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ABSTRACT 

We present ReGroup, a novel end-user interactive machine 
learning system for helping people create custom, 
on-demand groups in online social networks. As a person 
adds members to a group, ReGroup iteratively learns a 
probabilistic model of group membership specific to that 
group. ReGroup then uses its currently learned model to 
suggest additional members and group characteristics for 
filtering. Our evaluation shows that ReGroup is effective 
for helping people create large and varied groups, whereas 
traditional methods (searching by name or selecting from an 
alphabetical list) are better suited for small groups whose 
members can be easily recalled by name. By facilitating 
on-demand group creation, ReGroup can enable in-context 
sharing and potentially encourage better online privacy 
practices. In addition, applying interactive machine learning 
to social network group creation introduces several 
challenges for designing effective end-user interaction with 
machine learning. We identify these challenges and discuss 
how we address them in ReGroup.  
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User Interfaces.  
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INTRODUCTION 

Social networking sites present a conflict between our 
desire to share our personal lives online and our concerns 
about personal privacy [13, 33,37]. Well-known examples 
of privacy blunders include oversharing embarrassing 
photos with potential employers [19], accidently posting 
intimate conversations [30], and being fired for publicly 

criticizing a boss [4]. Major sites have therefore begun 
advocating customizable friend groups as the latest tool for 
helping us control with whom we share [27,31].  

The currently-advocated approach to custom group creation 
is to pre-categorize friends in advance of sharing decisions. 
For example, Google+ requires friends be manually 
organized into “Circles” before content can be shared with 
them [31]. Katango [17] and Facebook’s “Smart Lists” [27] 
attempt to aid group curation by automatically generating 
potential groups based on a person’s social graph or 
common features (e.g., inferred closeness, current city). 
These automatically generated groups can then be manually 
edited for correctness or to capture other preferences.  

Pre-defined groups may suffice for filtering update streams 
and news feeds, but usable security recommendations argue 
that privacy controls for sharing content should operate in 
context of that content [20,29,40,43]. This is because prior 
research has shown that willingness to share varies widely 
based on both content recipients and the content itself [26]. 
For example, a person’s definition of a “close friend” may 
change when sharing a personal photograph versus inviting 
people to a party. Furthermore, Jones and O’Neill [16] 
recently showed that groups created for generic purposes 
only partially overlap with in-context sharing decisions. 
Ill-conceived groupings can therefore lead to information 
leakage, over-restriction, or additional work to revise 
pre-defined groups in-context.  

We present ReGroup (Rapid and Explicit Grouping), a 
novel system that uses end-user interactive machine 
learning to help people create custom, on-demand groups in 
Facebook. As ReGroup (Figure 1) observes a person’s 
normal interaction of adding members to a group, it learns a 
probabilistic model of group membership in order to 
suggest both additional members and group characteristics 
for filtering a friend list. ReGroup differs from prior group 
member suggestion systems (e.g., Gmail’s “Don’t forget 
Bob!”  [11] and FeedMe [3]) in its ability to continually 
update its membership model based on interactive user 
feedback. As a result, ReGroup can tailor its suggestions to 
the group a person is currently trying to create (instead of 
being limited to making suggestions based on a predefined 
and static notion of similarity or interest). Facilitating 
on-demand creation of contextualized groups may help 
encourage better privacy practices in social networks. 
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This paper makes the following contributions: 

• A new approach to social access control – using end-user 
interactive machine learning to help people create custom 

groups on-demand in the context of sharing decisions.  

• A discussion of several new challenges for the design of 
effective end-user interaction with machine learning 

systems, as exposed in our application to social networks.  

• Novel example and feature-based interaction techniques 

for addressing the above design challenges in ReGroup.  

• An evaluation of ReGroup compared to traditional 
methods of on-demand group creation. Our quantitative 
and qualitative analyses indicate that different techniques 
are effective for different types of groups and therefore 
integrating all techniques in online social networks can 

support a wider range of desired groups. 

REGROUP 

ReGroup uses end-user interactive machine learning to help 
people create custom groups on-demand. In this section, we 
first use an example to illustrate how a person can create a 
group with ReGroup. We then discuss the challenges 
inherent to interactive machine learning for group creation 
and how we address them in our design of ReGroup. 

Example Usage Scenario 

Ada wants to advertise a confidential research talk to 
relevant friends at the University of Washington, so she 
decides to use ReGroup to create a private group for the ad. 
To start, she thinks of a friend she knows will be interested 
in the talk, searches for them by name (via a search box, left 
in Figure 1) and adds them to her group (Selected display, 
top in Figure 1). ReGroup learns from this example and 
then tries to help Ada find other friends to include. It 

 

Figure 1. ReGroup uses end-user interactive machine learning to help people create custom, on-demand groups. As a person 

selects group members (in the Selected display), ReGroup suggests additional members (in the Suggestions display) and suggests 

group characteristics as filters for narrowing down a friend list (see five suggested filters at the top of the Filters display). 

