

A General-Purpose Target-Aware Pointing Enhancement
Using Pixel-Level Analysis of Graphical Interfaces

Morgan Dixon,
1
 James Fogarty,

1
 Jacob O. Wobbrock

2

1
Computer Science & Engineering,

2
The Information School

DUB Group, University of Washington

mdixon@cs.washington.edu, jfogarty@cs.washington.edu, wobbrock@uw.edu

ABSTRACT

We present a general-purpose implementation of a

target-aware pointing technique, functional across an entire

desktop and independent of application implementations.

Specifically, we implement Grossman and Balakrishnan’s

Bubble Cursor, the fastest general pointing facilitation

technique in the literature. Our implementation obtains the

necessary knowledge of interface targets using a combination

of pixel-level analysis and social annotation. We discuss

the most novel aspects of our implementation, including

methods for interactive creation and correction of pixel-

level prototypes of interface elements and methods for

interactive annotation of how the cursor should select

identified elements. We also report on limitations of the

Bubble Cursor unearthed by examining our implementation

in the complexity of real-world interfaces. We therefore

contribute important progress toward real-world deployment

of an important family of techniques and shed light on the

gap between understanding techniques in controlled settings

versus behavior with real-world interfaces.

Author Keywords

Target-aware pointing; pixel-based reverse engineering; Bubble

Cursor; Prefab; social annotation; real-world interfaces.

ACM Classification Keywords

H.5.2. [Information interfaces and presentation]: User Interfaces;

INTRODUCTION

The human-computer interaction literature includes many

promising techniques for target-aware pointing, including

deep studies of specific characteristics of those techniques

in controlled laboratory settings. This important family of

techniques can improve pointing for a variety of people on

a range of devices in many applications. Target-aware

techniques can significantly outperform other pointing

facilitation techniques, and they ultimately have great

potential to improve the efficiency of interaction.

Despite the promise of these techniques, few have been

deployed or evaluated in real-world interfaces. The impact

of target-aware pointing, and our understanding of its

effectiveness, is currently limited by two challenges to

implementing target-aware pointing in real-world interfaces.

First, external pointing enhancements often cannot obtain

reliable information about the size and location of interface

elements [9,22]. Accessibility APIs attempt to provide

some of the necessary information, but are inevitably

incomplete due to developer failures to implement the API.

For example, Hurst et al. found 25% of widgets are

completely missing from the accessibility API [22]. The

API also exposes widget models, not necessarily their

on-screen view (e.g., the pixel coordinates of a slider's

thumb are intentionally encapsulated). Techniques for

dynamic code modification can also often be made to work

in a single application or toolkit [13,14,32], but are

generally too brittle for enhancement of the full desktop.

Code injection techniques also sometimes fail (e.g., when a

skinnable application uses pre-rendered images of widgets

instead of meaningful graphics operations). Failures at these

levels of applications can only be corrected by their

developers, so many interface elements remain opaque.

Second, even a complete enumeration of interface elements

is insufficient for determining how a targeting enhancement

should behave. Studies of pointing facilitation techniques

generally treat an interface as a field of abstract targets

(e.g., gray circles), but the notion of a “target” is often not

well defined in real-world interfaces. Targeting ambiguities

are presented by calendars, paint canvases, text fields, and

many other standard and custom widgets [41]. It is difficult

or impossible for the developer of a general-purpose

enhancement to foresee and address all such ambiguities.

We address these challenges in a general-purpose

implementation of Grossman and Balakrishnan’s Bubble

Cursor [18], an area cursor that dynamically expands to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI’12, May 5–10, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 1: We present a practical implementation of a

general-purpose target-aware pointing enhancement.

Specifically we implement Grossman and Balakrishnan’s

Bubble Cursor across the Windows 7 desktop.

mailto:%7d@cs.uw.edu

always capture the nearest target. Our implementation

functions across the Windows 7 desktop, as illustrated in

Figure 1. The methods we develop can be applied to any

modern desktop, and they can be extended to support other

target-aware techniques. Specifically, we architect our

enhancement to separate identification of interface elements

from interpretation of how to target those elements. We

then implement identification using Prefab’s pixel-based

methods for reverse engineering interface structure [11,12].

We implement interpretation by annotating interfaces with

desired targeting behavior. We also develop interfaces for

correcting errors in both levels, and we argue that social

mechanisms for identification and interpretation are

essential to any broad target-aware deployment.

Figure 2 offers an overview of our system. We first query

the window manager for images of targeted windows. We

then identify elements using Prefab’s pixel-based methods.

This requires a library of Prefab prototypes, each created

from one or more example images. Prefab creates a tree

containing a node for each interface element (e.g., a leaf for

a text label, a leaf for a slider thumb, or an inner node with

children for a button and any interior icon or text). We then

interpret the interface to determine potential targets, using

annotations inferred from the interface structure and content

together with annotations from prior interactive target

correction. Finally, we walk the tree to determine what the

Bubble Cursor should target and then overlay a translucent

highlight over that target. Executing this process many

times per second yields our general-purpose Bubble Cursor.

The specific contributions of our work include:

 An implementation of a general-purpose target-aware

pointing enhancement. Specifically, we scale Prefab’s

[11] implementation of the Bubble Cursor using

pixel-level analysis to target interface elements

throughout Microsoft Windows 7.

 A novel architecture for general-purpose target-aware

pointing enhancements. Informed by the insight that

knowledge of interface element locations and

dimensions is insufficient for a general-purpose

target-aware pointing enhancement, we separate pixel-

level identification of interface elements from higher-

level interpretation of how to target those elements.

Prior work has assumed identifying all elements is

sufficient. We are the first to develop such a layering of

semantics upon pixel-based methods.

 Two interfaces for users to correct the behavior of a

general-purpose target-aware pointing enhancement.

We examine the requirements and design space for

such interfaces and develop two concrete designs that

explore complementary approaches.

 A discussion of implications for the design and

evaluation of target-aware pointing techniques in the

complexity of real-world interfaces. Examining our

implementation with real-world interfaces reveals both

unexpected targeting behaviors not addressed in prior

literature and new potential approaches to overcoming

the limitations of current target-aware techniques.

