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ABSTRACT 
Gesture-based interactions have become an essential part of 
the modern user interface. However, it remains challenging 
for developers to create gestures for their applications. This 
paper studies unistroke gestures, an important category of 
gestures defined by their single-stroke trajectories. We 
present Gesture Script, a tool for creating unistroke gesture 
recognizers. Gesture Script enhances example-based 
learning with interactive declarative guidance through 
rendering scripts and interactively trained parts. The 
structural information from the rendering scripts allows 
Gesture Script to synthesize gesture variations and generate 
a more accurate recognizer that also automatically extracts 
gesture attributes needed by applications. The results of our 
study with developers show that Gesture Script preserves 
the threshold of familiar example-based gesture tools, while 
raising the ceiling of the recognizers created in such tools. 
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INTRODUCTION 
The continuing rise of ubiquitous touchscreen devices 
highlights both needs and opportunities for gesture-based 
interaction. Symbolic gestures are an important category of 
gestures, defined by their trajectories (e.g., a circle, an 
arrow, a spring, each character in an alphabet). Symbolic 
gestures have been extensively studied [3,17,27,32,34], and 
are increasingly common in everyday interaction. However, 
implementation of gesture recognition remains difficult. 
Because of this difficulty, many developers either decide 
against adopting gesture recognition or instead limit 
themselves to simple gestures to make recognition easier. 

Extensive research examines tools to support developers 
creating gestures for their applications [14,15,18,19,27]. 

This paper addresses symbolic, unistroke gestures. Current 
approaches to tool support focus on example-based training. 
One well-known exemplar of such tool support is the $1 
Recognizer [34]. The $1 Recognizer allows developers to 
create a gesture recognizer by providing examples of each 
class of gesture. It then recognizes gestures using a 
nearest-neighbor classifier based on a distance metric that is 
scale and rotation invariant. At runtime, the recognizer 
compares new gestures to the provided examples and 
outputs a recognized class. Such an example-only approach 
hides recognizer complexity, but has key limitations. 

First, example-only approaches provide 
little control to developers creating a 
recognizer. Consider a scenario where a 
recognizer is having trouble reliably distinguishing between 
a triangle and a sector. In a strictly example-only system, a 
developer’s only recourse is to provide more examples and 
hope the system eventually learns to differentiate the 
gestures. A better approach would allow developers to 
provide more information about the gestures. For example, 
a developer might indicate that a triangle is made of three 
lines, while a sector is made of two lines and an arc. 

Second, example-only approaches limit the complexity of 
gestures developers can create for applications. Without any 
other knowledge, it is hard to efficiently learn gestures from 
only examples. For example, consider a spring gesture that 
can contain a varying number of zigzags. Such a gesture 
does not have a fixed shape, so it will be difficult for the $1 
Recognizer to learn. With current example-only tools, a 
developer is left to provide many examples that attempt to 
cover the range of variation (e.g., illustrating examples of 
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Figure 1: Developers use Gesture Script to incorporate 
gesture recognizers in their applications. They provide 
example gestures, create scripts, and define parts to build 
recognizers capable of both classifying gestures and 
recovering important attributes from the gestures. 



 

springs containing all possible numbers of zigzags). This 
can be tedious and inefficient, and it often still does not 
yield an acceptable recognizer. 

Third, many applications require attributes of gestures 
beyond just their recognized class. For example, an 
application that recognizes an arrow gesture may also need 
to know its orientation and length. Prior work has focused 
on recognizing the correct class [3,17,27,32,34], so a 
developer is generally left to recover such attributes on their 
own. In our example, a developer might write custom code 
to infer an arrow’s orientation and length by analyzing the 
gesture’s two most distant points. Although straightforward 
for an arrow, some attributes can require analyses that are 
as complicated as the recognizer (e.g., recovering the 
number of zigzags in a spring). A better approach would 
allow developers to leverage the primary recognizer to 
recover attributes of a gesture needed by an application. 