 



re-organizes her friend list to sort relevant friends to the top 
of the Suggestions display (right in Figure 1). Ada now sees 
several additional friends she wants to include. She adds 
them to her group all at once by drag-selecting and then 
clicking the Add Selected button (right in Figure 1). With 
these additional examples, ReGroup learns more about the 
group being created and again re-organizes Ada’s friends to 
help her find more group members.  

As ReGroup learns about the group Ada is creating, it also 
presents relevant group characteristics she can use as filters. 
For example, given the currently selected friends, ReGroup 
believes Ada might want to include other people that live in 
Washington, that have several mutual friends with her, or 
that work at the University of Washington (top of Filters 
display in Figure 1). Although not everybody Ada wants to 
include works at the University of Washington (e.g., some 
are students), she agrees that they all likely live in 
Washington. She clicks the “Washington” filter, causing 
ReGroup to remove friends who do not live in Washington. 
This helps Ada by reducing the number of people she must 
consider when finding friends to include in her group. 

Ada continues interacting with ReGroup this way, explicitly 
adding group members and filtering when necessary, until 
she has included everyone to whom she wants to advertise. 

Identifying Features 

ReGroup’s ability to suggest group members is powered by 
its interactive machine learning component. Machine 
learning works by discovering patterns in examples. A 
system is therefore strongly influenced by the quality of 
information contained in the representations of those 
examples (i.e., the features). We based our features on 
related work on social networks (e.g., [11]). We also 
conducted an online survey of Facebook and Google+ users 
to identify common groups we could support. We 
distributed the survey to our own Facebook and Google+ 
contacts, obtaining 69 responses (21 Facebook and 48 
Google+) describing 244 customized groups (32 Facebook 
and 212 Google+). Facebook and Google+ advocate 
creating groups in advance, so the groups identified in our 
survey may not correspond to groups people would create 
on-demand (i.e., the composition of permanent groups may 
differ from groups created in context). Nevertheless, these 
gave a starting point from which to distill potential features. 

Table 1 presents the 18 features currently used by ReGroup, 
each with an example group the feature might help support. 
In this research, we endeavored to support common groups 
as part of demonstrating the potential for interactive 
machine learning in social access control. Our features are 
therefore not intended to be exhaustive. 

Suggesting People while Preserving End-User Control 

ReGroup’s group member suggestions are realized by a 
Naïve Bayes classifier [5]. Each friend is represented by a 

set of � feature-value pairs (Table 1). The probability of 

each friend being a member of the group � is then 
computed via the following Bayesian formulation: 

���|��, �	, … , ��� = � ����, �	, … , ��|������
� ����, �	, … , ��|������′�����,��

 

where ����, �	, … , ��|�� is the likelihood of a friend with 

feature values ��, �	, … , �� being a member of �, ���� is 

the prior probability of any friend belonging to �, and the 
denominator is the probability of seeing the set of feature 
values in the data and serves as a normalizing constant.  

The Naïve Bayes assumption considers each feature to be 
conditionally independent given the class, reducing the 
likelihood computation to: 

����, �	, … , ��|�� = �����|��
�

���
 

where the probability of a group member having a 

particular feature value, ����|��,�can be estimated by a 
frequency count of the number of current group members 
having that feature value over the total number of current 
group members. We also use Laplace smoothing to improve 
performance in the presence of limited training data. 
Although the independence assumption is often violated in 
real-world data, Naïve Bayes has been shown to work well 
in many practical applications [5]. Naïve Bayes also 
gracefully handles missing data and allows for a 
straightforward interpretation of features, both important 
aspects of ReGroup as will be discussed below. 

ReGroup’s classifier is re-trained every time a person adds 
friends to a group. ReGroup then reorders a person’s 
remaining friends according to who is most likely to also 
belong to the group as computed by the updated classifier. 

Feature Description/Examples 

Gender, Age Range “Sorority friends”, “People my age” 

Family Member “People I’m related to” 

Home City, State and 

Country 
“Friends from my hometown” 

Current City, State, 

Country 
“Anyone I know who lives nearby” 

High School, College, 

Graduate School 

“Anyone from my department at 
school” 

Workplace “CoWorkers” 

Amount of 

Correspondence 

Number of Inbox, Outbox and Wall 
messages sent and received.  
“People I socialize with regularly” 

Recency of 

Correspondence 

Time since latest correspondence. 
“Friends I currently interact with” 

Friendship Duration 
Time since first correspondence [11]. 
“Friends I’ve known over 10 years” 

Number of Mutual 

Friends 
“My group of closest friends” 

Amount Seen Together 

Number of photos/events a person 
and friend are both tagged in.  
“People I see on a regular bases” 

Table 1. The 18 features currently used by  

ReGroup’s interactive machine learning component. 