RELATED WORK

We focus on Grossman and Balakrishnan’s Bubble Cursor

[18], but the Bubble Cursor is emblematic of a much larger

body of target-aware techniques. This includes gravity

wells [24], force fields [1], sticky icons [42], semantic

pointing [5], area cursors [26], enhanced area cursors [15],

bubble targets [10], object pointing [19], and drag-and-pop

or drag-and-pick [3]. Such techniques offer great potential,

but remain difficult to deploy in practice. The pixel-level

analysis and social annotation methods we develop can help

enable the broad deployment of these and future techniques.

The difficulty of deploying target-aware techniques motivates

target-agnostic techniques, which aim to improve pointing

without knowledge of targets. We are aware of only four

such techniques: conventional pointer acceleration (cf., [6]),

PointAssist [21], the Angle Mouse [41], and the Pointing

Magnifier [25]. In addition, Hurst et al.’s [23] use of click

history to approximate gravity wells can be considered a

Figure 2: We implement a general-purpose Bubble Cursor in

a novel architecture that combines pixel-based identification

of interface elements with interpretation of their targeting.

We emphasize a human-driven approach with interactive

extension and correction of both implementation layers.

target-agnostic technique [23]. Despite the ingenuity of

these techniques, they are inherently limited by their ability

to consider only mouse kinematics and clicks. Our current

work provides a foundation for the future deployment of

target-aware techniques. This is especially promising

because no target-agnostic technique has demonstrated

performance superior to the best target-aware techniques.

Edwards et al. [13] and Olsen et al. [32] implement runtime

modification of existing interfaces by replacing the toolkit

drawing object and intercepting commands (e.g., draw_line,

draw_string). Stuerzlinger et al. [37] present advanced

customizations in their User Interface Facades, many based

on interface introspection using the accessibility API.

Eagan et al. [14] dynamically load code into program space

with Scotty, developing runtime modifications based on

greater access to the underlying interface model. Toolkit

introspection and injection techniques can indeed enable

runtime modifications that would otherwise be difficult or

impossible, but with the consequence that enhancements are

limited to interfaces that provide the required support.

Because all graphical interfaces ultimately consist of pixels,

pixel-based methods are motivated by their independence

from underlying application or toolkit requirements. Classic

work by Zettlemoyer et al. [45,46] examined widget

identification in IBOTS and VisMap for interface agents

and programming by example [34,35]. St. Amant et al. [36]

developed Segman for cognitive modeling applications. In

an interactive context, Olsen et al.’s [33] ScreenCrayons

links ink annotations to arbitrary screen elements. Tan

et al.’s [39] WinCuts interactively subdivides windows via

a copy-paste metaphor. Yeh et al.’s Sikuli [40] uses

template matching and voting based on invariant local

features to identify targets in interface scripting and testing

applications. Dixon et al.’s [11,12] Prefab demonstrates

real-time modification using input and output redirection

together with pixel-based reverse engineering of interface

content and structure. Our current work is informed and

inspired by this prior research, contributing to pixel-based

methods through deep implementation of our Bubble Cursor.

The strengths and limitations of application introspection

versus pixel-based methods motivates synergies between

the two approaches. Hurst et al. [22] studied and addressed

the coverage of accessibility APIs, finding approximately

25% of widgets are completely missing from the API’s

view of many common interfaces. They developed a hybrid

technique that improves target boundary detection using

pixel-based methods together with interaction traces. Chang

et al. [7] explored several synergies in PAX, including use

of Sikuli to obtain paths to elements in the accessibility

API, pixel-level analyses to locate screen text, and the use

of Sikuli to find elements in portions of the screen where

the accessibility API’s representation is incomplete. Neither

system developed methods capable of supporting the

real-time demands of an interactive Bubble Cursor. More

importantly, the current paper highlights that even complete

identification of interface elements does not provide the

interpretation required to enable target-aware pointing.

Dixon and Fogarty [11] present a rudimentary

demonstration of target-aware pointing in their original

Prefab research. Although they use pixel-based

identification to target a handful of elements, they never

examine the challenges of applying these techniques

beyond the scope of simple, isolated interfaces. For

example, they assume all necessary examples of interface

elements have already been provided to Prefab, and they do

not discuss the ambiguities of targeting in real-world

interfaces. The current work is unique in its deep

application of Prefab to a general-purpose Bubble Cursor.

In addition to our direct contributions to this first deep

implementation of general-purpose target-aware pointing, we

also present the first tools for interactive correction and

extension of Prefab’s identification of interface elements.

Our methods for interpretation of identified elements are

also a clear advance over earlier Prefab research.

We draw inspiration from extensive interface customization

research, including integration of sharing and other social

mechanisms. Most of this research is limited to the web,

where the DOM provides a model of interface elements.

Classic examples are ChickenFoot [2] and CoScripter [29],

and systems like Highlight [31] extend these ideas to

task-centric re-authoring for mobile devices. Clip, Connect,

Clone [17], d.mix [20], and Vegemite [28] demonstrate

end-user mash-up methods. In the desktop context, Chapuis

and Roussel’s [9] UIMarks allow creation of macros

invoked by targeting special marks within an interface.

Tagaki et al. [38] develop social annotation methods for

improving web content accessibility. Hurst et al.’s [23] use

of click history also suggests a role for sharing that history.

A REAL-WORLD BUBBLE CURSOR

Among the variety of target-aware pointing techniques, we

implement the Bubble Cursor for several reasons: (1) we

believe it is the fastest general technique in the literature,

(2) it can be implemented as an overlay, without modifying

targeted elements, and (3) it is exemplary of the family of

target-aware techniques, so the methods we develop should

have broader relevance. Our discussion revisits this,

emphasizing our work as a starting point for the real-world

design and deployment of target-aware techniques.

Our methods are inherently human-driven, in that we focus

on allowing people to improve targeting by interactively

correcting erroneous behavior. We also expect any broad

deployment will be social, with people sharing interactive

corrections and receiving updates based on the corrections

of others. Interfaces are procedurally generated, so their

pixel-level appearance rarely changes. Familiar interfaces

will therefore be thoroughly annotated and appear to

“just work”. But interactive correction will remain

important, both to ensure individuals can correct private,

niche, or unpopular interfaces and to allow communities to

quickly annotate newly-released interfaces.