This paper presents Gesture Script, a new tool for 
developers incorporating gesture recognizers in their 
applications. As in previous example-based tools, Gesture 
Script allows developers to create a recognizer by simply 
providing examples of desired gestures. But we also 
enhance this core capability with several novel and 
powerful techniques as shown in Figure 1. Gesture Script 
allows developers to describe the structure of a gesture 
using a rendering script. A rendering script describes the 
process of performing a gesture as drawing a sequence of 
user-defined parts. The parts of a gesture can be learned 
from provided examples, and they can also be interactively 
specified. Scripts and their parts allow synthesis of new 
examples, helping developers quickly add greater variation 
to their training examples. Taken together, these 
capabilities allow developers to create more powerful 
gesture recognizers than prior example-based gesture tools. 
At runtime, the resulting recognizers are also able to 

recover specified attributes of the structure of gestures, 
extracting them and providing them to applications together 
with the gesture’s recognized class. 

The contributions of this work include: 
 Introduction of rendering scripts as a technique to allow 
developers to combine example-based training with more 
explicit communication of gesture structure. 

 A novel developer tool that uses rendering scripts to learn 
more accurate gesture recognizers, gives developers 
additional control over learning, and supports automatic 
recovery of gesture attributes. 

 A set of interactive techniques for specifying the 
primitive parts of gestures and for adding greater 
variation to an example gesture set. 

 A set of algorithms for learning the primitive parts of 
gestures from example gestures, rendering scripts, and 
interactive feedback on primitive parts, as well as 
algorithms for learning a gesture recognizer. 

 Validation of Gesture Script in both initial experiments 
with developers and in detailed analyses of recognition 
reliability for multiple gesture datasets. 

The next section discusses how a developer uses Gesture 
Script to interactively create a recognizer for a set of 
unistroke gestures and how they extract important attributes 
from those gestures. We then more formally introduce our 
rendering scripts and discuss what gesture structures can be 
described. Next, we discuss our algorithms for learning 
user-defined parts, synthesizing gesture examples, and 
learning the final gesture recognizer. We then evaluate 
Gesture Script through an initial study with developers and 
examination of recognition rates on multiple gesture 
datasets. Finally, we survey related work, discuss 
limitations and opportunities for future work, and conclude. 

 
Figure 2: The main Gesture Script interface. Developers use the gesture bin on the left to define gesture classes and understand 
recognition accuracy for each class. They also work with example gestures and the gesture canvas in the center to define and 
inspect gestures and parts. On the right they author rendering scripts and incorporate examples synthesized from these scripts. 



 

INTERACTING WITH GESTURE SCRIPT 
We introduce Gesture Script by following a developer as 
she implements a recognizer for a small set of unistroke 
gestures. Ann needs to recognize four gestures in her 
application, as shown in Figure 2: Arrow1 will create a 
solid arrow of the same orientation and length as the 
gesture, Arrow2 will create a hollow arrow in the same 
orientation and length as the gesture, Spring1 will add a 
resistor with the same number of zigzags as the gesture, and 
Spring2 will add an inductor with the same number of coils 
as the gesture. Note that Ann’s application needs to know 
the orientation and length of arrows as well as the number 
of zigzags and coils in springs in order to support 
simulations informed by the gestures. 

Example-Based Demonstration of Gestures 
Like prior example-only systems, Gesture Script allows 
developers to quickly create a recognizer simply by 
demonstrating examples of each gesture class within the 
Gesture Script interface. Ann first creates four gesture 
categories in the gesture bin and names them accordingly 
(i.e., Arrow1, Arrow2, Spring1, and Spring2). For each 
gesture category, Ann records a few examples by drawing 
on the gesture canvas in the center column of Figure 2’s 
view of the interface. After the examples are recorded, Ann 
immediately has a gesture recognizer. Although Ann will 
extend the capabilities of her recognizer beyond what is 
possible with prior example-only systems, Gesture Script 
preserves the core interaction of quickly training a 
recognizer by example (i.e., Gesture Script raises the 
ceiling for gesture recognizer tools but preserves the same 
low threshold as prior example-only systems [17,27,34]). 

Experimental Cross-Validation 
To experimentally test her recognizer, Ann clicks the blue 
button in the upper-left corner of Figure 2’s gesture bin. 
Gesture Script performs a random 10-fold cross validation 
on the recorded gesture set and updates the blue button to 
show result of the cross-validation as an estimate of the 
accuracy of the current recognizer. Gesture Script also 
displays the recall value for each gesture class next to its 
thumbnail to inform the developer how many of the 
provided examples are correctly recognized. 