To preserve end-user control during interaction with the 
classifier, we made the design decision that people must 
explicitly approve every group member, as opposed to 
having ReGroup automatically add suggested friends.  

Indirectly Training an Effective Classifier 

Effective training of machine learning systems requires 
both positive and negative examples. Therefore, a system 
focused on training an effective classifier will be designed 
to solicit explicit positive and negative examples (e.g., [1]). 
In our case, however, a person’s primary goal is to create a 

group. That is, the classifier is a disposable side effect and a 
person is not concerned about its generalization.  

To mitigate the effects of people primarily providing 
positive examples, we designed ReGroup to obtain implicit 
negative examples during interaction. When a person 
selects a group member from an ordered list of friends, 
ReGroup increases the probability that the skipped friends 
(i.e., friends preceding the selection in the ordered list) are 
not intended for the group. This is achieved by assigning 
the preceding friends implicit negative labels in ReGroup’s 
group membership computations. However, as this heuristic 
is not always correct (e.g., a person’s gaze may be drawn to 
a friend further down in the list without having viewed or 
decided upon the preceding friends), an implicit negative 
example contributes only a partial frequency count, α, in 

ReGroup’s computation of ���|��. ReGroup also still 
includes implicitly labeled friends in its list of suggestions. 
We found that setting α=0.2*n, where n is the number of 
times a friend is skipped, worked well in practice. 

Unlearnable Groups 

While experimenting with early versions of ReGroup, we 
observed that skipped friends would sometimes continue 
bubbling back up in the ordered list during group creation. 
Further examination revealed that this occurred when (1) a 
friend had all the characteristics of the group, as modeled 
by the classifier, but (2) was skipped for some reason not 
captured by the system (e.g., a person planning a surprise 
party would obviously not invite the guest of honor). 
Implicit negative examples are not powerful enough to 
prevent repeated suggestion of such friends because of their 
high similarity to the many positive examples. This 
problem occurs in all machine learning systems when the 
hypothesis language is insufficiently expressive to model 
the true concept. However, it can be particularly frustrating 
in an interactive system like ReGroup, as a person can 
quickly grow tired of repeatedly skipping the same friend. 

We addressed this with an explicit penalty term, �, in our 
group membership estimation as follows: 

���|�� = ���|�� ∗ �� 

where � is the number of times a friend was skipped. Our 

preliminary experiments showed that setting �=0.9 
achieved the desired effect (i.e., it reduced the likelihood of 
a skipped friend continuing to be highly ranked when 
ReGroup could not learn the true concept). 

Integrating Knowledge about Group Members  
via Decision-Theoretic Filter Suggestions 

Most end-user interactive machine learning systems focus 
only on interaction with examples (e.g., [8, 10]). However, 
people often have knowledge about the shared properties of 
groups. We hypothesized that enabling interaction with 
those features might accelerate the group creation process. 
We chose to realize end-user interaction with features in 
ReGroup using faceted search [15], a popular method for 
helping people find items in collections (e.g., [46]). With 
faceted search, people find items by filtering a collection 
based on feature values. ReGroup provides two ways for 
people to filter friends by feature values: 

• Via a suggested list of five top feature value filters  
(top of Filters display, left in Figure 1). 

• Via a static, hierarchical list of all feature value filters  
(bottom of Filters display, left in Figure 1).  

Previous methods for ordering filters have used metrics like 
hit count [15] or query keyword similarity [46]. However, 
none of these are appropriate for our domain. We therefore 
formulate the problem decision-theoretically. Intuitively, 
we want ReGroup to suggest filters that will reduce effort 
required during group creation. A suggested filter must 

therefore represent the intended group well (i.e.,�����|��� 
must be high). However, this alone does not guarantee that 
a filter will prune unwanted friends. We therefore combine 

this with the expected utility of a filter as follows:  

����� = ����|��� ∗ ������ !"��# "��$��� 
Here, we use information gain to approximate the potential 
time savings of activating a filter [25]. We use this 
formulation in choosing the top five filters to suggest, as 
well as in ordering feature values within the static list.     

Missing Data 

Missing data, which can lead to unpredictable behavior in 
machine learning systems, is rampant in the domain of 
online social networks. People choose not to supply 
information, have strict privacy settings, or are inconsistent 
with their online activity. The Naïve Bayes classifier 
gracefully handles missing data by ignoring features with 
missing values when computing group membership 
probabilities. However, missing data can still adversely 
impact the usefulness of filters by leading to incorrectly 
filtered friends (e.g., when filtering on “Seattle”, a friend 
who lives in Seattle might be filtered because they have not 
supplied this to Facebook) or incorrectly preserved friends 
(e.g., when filtering on “Seattle”, retaining a friend who 
lives in Austin but has not supplied this to Facebook).  