This section presents the primary technical components of

our system: (1) identification of elements using Prefab’s

pixel-based methods, (2) interpretation of those elements

via interactive and automatic annotation, and (3) targeting

according to those annotations. We then briefly comment

on details of our current Windows 7 implementation. This

section focuses on responsibilities of each component and

how they combine to enable a deployable Bubble Cursor.

The next section then considers inevitable errors in such a

system and introduces interfaces for interactively correcting

those errors in terms of these underlying components.

Identifying Interface Elements

We identify interface elements using Prefab’s pixel-based

methods for reverse engineering interface structure [11,12].

Prefab’s methods are a strong fit for several reasons, but the

most important is they can be corrected and extended by

providing additional examples of interface elements. This

sharply contrasts accessibility APIs, where there is generally

no recourse if an element is not correctly exposed. To enable

our human-driven approach, we develop the first interactive

tools for providing Prefab with examples at runtime.

More specifically, Prefab identifies interface elements via a

library of prototypes. A prototype describes an arrangement

of pixels, and each is learned from example images. Prefab

uses two high-level strategies to identify interface elements:

(1) exactly matching prototype pixels against an image, or

(2) modeling prototype background and differencing pixels

in an image to identify foreground interface elements.

Prefab realizes these high-level strategies by varying how it

generalizes from example images according to models of

the parts of interface elements. Parts can be features (exact

patches of pixels) or regions (methods for painting areas of

variable size, such as gradients or repeating patterns).

Figure 3 illustrates three prototypes selected to show a

range of complexity in their underlying models.

The simplest are exact-match prototypes, which consist of a

single feature exactly matching the pixels of an example.

These do not generalize, but many interface elements also

do not vary in appearance (e.g., checkboxes, icons, radio

buttons). For example, the left prototype in Figure 3

identifies all unchecked Windows 7 Steel checkboxes.

A more complex slider prototype uses multiple parts to

account for the variable length of the slider trough and the

variable position of the thumb. Five parts characterize the

appearance of the slider’s thumb, the left and right ends of

the trough, and a repeating trough pattern on either side of

the thumb. The middle prototype in Figure 3 was

generalized from the single illustrated example and

identifies all occurrences of the standard Mac OS X slider.

Prefab performs this generalization by searching for an

assignment of pixels from the example to parts in the model

minimizing the number of pixels in the resulting prototype.

If multiple examples are provided, Prefab searches for the

minimal prototype consistent with all examples. Additional

discussion of this search is available elsewhere [11,12].

A nine-part prototype adds the ability to model background

and use runtime pixel differencing to identify unpredictable

foreground elements. For example, the prototype at the

right of Figure 3 identifies all Windows 7 steel buttons and

any text or icons painted over their gradient background. It

was generalized from the single illustrated example button.

Nine-part prototypes are first identified by matching their

four corners and four edges, similar to matching the five

parts of a slider. Prefab then uses the interior content region

to identify elements painted over the interior background.

Additional discussion of content regions, including how

Prefab generalizes a background from example images that

include foreground elements, is available elsewhere [12].

Differencing the pixels between content regions and their

backgrounds allows Prefab to identify elements that are not

in its prototype library. For example, a nine-part prototype

of a tab pane can allow identification of all elements within

that pane (e.g., buttons, icons, text). If Prefab lacks

prototypes for these elements, it can still identify them as

connected sets of foreground pixels, represent them as

children of the tab pane, and thus make them available for

interpretation as potential targets.

Prefab generalizes the idea of containment within a content

region by organizing the entire interface into a hierarchy.

The root corresponds to the processed image, and identified

elements are added as children to any element in which they

are spatially contained. This spatial hierarchy is not strictly

the same as an interface’s logical hierarchy, but represents

visible containment (e.g., buttons, group boxes, tab panes).

The next subsection uses the hierarchy to robustly annotate

identified interface elements with targeting information.

Interpreting Interface Elements

The above subsection described how Prefab identifies a

hierarchy of elements, but any hierarchy is by itself

insufficient for targeting. Even complete compliance with a

typical accessibility API does not enable an effective

Bubble Cursor. This is ultimately due to mismatches

between available metadata and the needs of an external

enhancement. Framework and application developers

cannot foresee all potential external enhancements, so they

cannot provide all relevant metadata. For example, current

accessibility APIs are designed to provide access to the

underlying data in each widget (i.e., the widget model).

They therefore expose the value to which a slider is set, but

not the screen location of the thumb (precluding targeting

of that thumb). General targeting behavior is undefined for

other elements (e.g., calendars, paint canvases, text fields),

Exact-Match Prototype

Windows 7 Checkbox
Five-Part Prototype

Mac OS X Slider
Nine-Part Prototype

Windows 7 Steel Button

Figure 3: Prefab uses examples of interface elements to

generalize prototypes of the appearance of families of widgets.

and will vary among techniques. We believe this mismatch

between available metadata and the needs of enhancements

is inherent, requiring a human-driven approach.

We therefore interactively annotate which elements of an

interface hierarchy should be targeted by a Bubble Cursor.

Any node can be marked as a target, can implicitly not be

targeted due to other targets in the hierarchy, or can be

explicitly marked not a target. We store annotations using

an XPath-like path descriptor based on properties of an

element, its location in the hierarchy, and properties of its

ancestors. A library of annotations therefore consists of

path descriptors with associated metadata. Annotations can

be quickly retrieved for an element, and entire libraries can

be stored, combined, and shared to enable social annotation.

A path descriptor needs to identify a specific element in a

specific interface while being robust to changes in element

size or position. The root of a hierarchy corresponds to the

entire image processed by Prefab, so the root needs to

include how an image was captured. We currently set root

attributes for the application executable name and top-level

window class. If this became insufficient, additional root

attributes could be added for problematic applications (e.g.,

including the URL for images captured within web

browsers). The remainder of the descriptor is based upon

the unique identifier for each prototype along the path from

the root to the annotated element. Elements identified via

background differencing do not have a prototype, so we use

a content attribute based on a hash of their pixels (which

allows differentiation among sibling content elements).