The cross-validation can only be interpreted as recognition 
performance over the recorded gestures. When the recorded 
gesture set fails to capture the qualities of real-world 
gestures, the cross-validation can report high accuracy for a 
recognizer that will actually perform poorly in practice. 
This can occur if the gesture set is too small to illustrate a 
space of gestures, or if the example gestures are too similar 
and fail to demonstrate real-world variation within a class. 
To produce a high-quality recognizer, Ann therefore needs 
a good cross-validation result on a realistic set of example 
gestures demonstrating real-world variation. 

Describing Gestures with Rendering Scripts 
When Ann sees that her cross-validation reports a low 
accuracy, she seeks ways to improve her recognizer. She 

could provide additional examples, or she can write 
rendering scripts that describe the structure of her gestures. 

Ann creates a simple rendering script that uses a sequence 
of draw commands to describe Arrow1 as drawing a part 
called Line followed by a part called Head1, as in Figure 3. 
Similarly, Ann defines the slightly different Arrow2 as first 
drawing a Line and then a Head2. Importantly, parts are all 
user-defined. Gesture Script does not have any pre-existing 
notion of a line or an arrowhead, but will learn these parts 
from Ann’s examples and interactive guidance. Part names 
are globally scoped, so the Line part in Arrow1’s script is 
the same as the Line part in Arrow2’s script. 

Spring1 and Spring2 are a bit more complicated, as the 
bodies of the gestures contain repetitive patterns. Gesture 
Script supports such gestures with a repeat command. Ann 
describes Spring1 as first drawing a Spring1Head, then a 
series of one or more Cap parts, and finally a Spring1Tail. 
She similarly defines Spring2 to include a Spring2Head, 
one or more Coil, and a Spring2Tail.  

There are multiple scripts that can describe the same 
gesture, including multiple potential alternatives for each of 

Gesture One option Alternative 

Arrow1 

 

draw(Line) 
draw(Head1) 
 

  

draw(Line) 
draw(ThickLine) 
draw(Line) 

  

Arrow2 

 

draw(Line) 
draw(Head2) 
 

  

draw(Line) 
draw(Line) 
draw(Line) 
draw(Line) 

 

Spring1

 

draw(String1Head) 
repeat 
  draw(Cap) 
draw(String1Tail) 

   
or 

   

draw(Line) 
draw(Line) 
repeat 
  draw(V) 
draw(Line) 
draw(Line) 
 

  

Spring2

 

draw(String2Head) 
repeat 
  draw(Coil) 
draw(String2Tail) 
 

   

draw(Line) 
draw(Arc) 
repeat 
  draw(Coil) 
draw(Arc) 
draw(Line) 

   

Figure 3: Scripts provide multiple ways to define a gesture. 
For instance, this table presents two different scripts for 
each gesture. There can also be alternative interpretations of 
a part for the same script, as shown in gesture Spring1. 

 



 

Ann’s scripts. Even for the same script, multiple 
interpretations of the named parts might be consistent with 
provided examples. Figure 3 shows example alternative 
scripts for each of Ann’s gestures as well as two different 
interpretations of the parts in her Spring1 script. Some 
scripts are more effective in improving recognition. In our 
experience, a good strategy is to reuse parts among scripts 
when possible, as this helps the recognizer isolate and focus 
on the other more discriminative parts of gestures. 

Interactively Training User-Defined Parts 
Scripts define a global set of user-defined parts. However, 
the shapes of those parts are unknown (i.e., Gesture Script 
does not have any pre-conceived notion of a line as the 
shortest path between two points, nor of the two different 
styles of arrowhead in Ann’s scripts). When a gesture class 
is selected, Gesture Script shows its current understanding 
of the appearance of each part defined in the gesture’s 
rendering script (see the top center of Figure 2). An empty 
box is shown if Gesture Script has not yet learned a shape. 