ReGroup attempts to estimate missing values by creating 
additional feature classifiers for predicting missing values 
conditioned on all other available features. Then, when 
applying a filter, ReGroup only eliminates friends who are 
guaranteed to be ineligible (i.e., have provided some value 
other than the filter value). For friends with missing data, 
ReGroup indicates its uncertainty by displaying a question 



mark under their name (see Figure 1). If a person hovers 
over a question mark, ReGroup displays a tooltip showing 
its guess for that friend’s corresponding feature value. 
ReGroup thus avoids incorrectly eliminating friends while 
reducing irritation by explicitly displaying its guesses.  

Implementation Details 

ReGroup is implemented using Facebook’s Application 
Platform [7] and a Firefox Greasemonkey script [12]. 
ReGroup uses Facebook’s Application Platform to access a 
person’s relevant information (see Table 1), while the 
Greasmonkey script allows ReGroup to run within a 
person’s own Facebook account. ReGroup is not publicly 
available (i.e., only our study participants could access the 
Facebook Application and use the Greasemonkey script 
installed on the study computer). ReGroup accessed a 
participant’s Facebook information only after they provided 
explicit and informed consent and only for enabling its 
interface, staying within Facebook’s Terms of Service. 

EVALUATION 

We conducted an evaluation to explore the tradeoffs 
between end-user interactive machine learning for 
on-demand custom group creation and Facebook’s current 
approach of allowing manual selection from an alphabetical 
list or searching by name [39]. We also wanted to compare 
a design including our feature-based interaction with a more 
typical design using only example-based interaction. 

Interface Conditions 

We evaluated the following interfaces: 

• Alphabet. A person can search by name or scroll through 
an alphabetical list to find friends. This is equivalent to 

Facebook’s current on-demand group creation process. 

• Example-Only. Each time a person adds a friend to the 
group, the list of friends is reordered based on ReGroup’s 
current estimation of group membership probability. 

People can also still search for friends by name. 

• Example-Attribute. The full ReGroup design, enhancing 
the Example-Only with our decision-theoretic technique 
for feature-based interaction. 

Design and Procedure 

We ran a within-subjects study, counterbalancing order of 
interface conditions using a Latin square design. At the 
beginning of the study, we told participants they would be 
testing new tools for helping people create custom groups 
in Facebook. We also explained the tools would work in 
their own Facebook accounts and that they would be testing 
the tools by creating groups of their own friends. 
Participants were then informed about what data would be 
accessed and how it would be used. We continued only 
after they provided written consent and granted our 
Facebook Application permissions to access their data.  

Next, prior to seeing any interface, participants were asked 
to think of six groups they could create during the study. 
We chose this approach to ensure groups were meaningful, 

as assigned groups may not correspond to distinctions a 
person would make among their friends. When thinking of 
groups, participants were instructed to imagine they were 
about to post a new comment or share a new photo and only 
wanted to share it with a select group of friends. We also 
provided them with a list of ten example groups based on 
frequent responses to our online survey (e.g., “home town 
friends”, “close friends”) to help them decide. Resulting 
groups ranged from typical (e.g., “Family”, “CoWorkers”) 
to more unique and nuanced (e.g., “Older Faculty 
Members”, “People I Care About”). We also asked 
participants to estimate group size (“small”, “medium” or 
“large”). The experimenter then sorted groups by estimated 
size and assigned them to conditions in order (thus roughly 
balancing groups across conditions by size).  

The experimenter then demonstrated ReGroup (using the 
full Example-Attribute interface) with the experimenter’s 
own Facebook account. Participants were told they would 
use three variations of the ReGroup interface. Before each 
condition, the participant practiced with the corresponding 
interface by creating a simple gender-based group. After the 
practice, participants used the interface condition to create 
two of their groups (they were not told which groups they 
would create until they were about to create them). To 
avoid exhausting participants, we limited each group to a 
maximum of 4 minutes (we did not inform participants of 
this limit, but simply asked them to stop if they reached it). 

All interface actions were time-stamped and logged. All 
participant information and logged data was stored 
anonymously, using unique identifiers, on a secure server 
accessible only by the researchers. After each group, 
participants completed a short questionnaire containing 
5-point Likert scales (1=strongly disagree, 5=strongly agree) 
about the group they just created (e.g., “I was happy with 
the group I just created”). At the end of the study, 
participants filled out a final questionnaire to comment on 
their overall experience and compare the interfaces 
(e.g., “Rank the versions to indicate which was your 
favorite”). The study lasted 1 hour and participants were 
given a $20 Amazon gift certificate for their participation. 