Finally, we use an index for otherwise identical descriptors.

Direct manual annotation likely can be sufficient in a broad

deployment leveraging social mechanisms, but also can be

expedited by even minimal inference. We currently employ

two simple mechanisms. The first assumes every leaf is a

target. This heuristic yields good behavior for many widgets

(e.g., checkboxes, radio buttons). The second generalizes

annotations of inner nodes to other nodes with identical

subtrees. Scrollbars provide one example of this, as their

thumbs vary in size and usually contain a knurling graphic.

A nine-part model represents the thumb as a node with a

single child (i.e., the knurling). Preferred behavior is to

target the entire thumb, and annotation of one scrollbar can

then generalize over other occurrences of that scrollbar.

Arbitrarily sophisticated inference could identify likely

targets, and our XPath-like descriptors suggest relevance of

the deep literature on wrapper induction [27]. But any

inference mechanism will sometimes fail, so we see these

techniques as a powerful complement to human annotation.

Choosing a Target

We choose a target for the Bubble Cursor in a pre-order

traversal of the hierarchy of the window nearest the pointer.

We consider each target node to determine which is closest

to the pointer, defining distance to be zero if the pointer is

within a target. Recursion ends at target nodes, because the

spatial containment represented by the hierarchy means any

children will be further from the pointer. Recursion can

therefore also end at non-target nodes that are further than

the current best. Some arrangements require considering the

possibility the nearest target is not in the nearest window,

but other windows are typically ignored because their root

is further from the pointer than the current best target.

Our design for real-world interfaces also

required subtle refinement of the Bubble

Cursor. One important refinement is our

degradation into the standard point cursor

whenever within a target (illustrated here with a storyboard

of the cursor approaching a textbox). On one hand, this is

aesthetically simpler than crosshairs used to illustrate the

center of the original Bubble Cursor with abstract targets

[18]. But it is also important because it creates a graceful

degradation in the face of unknown interface elements or

ambiguous targets. If Prefab fails to interpret the pixels in a

portion of an interface, or if the appropriate targeting

behavior is genuinely ambiguous (e.g., as with a text field),

then normal point cursor behavior is automatically restored

in that region without requiring a hotkey or other modifier.

Pointing can therefore be improved in many interactions

without necessarily being penalized in others. We believe

such conservative strategies are promising for the design of

deployable external interface enhancements.

The cursor must also be capable of dragging targets while

moving or sizing elements (e.g., scrollbars, sliders, windows).

Dragging is implicitly supported by our conservative

strategy, as moving into a target allows use of the point

cursor to drag the target. We also enable dragging from

outside a target. When the drag is initiated, the Bubble

Cursor latches onto the target. Subsequent movement drags

the target, and mouse release resumes standard targeting

behavior. We currently do not use knowledge of potential

drop targets during the drag, but could imagine strategies

for target-aware drops.

Implementation Details

This section has focused on novel methods and strategies in

our system, as these can be applied and extended in future

research on target-aware pointing or external enhancement

of existing interfaces. For completeness, we briefly discuss

relevant details of our current Windows 7 implementation.

At the start of each cycle, we query the Windows 7 Desktop

Window Manager for the bounding box, application

executable path, class name, and z-order for each visible

top-level window. We construct a hierarchy with the

desktop at the root and top-level windows as children, and

we then capture pixels for the window closest to the

pointer. If two windows are at the same distance (typically

due to overlap), we choose the front. As a performance

optimization, we ignore entire windows that are marked as

non-targetable (e.g., visible but non-interactive windows).

We also infer target annotations during traversal, and only

when there is no existing human annotation (i.e., our

inferred annotations are lazily evaluated).

We render our Bubble Cursor as a translucent window, and

update its z-order to render above the targeted window. We

redirect input using a low-level hook to intercept mouse

events and update the center of our Bubble Cursor instead

of the system pointer. We use each mouse event to move

the center of our Bubble Cursor, and we clip the system

cursor to the center of our targeted element. If the target is

partially occluded by another window, we clip to the center

of a visible region (and adjust the size of our overlay).

Our associated video was captured on a typical laptop.

Prefab is mostly single-threaded and unoptimized, but still

processes an interface every 100 msec. Many optimizations

described in [11,12] could improve performance, however

our video shows the cursor is responsive and we have not

found performance to be a concern.

INTERACTIVE TARGETING CORRECTION

We previously noted that many familiar interfaces will

seem to “just work”, but that interactive correction remains

important to our approach. We identified six requirements

for correcting target identification and interpretation:

 Invoking Correction: A person must be able to access

an interface to correct erroneous targeting behavior.

 Capturing an Interface: Errors are caused by incorrect

identification or interpretation of elements in images of

an interface, so a person must be able to capture images

that illustrate the failure condition.

 Visualizing Identification and Interpretation: A person

must be able to understand what error occurred so that

they can determine how it should be corrected.

 Extracting Examples: A person must be able to extract

examples of the elements of an interface that should be

identified by our pixel-based methods.

 Creating Prototypes: A person must be able to use

extracted examples to create appropriate prototypes

that can then be identified at runtime.

 Authoring Annotations: A person must be able to

annotate desired targeting of an interface hierarchy.

These requirements imply a large design space. Because we

focus on the first deep implementation of a general-purpose

target-aware technique, we explore two initial points in the

design space. The first is a full-featured design, called the

Target Editor. The second is a lightweight interface for

in-context annotation, called the Annotation Menu.

Correcting Behavior with the Target Editor

Figure 4 presents screenshots of the Target Editor. Its major

components include the window image, colored highlights

of identified elements, and the command toolbar.

Invoking Correction. The editor is always accessible via a

system tray icon and a keyboard shortcut. When a person

encounters erroneous targeting, they invoke the editor and

then click a window on the desktop to “edit” that window.

Capturing an Interface. Selecting a window as part of

invoking the editor triggers capture of an image of that

window. The image is processed to identify and interpret

interface elements, then displayed in the editor.

Some errors only occur during interaction with a dynamic

interface, so a captured static image may be insufficient.

