms of occlusion. For example, popup

menus create less predictable occlusions that can span
multiple nodes in a hierarchy (because they float above the
hierarchy). Occlusion within a scrollpane also presents
different challenges. We have shown that interface content
and hierarchy provide a useful framework for reasoning
about occlusion, and future work could examine more
advanced methods building upon these initial insights.

CONCLUSION
This paper advances pixel-based systems by contributing
new methods for hierarchical models of complex widgets,
new methods for real-time interpretation of interface content,
and new methods for real-time interpretation of the content
and hierarchy of an entire interface. We validated our
pixel-based methods in implementations of four applications:
Stencils-based tutorials, Ephemeral Adaptation, interface
translation, and the addition of customization support to an
existing interface. Working only from pixels, we
demonstrated these enhancements in complex existing
applications created in different user interface toolkits
running on different operating systems.

ACKNOWLEDGEMENTS
We thank Dan Grossman, Rick LeFaivre, Scott Saponas, and Dan
Weld for discussions related to this work. This work was
supported in part by a gift from Intel, by the UW CoE Osberg
Fellowship, by the UW CSE Microsoft Endowed Fellowship, and
by a fellowship from the Seattle Chapter of the ARCS Foundation.

REFERENCES
[1] Baudisch, P., Tan, D.S., Collomb, M., Robbins, D.,

Hinckley, K., Agrawala, M., Zhao, S. and Ramos, G.
Phosphor: Explaining Transitions in the User Interface
using Afterglow Effects. UIST 2006. 169-178.

[2] Bolin, M., Webber, M., Rha, P., Wilson, T. and Miller,
R.C. Automation and Customization of Rendered Web
Pages. UIST 2005. 163-172.

[3] Chang, T.-H., Yeh, T. and Miller, R.C. GUI Testing User
Computer Vision. CHI 2010. 1535-1544.

[4] Dixon, M. and Fogarty, J. Prefab: Implementing
Advanced Behaviors Using Pixel-Based Reverse
Engineering of Interface Structure. CHI 2010. 1525-1534.

[5] Findlater, L., Moffatt, K., McGrenere, J. and Dawson, J.
Ephemeral Adaptation: The Use of Gradual Onset to Improve
Menu Selection Performance. CHI 2009. 1655-1664.

[6] Fujima, J., Lunzer, A., Hornbæk, K. and Tanaka, Y.
Clip, Connect, Clone: Combining Applications Elements
to Build Custom Interfaces for Information Access.
UIST 2004. 175-184.

[7] Gaeremynck, Y., Bergman, L.D. and Lau, T.A. MORE
for Less: Model Recovery from Visual Interfaces for
Multi-Device Application Design. IUI 2003. 69-76.

[8] Greenberg, S. and Buxton, B. Usability Evaluation Considered
Harmful (Some of the Time). CHI 2008. 111-120.

[9] Grossman, T. and Balakrishnan, R. The Bubble Cursor:
Enhancing Target Acquisition by Dynamic Resizing of
the Cursor's Activation Area. CHI 2005. 281-290.

[10] Hartmann, B., Wu, L., Collins, K. and Klemmer, S.R.
Programming by a Sample: Rapidly Creating Web
Applications with d.Mix. UIST 2007. 241-250.

[11] Hudson, S.E. Incremental Attribute Evaluation: A Flexible
Algorithm for Lazy Update. TOPLAS, 13(3). 315-341.

[12] Hudson, S.E., Mankoff, J. and Smith, I. Extensible Input
Handling in the subArctic Toolkit. CHI 2005. 381-390.

[13] Hudson, S.E. and Smith, I. Supporting Dynamic
Downloadable Appearances in an Extensible User
Interface Toolkit. UIST 1997. 159-168.

[14] Hudson, S.E. and Tanaka, K. Providing Visually Rich
Resizable Images for User Interface Components.
UIST 2000. 227-235.

[15] Hurst, A., Hudson, S.E. and Mankoff, J. Automatically
Identifying Targets Users Interact with During Real
World Tasks. IUI 2010. 11-20.

[16] Kelleher, C. and Pausch, R. Stencils-Based Tutorials:
Design and Evaluation. CHI 2005. 541-550.

[17] Lin, J., Wong, J., Nichols, J., Cypher, A. and Lau, T.A.
End-User Programming of Mashups with Vegemite.
IUI 2009. 97-106.

[18] Little, G., Lau, T.A., Cypher, A., Lin, J., Haber, E.M. and
Kandogan, E. Koala: Capture, Share, Automate, Personalize
Business Processes on the Web. CHI 2007. 943-946.

[19] Myers, B.A., Hudson, S.E. and Pausch, R. Past, Present, and
Future of User Interface Software Tools. TOCHI, 7(1). 3-28.

[20] Nichols, J. and Lau, T.A. Mobilizing by Demonstration:
Using Traces to Re-Author Existing Web Sites. IUI 2008.
149-158.

[21] Olsen, D.R. Evaluating User Interface Systems Research.
UIST 2007. 251-258.

[22] Olsen, D.R., Taufer, T. and Fails, J.A. ScreenCrayons:
Annotating Anything. UIST 2004. 165-174.

[23] Potter, R. (1993). Triggers: Guiding Automaton with Pixel
to Achieve Data Access. A. Cypher, eds. MIT Press.

[24] Rissanen, J. Modeling by Shortest Data Description.
Automatica, 14(5). 465-471.

[25] St. Amant, R., Lieberman, H., Potter, R. and
Zettlemoyer, L.S. Visual Generalization in Programming
by Example. 43(3). 107-114.

[26] St. Amant, R., Riedl, M.O., Ritter, F.E. and Reifers, A.
Image Processing in Cognitive Models with SegMan.
HCII 2005.

[27] Stuerzlinger, W., Chapuis, O., Phillips, D. and Roussel,
N. User Interface Façades: Towards Fully Adaptable
User Interfaces. UIST 2006. 309-318.

[28] Takagi, H., Kawanaka, S., Kobayashi, M., Itoh, T. and
Asakawa, C. Social Accessibility: Achieving
Accessibility through Collaborative Metadata Authoring.
ASSETS 2008. 193-200.

[29] Tan, D.S., Meyers, B.R. and Czerwinski, M. WinCuts:
Manipulating Arbitrary Window Regions for More
Effective Use of Screen Space. CHI 2004. 1525-1528.

[30] Wachenfeld, S., Klein, H.-U. and Jiang, X. Recognition
of Screen-Rendered Text. ICPR 2006. 1086-1089.

[31] Yeh, T., Chang, T.-H. and Miller, R.C. Sikuli: Using GUI
Screenshots for Search and Automation. UIST 2009. 183-192.

[32] Zettlemoyer, L.S. and St. Amant, R. A Visual Medium
for Programmatic Control of Interactive Applications.
CHI 1999. 199-206.

[33] Zettlemoyer, L.S., St. Amant, R. and Dulberg, M.S. IBOTS:
Agent Control Through the User Interface. IUI 1998. 31-37.