Participants and Data 

Twelve people (four female, ranging in age from 18-34) 
were recruited via a call for participation sent to several 
university mailing lists. As a result, all of our participants 
were technically savvy, but ranged from undergraduates to 
staff members from a variety of disciplines (e.g., Computer 
Science, Psychology, Design). We required participants to 
have an active Facebook account in use for at least one year 
and to have at least 100 friends. This was to help ensure 
enough activity was available to enable ReGroup’s 
suggestions. As expected, participants varied in their 
composition and number of friends (mean=385.4, min=136, 
max=781) and their Facebook activity (ranging from 
every day to a few times per month). On average, our 
participants also had 36.3% missing data with respect to 
ReGroup’s features. 



RESULTS 

We performed all of our log and Likert scale data analyses 
using a nonparametric repeated measures analysis of 
variance, after aligning the data according to the aligned 

rank transform [44] to preserve interaction effects due to 
having participants create two groups per condition. We 
also performed post-hoc pairwise comparisons when a 
significant effect was observed. To analyze our final 
ranking questions, we used a randomization test of 
goodness-of-fit [23] which is more robust against smaller 
sample sizes than a standard Chi-Square test. For each test, 
we ran 10,000 Monte Carlo simulations. Tables 2 and 3 
show the per-condition means and standard deviations for 
all metrics used in our log and Likert scale data analyses, 
respectively. Table 3 also shows the number of participants 
choosing each condition for each of our ranking questions. 
We discuss all of our quantitative analyses in the context of 
our qualitative observations and feedback from participants. 

We analyze our study data in terms of the overall time 
taken and final group sizes, the speed and effort of selecting 
group members, and interface element usage. Note that we 
cannot evaluate group accuracy because no adequate 
ground truth is available or obtainable. Asking participants 
to re-create Facebook or Google+ groups could bias their 
notion of those groups. Alternatively, asking participants to 
verify group completeness would require exhaustive 
labeling (recognized as error-prone [38] and analogous to 
list scrolling in the Alphabet condition).  

Final Times and Group Sizes 

Overall, participants created 72 groups with a total of 2077 
friends. Examining the Final Time taken to create groups, 
our analysis shows a significant effect of interface condition 
(F2,55=6.95, p≈.002). Post-hoc pairwise analyses reveal that 
participants using the Alphabet interface took significantly 
less time to create groups than when using both the 
Example-Only (F1,55=5.93, p≈.018) and Example-Attribute 

(F1,55=13.4, p≈.0006) interfaces. There was no difference in 
Final Time between Example-Only and Example-Attribute 

conditions. One explanation for participants taking less time 
in the Alphabet condition is that both the reordering 
conditions (Example-Only and Example-Attribute) required 
additional time to update the display when reordering or 
filtering. Another contributing factor could be that 
participants in the Alphabet condition often attempted to 
recall friends by name to avoid scrolling through their 
entire list of friends (e.g., “I was surprised how useless 

alphabetical ordering is, but keyword search was very 

useful”). This may have resulted in people forgetting to 
include some friends and stopping early. Interestingly, 
participants who resorted to scrolling through the full list 
often felt like they missed people (e.g., “umm, I guess 

that’s it”, “there’s probably more, but oh well”). One 
participant also explicitly commented “It’s too easy to 

forget about people when it’s ordered alphabetically.”  

Difficulty recalling friends in the Alphabet interface could 
have resulted in the shorter Final Times in that condition. 
However, one would then also expect to see larger Final 

Group Sizes in the reordering conditions because of their 
ability to surface relevant people, favoring recognition over 
recall (e.g., “Reordering makes it much faster than 

alphabetical because it reminds you of people without 

having to do an exhaustive search” and “Reordering helps 

me quickly pick friends in the first rows. Filters keep me 

from frequent scrolling”). However, our analysis showed 
no significant difference in Final Group Size across 
conditions. Further analysis showed the presence of a 
ceiling effect in all conditions, suggesting that participants 
were often cut short of the time they needed to complete 
their groups, which could account for the lack of difference 
in Final Group Size. This effect was also more pronounced 
in the reordering conditions (16.7%, 33.3% and 45.8% of 
interactions were cut short in the Alphabet, Example-Only, 
and Example-Attribute conditions, respectively). 

Speed and Effort in Selecting Group Members 

To compare the time between group member selections, we 
had to account for the fact that participants could add 
friends individually or in bulk (i.e., a multi-select action). In 
the case of a multi-select, we assigned the time between the 
action and the previous group member selection to the first 
friend in the multi-selection and assigned a time of zero to 
the rest of the friends. We did not see an effect of interface 
condition on Mean Select Time. We did however see a 
difference in SD Select Time (F2,55=7.78, p≈.001), with 
post-hoc pairwise comparisons showing significant or 
marginal differences in all cases: Alphabet was less than 
Example-Only (F1,55=2.83, p≈.09) and Example-Attribute 