For example, the blinking text cursor in a textbox can lead

to erroneous targeting. When present, it is identified as a

leaf and targeted. When absent, the textbox itself becomes a

leaf and is targeted. The result is a Bubble Cursor that

jumps between the blinking caret and the larger textbox. To

determine why this occurs, a person may need to inspect

multiple images captured at different times.

The editor addresses this need with a “Record Interactions”

 tool to capture videos of interaction. A record button

starts and stops recording, a slider supports skimming

captured video, and buttons advance individual frames. The

blinking text cursor behavior is fixed by annotating the

textbox as a target, thereby overriding the inferred targeting

of the text cursor leaf.

Visualizing Identification and Interpretation. Translucent

highlights visualize system identification and interpretation

of interface elements. Green highlights are placed over

elements that will be targeted (i.e., the first target node

encountered on every path from the root, whether inferred

or annotated). Red highlights are placed over elements

explicitly annotated as not a target. Identification is thus

encoded via the presence of a highlight, while interpretation

is illustrated via color. Interactive selection is illustrated via

Figure 4: The Target Editor interface is used to extract examples, create and update prototypes, and manipulate annotations.

The Command

Toolbar enables

users to

interactively

correct the

system with

examples and

annotations.

The Record

Interactions

Window can be

used to capture

multiple frames

of an interface.

The Zoom Window provides an

enlarged view for pixel-level

manipulations and inspections.

The Prototype Browser is

used to update existing

prototypes by adding or

removing examples.

Our Target Editor’s visualization of identified elements within Adobe Reader.

Targets are highlighted in green, false positives in red, and extracted examples in yellow.

Figure 5: A storyboard of the Annotation Menu. It appears

when the center of the Bubble Cursor dwells on a target.

a border, and elements can be manipulated individually or

in batch using multiple selections with the toolbar.

Extracting Examples. Prefab often builds a good prototype

from just a single example of an interface element. But it

can also under-generalize, requiring additional positive

examples to broaden its concept, or over-generalize,

requiring negative examples to narrow its concept.

For example, this YouTube

movie control causes Prefab

to overgeneralize because its widgets are painted to share

vertical edges. A single example creates a prototype that

over-generalizes by identifying every group of k adjacent

widgets (creating duplicate leaves and inner nodes that do

not describe any true element). Providing any of these false

detections as a negative example will correct the prototype,

resulting in a prototype that detects the combination of the

single-pixel edge and the adjacent interior pixel.

Examples can be specified by rubber-banding a yellow

highlight. Each highlight can be moved, resized, or deleted.

Because pixel-level selection can be tedious and error-prone,

the editor provides “Zoom” and “Snap” tools.

“Zoom” opens an enlarged view of the image and highlights.

The enlarged view receives input, so it supports pixel-level

adjustment of highlights. As a shortcut, double-clicking in

the image or on any highlight also opens the “Zoom” tool

with its view centered at the double-click point.

“Snap” resizes highlights to tightly fit interface elements.

Informed by a heuristic from the original Prefab work [11],

it starts from the center of a highlight and uses gradient

thresholds to search for possible bounding rectangles.

Among the heuristically-identified rectangles, it chooses the

one closest in size to the drawn highlight. This does not

always snap exactly to interface elements, but is helpful for

expediting extraction. When it fails, it usually snaps close

to the desired size and can then be adjusted using “Zoom”.

Two categories of examples can be automatically extracted:

(1) positive examples of elements already identified by

background differencing within a parent’s content region,

and (2) any negative examples. In both cases, Prefab has

already identified the bounds of the element. There is no

need to manipulate the highlight, so a person instead just

adds the extracted element to a new or existing prototype.

Creating Prototypes. A new prototype is created using the

“Add” tool. A dropdown menu allows model selection

(e.g., the exact-match, five-part, and nine-part models

discussed previously). For each selected highlight, the

editor creates a new prototype from the highlighted positive

example. Automated creation of the prototype from the

example takes a few seconds, after which the user can

immediately see the impact of the new prototype on

identification and interpretation within the interface.

Existing prototypes are updated with additional negative

examples using the “Mark Incorrect” tool. Note that the

editor already knows which prototype should be updated:

the prototype that falsely identified the example.

Updating existing prototypes with additional positive

examples requires the selection of the prototype to receive

the new example. The “Prototype Browser” visualizes the

prototypes in the current library, together with the positive

and negative example images used to create each prototype.

A person selects an existing prototype, then uses “Add” to

provide it with additional examples.

Bad examples or entire prototypes can be deleted via the

“Prototype Browser”. Bad prototypes can also be deleted

directly in the editor by selecting a highlight and clicking

the “Remove” tool. This removes the prototype that

identified the highlight, and it is helpful for quickly deleting

prototypes accidentally created from bad examples.

Authoring Annotations. Three tools are used together for

annotation of the desired interpretation of targets.

The “Look Bigger” tool annotates the parent

of a selected element as a target. The Bubble

Cursor then targets that parent, thus no longer

targeting the element. For example, this can be used to

target a button instead of its text, a canvas instead of its

content, or an entire window instead of any interior icons.

The tool does not modify any annotations of the selected

element or its children. Such annotations have no effect, as

our Bubble Cursor targets downward from the root.

Leaving them intact allows “undo” via “Look Smaller”.

The “Look Smaller” tool annotates a selected

element as not a target, which will cause the

Bubble Cursor to consider its descendants as

possible targets. Because we heuristically infer leaf

elements to be targets, this is typically used to undo the

“Look Bigger” tool. But it can also correct inferred

targeting of inner elements and would likely see more use

together with more extensive inference of targets.

The “Not a Target” tool annotates a selected

element and all descendants as not a target.

This is used to ignore an entire subtree of

non-targetable elements, such as labels or

disabled buttons.

Lightweight Targeting with the Annotation Menu

The Annotation Menu examines a design that is less

capable than the Target Editor, but can also be used without

leaving the context of an interaction. Figure 5 storyboards

the menu, which is embedded in the Bubble Cursor and

invoked after a dwell of the pointer within a target.