After defining her scripts, Ann clicks on the refresh 
button in the center of the Gesture Script interface. 
Gesture Script then tries to learn all of the parts defined in 
Ann’s scripts. It tries to learn the appearance of each part 
from the example gestures (i.e., searching among potential 
shapes of parts to find those that best fit the gesture 
examples). The learned parts are then visualized. 

Unfortunately, the space of possible shapes for parts is very 
large. Given computational constraints, Gesture Script is 
only able to find a set of local minima and pick the best. 
When gestures are simple, Gesture Script is generally able 
to find parts that match the developer’s intent. However, it 
does not always find the best shapes for parts. Figure 4 
shows an example where Gesture Script has not identified 
the intended distinction between Line and Head2 in Ann’s 
Arrow2 gesture. Gesture Script provides developers with 
two methods for interactively guiding part learning. 

Interactively Labeling Part Segmentation 
A developer can interactively specify one or more 
segmentation points in any of their example gestures by 
clicking that point in the gesture visualization. For example, 
Ann can label the end of the Line in any of her examples of 
Arrow2. Interactively provided segmentations thus guide 
search to the intended part shapes (e.g., see Figure 4a). 

Providing Examples of User-Defined Parts 
With a large number of examples, labeling segmentations 
can be laborious. Gesture Script also allows providing a 
rough part shape by directly drawing the part within the box 
intended to visualize that part (i.e., within the boxes at the 
top center of Figure 2). The demonstration is then used as a 
rough indication of the desired shape of that part and guides 
search to the intended part shapes (e.g., see Figure 4b). 

Synthesizing Additional Examples 
As we previously discussed, training a high-quality 
recognizer requires that a developer obtain examples that 

illustrate sufficient variation to enable good performance on 
future real-world data. To help developers include greater 
variation in their example gestures, Gesture Script uses 
rendering scripts and learned parts to generate new potential 
examples of gestures, as displayed in the bottom right of 
Figure 2. Gesture Script introduces variation by changing 
the relative scale of each part and the angles of rotation 
between parts. Ann can quickly scan the synthesized 
examples, select interesting cases, and add them to her 
training set. When she finds examples that demonstrate so 
much variation that she no longer considers them an 
example of the gesture, she selects them and clicks the 
“Reject and Refresh” button. Gesture Script uses this 
feedback to guide its generation of additional examples. 

Recovering Attributes of Gesture 
Gesture Script allows developers to include variables in 
scripts that specify attributes that should be recovered from 
a recognized gesture. Specifically, we currently support 
recovering the number of times a part is repeated within a 
given gesture as well as the angles between parts in a 
particular gesture. For example, in Figure 5 Ann recovers 
the orientation of the Line in Arrow1 gesture by adding a 
rotate command using the dir variable. Similarly, she 
recovers the number of repeated Cap parts in a Spring1 
gesture by adding the variable n to her repeat command. 
When using the recognizer in her application, Ann can 
access these attributes by simply accessing the variables 
dir and n on recognized instances of these gestures. 

Iterative Improvement and Evaluation 
The overall process of training an effective recognizer is 
highly iterative and exploratory. Ann adds more examples, 
modifies her rendering scripts, interactively defines parts, 

 

 
Figure 4: Gesture Script presents feedback in red when 
developers interactively define parts. When an undesired 
shape is learned for a part, developers have two options: 
they can manually label a segmentation point, or they can 
draw over the visualized part to define its appearance. 

 
Figure 5: Script variables are used to define the attributes 
that will be extracted from a gesture. Here the developer 
specifies dir to extract a gesture’s initial rotation, and n to 
extract the number of repetitions in a gesture. 

 



 

and examines the cross-validation performance of her 
recognizer as she works. Gesture Script also allows Ann to 
interactively test her current recognizer. When Ann gestures 
in the test window, Gesture Script presents the current 
recognizer’s predicted class and any extracted gesture 
attributes. If Ann creates an example that is misrecognized 
or otherwise interesting, she can directly add it to her 
example gestures. When complete, Ann has a reliable 
recognizer that automatically extracts gesture attributes. 

Incorporating the Recognizer 
This paper focuses on creating the recognizer. After a 
recognizer is created, incorporating it in the developer’s 
application is analogous to prior work [34]. Ann will add 
two things: (1) the recognition module containing the 
algorithms and (2) the model files for her gestures as 
created, trained, and exported from Gesture Script. 