 Alphabet 
Example-

Only 

Example-

Attribute 

Final Time* 163.0/63.4s 196.9/56.8s 216.0/35.8s 

Final Group Size 25.3/24.8 34.0/40.6 27.2/22.1 

Mean Select Time  8.6/3.9s 13.9/16.3s 15.9/16.5s 

SD Select Time* 9.4/6.5s 13.5/8.5s 19.7/15.1s 

Mean Position* 171.8/87.2 58.1/78.9 38.5/48.8 

SD Position* 101.7/56.1 41.1/33.3 40.5/41.1 

Single Selections 18.0/27.0 8.5/6.2 7.9/5.1 

Multi-Selections* 0.4/0.8 2.8/2.9 2.8/3.0 

Search-Selections 4.3/4.7 2.1/2.7 2.0/2.1 

Table 2. Mean/SDs of all metrics used in our log data 

analyses. *’s indicate a significant effect was observed. 

 Alphabet 
Example-

Only 

Example-

Attribute 

Happiness 3.9/0.9 3.9/1.1 4.0/0.7 

Easiness* 2.6/1.0 3.2/1.2 3.3/0.8 

Quickness* 2.3/1.0 3.0/1.2 3.4/1.0 

Favorite* 1 0 11 

Best Helped* 3 1 8 

Table 3. Likert mean/SDs (1=strongly disagree, 5=strongly 

agree) and ranking (number of participants) responses. 

Metrics with *’s indicate a significant effect was observed. 



(F1,55=15.5, p≈.0002), and Example-Only was less than 
Example-Attribute (F1,55=5.07, p≈.03).  

Although we did not see an effect of condition on Mean 

Select Time, the average Mean Select Time was smallest in 
Alphabet (see Table 2). This is partially an artifact of the 
time needed to update the display in the reordering  
conditions. In Example-Attribute, a display update can also 
occur as a result of a filtering action. As this confounds our 
analysis of Select Time, we decided to measure the position 
in the display of each group member immediately before 
selection as a proxy for effort level. That is, if position is 
low, a friend was closer to the top of the display and 
therefore required less effort to locate. We saw a significant 
effect of condition on Mean Position (F2,55=39.1, p≈.0001), 
with post-hoc pairwise comparisons showing that the Mean 

Position in Alphabet was significantly greater than in both 
Example-Only (F1,55=47.8, p≈.0001) and Example-Attribute 
(F1,55=67.7, p≈.0001). We also saw a significant difference 
in consistency of position as measured by SD Position 

(F2,55=19.6, p≈.0001), again with SD Position being 
significantly greater in Alphabet compared to both 
Example-Only (F1,55=2.81, p≈.0001) and Example-Attribute 
(F1,55=31.8, p≈.0001). Lower positions indicate that people 
had to scroll less to search for friends in the reordering 
conditions because these conditions sorted potential group 
members closer to the top of the display for easy 
recognition and access. As expected, the Mean Position of 
selected friends in the Alphabet condition was roughly half, 
44.6%, of the average number of Facebook friends of our 
participants and their SD Position was highly varied 
because group members were often evenly distributed 
throughout the entire alphabetical list.  

Our questionnaire results provide additional evidence of 
reduced effort in the reordering conditions. Analyses of our 
Likert scale questions show an effect of condition on 
perceived levels of Easiness (F2,55=4.33, p≈.018), with the 
both the Example-Only and Example-Attribute interfaces 
being perceived as easier to use than the Alphabet interface 
(F1,55=5.74, p≈.02 and F1,55=7.18, p≈.01, respectively). 
Similarly, we found a significant effect of condition on 
perceived Quickness (F2,55=6.63, p≈.003) in creating 
groups, again with Example-Only and Example-Attribute 

interfaces being perceived as quicker than Alphabet 

(F1,55=5.80, p≈.02 and F1,55=12.74, p≈.0008, respectively). 
We saw no difference in terms of perceived Easiness or 
Quickness between Example-Only and Example-Attribute. 
Perceived Easiness and Quickness in the reordering 
conditions is likely due to these interfaces automatically 
surfacing relevant friends (e.g., “Sometimes it really looked 

as if the system was reading my mind!”). 

Behavioral Differences and Feature Usage 

In all interfaces, participants could select friends to include 
one at a time (Single Selections), several at a time 
(Multi-Selections), or by searching for them by name 
(Search-Selections). Our participants used all of these 

features in each condition, however they searched for 
friends by name and added friends one by one less often in 
the reordering conditions compared to the Alphabet 

condition. In addition, we found a significant effect of 
condition on the number of Multi-Selections (F2,55=10.9, 
p≈.0001) with the Example-Only and Example-Attribute 

conditions both showing increased Multi-Selections 

compared to the Alphabet condition (F1,55=17.4, p≈.0001 
and F1,55=15.4, p≈.0002, respectively). Increased 
Multi-Selections and fewer Single and Search-Selections in 
the reordering conditions is likely due to these interfaces 
making friends easier to add as a group by sorting relevant 
friends to the top of the display and filtering out irrelevant 
friends (in Example-Attribute).  