Interface capture and visualization are implicit, as the

Bubble Cursor itself conveys the current identification and

interpretation. Editing is limited to authoring annotations

using the same “Look Bigger,” “Look Smaller,” and

“Not a Target” functionality from the editor. Each tool

makes its edits to the annotations, closes the menu, and

updates the Bubble Cursor to target the new nearest target.

The menu also provides a “Confirm” tool. When clicked,

it applies a confirmed annotation to the selected interface

element. The Annotation Menu then does not invoke itself

upon dwell over confirmed elements.

Discussion of Interface Design

Figure 6 recaps our two designs in the context of our six

requirements. They take different approaches to correction,

but both are helpful and suggest additional possibilities. For

example, we use simple visualizations of the identification

and interpretation of elements, but other tree visualizations

could be considered. Our confirmed annotation was

developed for the Annotation Menu, but it would be a

sensible addition to the Target Editor. Rapid batch

confirmation of targeting would then prevent the

Annotation Menu from appearing in interfaces that are

already known to be correct. Greater collection of explicit

confirmations would also provide additional data for use in

training learning systems to automatically infer targets.

Our requirements and designs also suggest opportunities for

fundamentally different approaches. Image capture might

be automated through passive observation of interface use

(e.g., as in Hurst et al.’s prior work [22]), with an interface

invoked later to review targeting corrections inferred from

the observed usage. Instead of focusing on the current

interface, a design might focus on creating prototypes. Such

a design could be organized around review, creation, and

modification of prototypes and could retrieve images of

specific interfaces from a large usage history to illustrate

the targeting that results from the current prototype library.

A crowdsourcing interface might focus on local invocation

and capture, with other requirements addressed by remote

workers. Because our designs require an understanding of

pixel-based methods, other designs might explore a range

of required expertise. Our initial focus has demonstrated

effective interfaces, but a variety of additional approaches

can be developed upon our underlying technology.

EXAMINING BEHAVIOR IN REAL-WORLD INTERFACES

The Bubble Cursor and other target-aware techniques are

often designed, discussed, and evaluated using fields of

abstract targets and distractors. Because our implementation

provides a unique ability to deploy such techniques, we

sought to examine what new insights we could gain from

examining the Bubble Cursor in real-world interfaces. We

identified and annotated elements in a variety of interfaces,

including Microsoft Office applications, Mozilla Firefox,

Adobe Reader, instant message clients, several web pages,

and the file browser. We studied a total of 31 applications,

creating a library of 754 prototypes and 714 annotations.

Our findings with real-world interfaces include insights into

two important challenges: (1) the limitations of pointer

proximity as a proxy for user intent within an interface, and

(2) conflicts between target-aware behavior and the

intentional design of interfaces for typical point cursors.

Pointer Proximity and User Intent

The Bubble Cursor and other target-aware techniques use

pointer proximity as a proxy for user intent to manipulate

interface elements. It is understood to be an imperfect proxy

(hence the notion of distractors), but examining behavior in

real-world interfaces gives new insight into limitations.

One example we found is

that a person may expect

similar elements to have

similar targeting behavior. Rows of elements provide a

good example, as the arrangement suggests each item is

equally relevant. But placement of a menu bar next to a

toolbar can create different effective targets for otherwise

similar elements. The Voronoi overlay shows “Page Up” is

more difficult to target than “Page Down”, and “Help”

behaves differently than the other menu items. The behavior

is correct, but can be jarring.

The dynamics of real-world interfaces also

expose gaps between pointer location and

user intent. Consider using a Bubble Cursor

to click a scrollbar arrow. A person’s

intended focus is likely to remain upon the

arrow after a click, but the movement of the

scrollbar toward the cursor may now mean the thumb is the

nearest target. Latching onto the thumb is the correct

behavior for the Bubble Cursor, but it may be unexpected.

A third case emerges when interfaces act upon

a notion of user intent that competes with the

Bubble Cursor. For example, the Windows 7

taskbar contains a row of buttons for

accessing windows of open applications. A hover over any

opens a preview. Approaching the taskbar with the Bubble

Cursor results in the cursor snapping to a button, invoking

the preview, and then snapping to the preview. This is

Requirement Target Editor Annotation Menu

Invoking System Tray

Keyboard Shortcut

Dwell

Capturing Static Frame on Launch

Record Interactions Tool

Implicit

Visualizing Colored Highlights of Elements Implicit

Extracting Rubber-Band

Zoom

Snap

Automatic via Prefab

N/A

Creating Add / Remove / Mark Incorrect

Model Selection

Prototype Browser

N/A

Authoring Look Bigger

Look Smaller

Not a Target

Look Bigger

Look Smaller

Not a Target

Confirm

Figure 6: Our interfaces highlight two initial points in

the design space of correctional interfaces for our system.

helpful if the desired window is captured, as clicking will

activate the window. But if an adjacent taskbar button was

desired in the first place, then the benefits of the Bubble

Cursor are destroyed by snapping to the preview.

Conflicts Due to Intentional Design for a Point Cursor

Modern interfaces are carefully and intentionally designed

for use with a typical point cursor. This section presents

examples where the Bubble Cursor conflicts with that

design, together with initial thoughts on how such conflicts

could be resolved through extensions to our system.

Designers often use small elements

for minor or infrequently-accessed

functionality. The Bubble Cursor can

greatly distort the importance of such minor elements. For

example, the Windows 7 file browser includes several

minor icons beneath its search box. These eclipse targeting

of the search box itself when approaching from below,

which is the typical direction of approach. Selection of the

search box is therefore more difficult than intended.

Extending the methods in this work, it is interesting to

consider a look past annotation. This might indicate an

element should be targeted only if the pointer is directly

overhead. The Bubble Cursor could then look past these

elements to allow easy targeting of the search box, but

would still latch onto minor elements when the pointer was

directly overhead. This seems preferable to a hotkey or

some other method for disengaging the Bubble Cursor.

Another example is the design of typical

context menus, which are dismissed by

clicking in non-interactive space. Such a

design is incompatible with a technique like

the Bubble Cursor that always targets the nearest interactive

element. This problem motivated creation of DynaSpot [8],

which adjusts the maximum reach of a Bubble Cursor based

on pointer speed. Examining this in the context of our

system suggests additional strategies. For example, a

dismissable annotation might overlay a close icon at the

upper-right of an element. Upon selection, the system could

use its identification and interpretation of the surrounding

interface to click in non-interactive space.

A third example is the scrollbar. As pictured elsewhere, it is

easy to imagine the utility of a Bubble Cursor attached to a

scrollbar thumb. But the trough is also interactive, meaning

the thumb can only be grabbed from a narrow horizontal

channel. In our own use, we therefore annotate the trough

as not a target. This allows easy capture of the thumb, but

also prevents targeting the trough. It is interesting to realize

that the same look past annotation discussed above would

remove the need for this tradeoff (i.e., latching onto the

thumb from outside, but targeting the trough from within).

This also suggests a more general distinction between

“major” versus “minor” targets, a theoretical perspective

that can inform the design of future techniques. Such future

techniques could be evaluated with a combination of

laboratory studies and insights gained from examination in

real interfaces using the methods we have developed here.

DISCUSSION AND CONCLUSION

Although we describe our approach to implementing a

Bubble Cursor, we also provide a general strategy for

implementing additional interface enhancements. Our

separation of identification from interpretation, together

with our approaches to each, can enable and inform a

variety of future enhancements. For example, Prefab

prototypes interactively created with our Bubble Cursor can

be shared and re-used with any Prefab-based application.

Similarly, our Bubble Cursor can benefit from Prefab

prototypes created in other applications. At the

interpretation level, target-aware enhancements may be able

to directly share and re-use annotations (e.g., the notion of a

target for Sticky Icons [42] may be the same as a target

with our Bubble Cursor). Other techniques may have

different interpretations of targets based on additional

annotations, perhaps bootstrapped through inference based

upon annotations collected with our Bubble Cursor or some

other technique. Finally, our strategies also apply to

non-pointing enhancements. For example, Findlater et al.’s

[16] Ephemeral Adaptation could be implemented using

analyses of interaction history together with explicit

annotation of element groupings and other preferences.

This work is the most extensive application of Prefab’s

pixel-based methods to date. Our experiences validate

Prefab’s methods, but also suggest opportunities to advance

pixel-based systems. For example, we found that Prefab

would benefit from additional sophisticated models of the

pixel-level appearance of complex elements (e.g., it could

not deeply model complex text panes found in Microsoft

Visual Studio 2010). We also sometimes found it tedious to

create multiple prototypes for different appearances of the

same interface element (e.g., multiple states of a button,

checkbox, or radio button). Pixel-based methods could

therefore benefit from additional modeling of the dynamics

of interface elements. Our work has also not addressed the

case where changes to a prototype might orphan existing

annotations (i.e., might change the descriptor needed to

retrieve existing annotations). We previously noted that

wrapper induction techniques may help to infer descriptors

that are robust to change [27], and we also believe we could

explicitly migrate annotations between hierarchies obtained

with different prototype libraries (e.g., by checking that

they refer to the same spatial region in the captured image).

Overall, we believe that deep applications like that pursued

in this paper have a unique potential to inform future

development of underlying pixel-based methods. Building

out this application has also given us a better understanding

of effective and sustainable abstractions for developing

with Prefab, and we are currently exploring the best way to

make this functionality available.

Looking forward, we believe the methods and findings of

this work suggest future research opportunities in both

interaction techniques and underlying systems. Our hope is

to help more interaction research in escaping the laboratory,

putting it into the hands of end-users who stand to benefit

from the field’s rich innovation.

ACKNOWLEDGMENTS

We thank Jon Froehlich and Shaun Kane for discussions

related to this work. This work was supported in part by the

NSF under awards IIS-1053868 and IIS-0811063, by Intel,

and by the UW College of Engineering Osberg Fellowship.

REFERENCES
1. Ahlström, D., Hitz, M. and Leitner, G. An Evaluation of Sticky and

Force Enhanced Targets in Multi Target Situations. NordiCHI 2006.

58-67.

2. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R.C.
Automation and Customization of Rendered Web Pages. UIST 2005.

163-172.

3. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P.,

Bederson, B. and Zierlinger, A. Drag-and-Pop and Drag-and-Pick:
Techniques for Accessing Remote Screen Content on Touch- and Pen-

Operated Systems. INTERACT 2003. 57-64.

4. Baudisch, P., Cutrell, E., Hinckley, K. and Gruen, R. Mouse Ether:
Accelerating the Acquisition of Targets Across Multi-Monitor

Displays. CHI 2004. Extended Abstracts. 1379-1382.

5. Blanch, R., Guiard, Y. and Beaudouin-Lafon, M. Semantic Pointing:

Improving Target Acquisition with Control-Display Ratio Adaptation.
CHI 2004. 519-526.

6. Casiez, G., Vogel, D., Balakrishnan, R. and Cockburn, A. The Impact

of Control-Display Gain on User Performance in Pointing Tasks.
Human-Computer Interaction 23 (3). 215-250.

7. Chang, T., Yeh, T., and Miller, M. Associating the Visual

Representation of User Interfaces with their Internal Structures and
Metadata. UIST 2011. 245-256.

8. Chapuis, O. Labrune, J., and and Pietriga, E. DynaSpot: Speed-

Dependent Area Cursor. CHI 2009. 1391-1400.

9. Chapuis, O. and Roussel, N. UIMarks: Quick Graphical Interaction
with Specific Targets. UIST 2010. 173-182.

10. Cockburn, A. and Firth, A. Improving the Acquisition of Small

Targets. HCI 2003. 181-196.

11. Dixon, M. and Fogarty, J. Prefab: Implementing Advanced Behaviors

Using Pixel-Based Reverse Engineering of Interface Structure. CHI
2010. 1525-1534.

12. Dixon, M., Leventhal, D., and Fogarty, J. Content and Hierarchy in

Pixel-Based Methods for Reverse Engineering Interface Structure.
CHI 2011. 969-978.

13. Edwards, W.K., Hudson, S.E., Marinacci, J., Rodenstein, R.,

Rodriguez, T. and Smith, I. Systematic Output Modification in a 2D
User Interface Toolkit. UIST 1997. 151-158.