Our logged data also showed that participants used the 
suggested and static filters when they were available (in 
Example-Attribute). Participants selected Suggested Filters 
1.9 times on average (SD=1.3), selected Static Filters 0.9 
times on average (SD=1.3), and Unselected Filters that they 
had previously selected 2.3 times on average (SD=2.8). Our 
observations showed that participants sometimes used the 
filters in clever and unexpected ways, such as selecting 
them temporarily to find a certain set of friends and then 
unselecting them to find others. One participant commented 
that the “Filters helped me guide the tool”. Other comments 
indicate that the suggested filters served as an explanation 
of how the system was working (e.g., “The filters helped 

me understand what patterns the tool was discovering, and 

thus helped understand the tool’s behavior”). 

Discussion 

Overall, our evaluation showed that different interfaces 
worked well for different kinds of groups (e.g., “[My 

favorite version] depended on the group I was creating”). 
We observed, and participants reported, that the Alphabet 
condition appeared to work well for small groups whose 
members could be easily recalled by name (e.g., family 
members with the same name, co-authors of a paper, and 
members of a cross-country team). In contrast, the 
reordering conditions worked better for larger and more 
varied groups (e.g., childhood friends, local friends or 
friends from particular regions of the world, college friends, 
former and current colleagues, people in a particular field of 
work, and friends with a professional relationship). One 
participant noted that for “most of the small groups that I 

wanted to create, I already knew the list in my head [so] 

alphabetical was easiest. However, for larger groups, 

reordering was most efficient.” A likely result of this is that 
we found no significant difference in terms of overall 
participant Happiness with their final groups created in 
each condition. 

Although a significant majority of our participants rated the 
full ReGroup interface (i.e., Example-Attribute) as their 
overall Favorite (χ2=18.5, p≈.0001) and felt that it Best 

Helped them create groups (χ2=6.5, p≈.04), participants did 
become frustrated when ReGroup was unable to model the 



group well, as this essentially resulted in having to search 
through an unordered list for group members (e.g., 
“Ordering is useful for some lists, annoying for others” and 
“though I liked the filters, I think they didn’t work in some 

cases”). As with all machine learning based systems, the 
ability to model a concept is highly dependent upon the 
quality of the underlying data (e.g., the expressiveness of 
the features and the availability of data). Interestingly, some 
participants could tell why ReGroup was not working well 
in some cases (e.g., “Groups that all have something in 

common that is tracked by Facebook (i.e., college) were 

easier to create than a group of people who are seemingly 

unrelated based on Facebook information.”).  

RELATED WORK 

Privacy continues to be a concern in online social networks 
[13,33,37]. Traditional mechanisms for specifying social 
access control lists have been too inexpressive (e.g., 
pre-defining lists of “Friends” or “Everyone” in Facebook) 
or tedious and error-prone (e.g., manual selection from an 
alphabetical list of friends [28,38]). This has motivated 
research on alternative methods. For example, Toomim 
et al. examine guard questions testing for shared knowledge 
[41] and McCallum et al. examine automatically inferring 
access control roles from email communication [24]. 

Recent interest has developed in automatic detection of 
communities within social networks (e.g., [16,17,22,27]). 
The assumption in such work is that detected communities 
will overlap with a person’s eventual sharing needs. 
SocialFlows [22] automatically creates hierarchical and 
potentially overlapping groups based on email 
communication. These groups can then be edited via direct 
manipulation and exported to Facebook and Gmail. 
Katango [27] and Facebook’s “Smart Lists” [17] feature 
also follow this model by providing a set of automatically 
generated friend groups which can then be manually edited 
for correctness. Jones and O’Neill [16] recently evaluated 
the feasibility of this approach by comparing manually 
defined groups with automatically detected network 
clusters. They found their automatically-detected clusters 
only overlapped with manually-defined groups by 66.9% on 
average, suggesting a need for considerable manual 
refinement. After following up with their participants, they 
further discovered that predefined groups only partially 
correspond to in-context sharing decisions (77.8-90.8% 
overlap with manually defined groups and only 33.8-76.1% 
overlap with automatically generated groups). In contrast, 
our focus on custom, on-demand group specification via 
end-user interactive machine learning is better aligned with 
usable security recommendations [20,29,40,43].  

Prior work facilitating on-demand sharing or access control 
in social networks includes Gilbert and Karahalios’s 
research on modeling relationship or tie strength between 
individuals based on network structure, communication, 
and shared profile data [11]. Predicted tie strength could 
potentially inform privacy levels for protected content. In 

contrast to modeling relationships, Bernstein et al.’s 
FeedMe system [3] models user interest using term-vector 
profiles in order to recommend people with which to share 
particular pieces of content. Our work differs from these in 
that ReGroup iteratively learns a model based on end-user 
provided examples and feedback. By iteratively updating 
the underlying model, ReGroup can tailor its group member 
recommendations to the specific group a person is currently 
trying to create. More similar to our approach of defining 
groups by example is Gmail’s “Don’t forget Bob!” feature, 
which recommends additional email recipients based on a 
few seed contacts and a social graph constructed from 
previous email [34]. However, ReGroup provides more 
control over its suggestions by continuing to iteratively 
update its underlying model based on further examples.  

Our work also contributes to recent research on designing 
end-user interactive machine learning systems (e.g., [8,10]). 
Most similar to our work is Fang and LeFevre’s interactive 
machine learning-based privacy wizard for online social 
networks [9]. Their wizard employs active learning to 
construct a privacy classifier that maps item-friend pairs to 
allow or deny actions. ReGroup differs in that we use 
end-user interactive machine learning as a tool for helping 
people select members of a group rather than for creating a 
robust classifier. As a result, ReGroup’s design aims to 
balance end-user flexibility and control with speed, as 
opposed to an active learning approach that prioritizes 
speed at the potential expense of user experience [2]. 
Furthermore, ReGroup preserves end-user desired control 
of group membership [14] by requiring explicit approval of 
group members instead of delegating control to a classifier. 

Defining groups via member examples and interaction with 
group characteristics is related to work on example and 
feature-based feedback in interactive machine learning 
systems [6,32,45]. Each of these explored the utility of 
feature or example-and-feature-based feedback for creating 
document classifiers. Wong et al. [45] allowed end-users to 
explicitly define relevant features by highlighting words 
used to update a classifier model. Other work [6,32] has 
taken an active learning approach to soliciting end-user 
labels of features and examples. Our approach differs in 
that we do not solicit feature-level feedback for the purpose 
of training a classifier. Rather, we enable feature interaction 
for the purpose of helping people search for relevant 
examples. Our approach uses a novel technique of 
integrating human knowledge of features into the 
interactive machine learning process through filtering on 
group characteristics. This makes our work more similar to 
work on faceted search and interaction [15].  

Secord et al. [35] explored example and facet-based 
interaction for creating collections of music (i.e., playlists). 
In their system, end-users could both view songs related to 
given examples or enter textual queries (e.g., “lots of rock”) 
that were then mapped to facet values (e.g., genre=rock) 
and used as constraints on song recommendations. Their 



rationale for free form, text-based facet interaction was that 
songs have potentially hundreds of facets and traditional 
static presentations of facets would be too cumbersome for 
interaction. The social network domain can also have an 
overabundance of facets, however our approach is to 
highlight and rank facets highly relevant to the intended 
group. This approach favors recognition of relevant facets 
instead of relying upon recall, which can be particularly 
useful when facets are vague or difficult to define. 

Previous approaches to facet ranking for search result 
exploration have based ranking on hit count [15], query 
keywords [46], query logs and click through data [42], or 
user models defined by explicit ratings of documents [18]. 
We base ranking on statistical regularities of the currently 
selected group members. Most similar to our approach is Li 
et al.’s Facetedpedia [21], which extracts and ranks facets 
based on the top results of a keyword search. However, 
their ranking is based on the navigation cost of reaching the 
top results and therefore serves more as a sense-making tool 
rather than a tool to search for additional items. 

CONCLUSION AND FUTURE WORK 

This paper presented ReGroup, a novel system that employs 
end-user interactive machine learning to help people create 
custom groups on-demand in online social networks. Our 
evaluation showed that different group creation techniques 
helped in creating different kinds of groups. For example, 
the traditional search-by-name approach is efficient for 
small, well-defined groups where members are easy to 
recall by name. ReGroup’s support for recognition over 
recall, embodied by both its group member and filter 
suggestions, helps for larger and more varied groups. 
Therefore, we advocate integrating ReGroup’s novel 
techniques with traditional methods used in online social 
networks to support a wider range of potential groups. 

This paper also discussed the design challenges associated 
with interactive machine learning in social access control 
and detailed how we addressed these challenges in 
ReGroup. One challenge was in addressing unlearnable 
groups, typically the result of missing information. 
Although we attempted to address this issue with our 
technique for group member prediction, it still caused some 
frustrations during our evaluation. Additional features 
should improve ReGroup’s performance, but missing data 
is inherent to social networks. Future work might therefore 
aim to detect such cases and degrade gracefully. Another 
design decision was to focus end-user attention on creating 
groups, rather than on training a robust classifier. However, 
creating a classifier as a by-product of group creation could 
enable automatic group maintenance as relationships 
change over time. In the future we hope to evaluate 
ReGroup’s classifiers for group maintenance and to design 
additional interaction techniques to support this task. 
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