14. Eagan, J.R., Mackay, W.E., and Beaudouin-Lafon, M. Cracking the

Cocoa Nut: User Interface Programming at Runtime. UIST 2011. 225-

234.

15. Findlater, L., Jansen, A., Shinohara, K., Dixon, M., Kamb, P., Rakita,

J., and Wobbrock, J.O. Enhanced Area Cursors: Reducing Fine

Pointing Demands for People with Motor Impairments. UIST 2010.
153-162.

16. Findlater, L., Moffatt, K., McGrenere, J. and Dawson, J. Ephemeral

Adaptation: The Use of Gradual Onset to Improve Menu Selection
Performance. CHI 2009. 1655-1664.

17. Fujima, J., Lunzer, A., Hornbæk, K. and Tanaka, Y. Clip, Connect,

Clone: Combining Applications Elements to Build Custom Interfaces

for Information Access. UIST 2004. 175-184.

18. Grossman, T. and Balakrishnan, R. The Bubble Cursor: Enhancing

Target Acquisition by Dynamic Resizing of the Cursor's Activation

Area. CHI 2005. 281-290.

19. Guiard, Y., Blanch, R. and Beaudouin-Lafon, M. Object Pointing: A
Complement to Bitmap Pointing in GUIs. GI 2004. 9-16.

20. Hartmann, B., Wu, L., Collins, K. and Klemmer, S.R. Programming

by a Sample: Rapidly Creating Web Applications with d.Mix. UIST
2007. 241-250.

21. Hourcade, J.P., Perry, K.B. and Sharma, A. PointAssist: Helping Four

Year Olds Point with Ease. IDC 2008. 202-209.

22. Hurst, A., Hudson, S.E. and Mankoff, J. Automatically Identifying
Targets Users Interact with During Real World Tasks. IUI 2010. 11-

20.

23. Hurst, A., Mankoff, J., Dey, A.K. and Hudson, S.E. Dirty Desktops:
Using a Patina of Magnetic Mouse Dust to Make Common Interactor

Targets Easier to Select. UIST 2007. 183-186.

24. Hwang, F., Keates, S., Langdon, P. and Clarkson, P.J. Multiple Haptic

Targets for Motion-Impaired Computer Users. CHI 2003. 41-48.

25. Jansen, A., Findlater, L. and Wobbrock, J.O. From the Lab to the

World: Lessons from Extending a Pointing Technique for Real-World

Use. CHI 2011. Extended Abstracts. 1867-1872.

26. Kabbash, P. and Buxton, W. The "Prince" Technique: Fitts' Law and
Selection Using Area Cursors. CHI 1995. 273-279.

27. Kushmerick, N., Weld, D.S, and Doorenbos, R. Wrapper Induction for

Information Extraction. IJCAI 1997.

28. Lin, J., Wong, J., Nichols, J., Cypher, A. and Lau, T.A. End-User
Programming of Mashups with Vegemite. IUI 2009. 97-106.

29. Little, G., Lau, T.A., Cypher, A., Lin, J., Haber, E.M. and Kandogan,

E. Koala: Capture, Share, Automate, Personalize Business Processes
on the Web. CHI 2007. 943-946.

30. McGuffin, M. and Balakrishnan, R. Acquisition of Expanding Targets.

CHI 2002. 57-64.

31. Nichols, J. and Lau, T.A. Mobilizing by Demonstration: Using Traces

to Re-Author Existing Web Sites. IUI 2008. 149-158.

32. Olsen, D.R., Hudson, S.E., Verratti, T., Heiner, J.M. and Phelps, M.

Implementing Interface Attachments Based on Surface

Representations. CHI 1999. 191-198.

33. Olsen, D.R., Taufer, T. and Fails, J.A. ScreenCrayons: Annotating
Anything. UIST 2004. 165-174.

34. Potter, R. Triggers: Guiding Automaton with Pixel to Achieve Data

Access. A. Cypher, eds. MIT Press.

35. St. Amant, R., Lieberman, H., Potter, R. and Zettlemoyer, L.S. Visual
Generalization in Programming by Example. Communications of the

ACM 43(3). 107-114.

36. St. Amant, R., Riedl, M.O., Ritter, F.E. and Reifers, A. Image
Processing in Cognitive Models with SegMan. HCII 2005.

37. Stuerzlinger, W., Chapuis, O., Phillips, D. and Roussel, N. User

Interface Façades: Towards Fully Adaptable User Interfaces. UIST

2006. 309-318.

38. Takagi, H., Kawanaka, S., Kobayashi, M., Itoh, T., and Asakawa, C.

Social Accessibility: Achieving Accessibility through Collaborative

Metadata Authoring. Assets 2008. 193-200.

39. Tan, D.S., Meyers, B.R. and Czerwinski, M. Manipulating Arbitrary
Window Regions for More Effective Use of Screen Space. CHI 2004.

1525-1528.

40. Yeh, T., Chang, T.-H. and Miller, R.C. Sikuli: Using GUI Screenshots
for Search and Automation. UIST 2009. 183-192.

41. Wobbrock, J.O., Fogarty, J., Liu, S., Kimuro, S., and Harada, S. The

Angle Mouse: Target-Agnostic Dynamic Gain Adjustment Based on
Angular Deviation. CHI 2009. 1401-1410.

42. Worden, A., Walker, N., Bharat, K. and Hudson, S.E. Making

Computers Easier for Older Adults to Use: Area cursors and Sticky

Icons. CHI 1997. 266-271.

43. Zellweger, P.T., Bouvin, N.O., Jehøj, H., and Mackinlay, J.D. Fluid
Annotations in an Open World. Hypertext 2001. 9-18.

44. Zhai, S., Morimoto, C. and Ihde, S. Manual and Gaze Input Cascaded

(MAGIC) Pointing. CHI 1999. 246-253.

45. Zettlemoyer, L.S. and St. Amant, R. A Visual Medium for
Programmatic Control of Interactive Applications. CHI 1999. 199-

206.

46. Zettlemoyer, L.S., St. Amant, R. and Dulberg, M.S. IBOTS: Agent
Control Through the User Interface. IUI 1998. 31-37.