DESCRIBING GESTURES USING RENDERING SCRIPTS 
Prior to discussing our implementation, we first detail our 
rendering script language, as it defines how developers can 
communicate the intended structure of gestures and is 
important to the effectiveness of Gesture Script. 

Unistroke gestures have been extensively studied, and we 
surveyed gestures found in the research literature and 
commercial applications [1,5,16,21,23,28,33,35]. Unistroke 
gestures can be arbitrarily complex in theory, but in practice 
are much simpler. One reason is that people must be 
capable of remembering and reliably producing the gesture. 
We have found most unistroke gestures can be broken into 
a fixed number of parts, while others contain repetition. 
Our script language supports this, describing gestures as a 
sequence of structures. Each structure can be either a 
user-defined part or a repetition of a user-defined part. 

Under such a description, possible gesture attributes include 
the angles between structures, the number of repetitions of a 
part, and the angle between repetitions. The size and 
location of a particular part can also be useful and is easily 
retrieved from the bounding box of a part. 

The syntax of our script language is defined as: 
  Script :- Structure*; 
  Structure :-  
    [rotate(X)]? 
      [repeat[(N[, Y)]?]?]? 
        draw(P); 

P is gesture part. X, N, and Y are script variables. They do 
not describe gestures, but rather allow developers to 
indicate what gesture attributes are of interest. 

ALGORITHMS 
We now present the algorithms Gesture Script uses to learn 
parts, synthesize gesture examples, and learn a recognizer. 

Learning Gesture Parts 
The provided rendering scripts introduce a set of global 
parts. This section first addresses the unsupervised learning 
problem, where we learn parts from only gesture examples. 

As a high-level overview, we first heuristically generate a 
shape for each part. We then use these initial part shapes to 
segment each example in the way that best matches the 
corresponding parts in its script. We score the match that 
results from segmentation of each example and then 
compute a total score over all examples. After segmenting 
all the examples, we have a set of gesture segments 
corresponding to each part, which we then use to update our 
estimate of the shape of the part. We iteratively improve 
our estimate of the shapes of parts until there is no 
improvement in the total score. We repeat this process 
several times (20 in our current implementation), each time 
with different initial random part shapes. This subsection 
details each step and how we incorporate interactive 
feedback (i.e., part segmentation and provided part shapes). 

Preprocessing and Initial Shapes 
Gestures typically contain hundreds of points, and 
considering every point as a segmentation boundary 
becomes computationally prohibitive. We therefore first 
approximate the gesture as a sequence of line segments 
using the bottom-up segmentation algorithm described by 
Keogh et al. [13]. We then only consider endpoints of these 
line segments as candidates for boundaries between parts. 

As in prior instance-based gesture recognition [17,34], we 
represent a part by sampling a set of equidistant points 
along its trajectory, normalized by its vector magnitude: 
(x1, y1, x2, y2, …, xn, yn), with n = 32 in our implementation. 

To generate initial part shapes, we find the simplest 
example corresponding to a script that contains the part 
(i.e., the example with the fewest segmentation candidates). 
We then randomly pick a segment as the initial part shape. 

Matching a Gesture to a Script 
To segment an example gesture to match a script, we first 
define our similarity metric. Our similarity metric is based 
on Protractor [17]. When a gesture segment is matched to a 
simple part, their distance is the cosine distance defined as:  
 d(Gseg,V part ) = arccos(V seg V part )   (1) 
where Vseg is a resampling of Gseg rotated to an aligned 
angle.  We assume vectors are normalized by magnitude.  

When a gesture segment is matched to a repetition, we find 
the best way to break it into subsegments that each matches 
the part shape, then use the average distance of the 
subsegments to the part shape as a distance measure: 

d(Gseg,R(V part )) = min
n,θ ;Δ;Γ

{ 1
n
d(GΓi

seg(θ + i×Δ),V part )
i
∑ }   (2) 

where n is the number of repetitions, θ is the initial angle, 
Δ is the change in angle between each repetition, and Γ is 
the segmentation. 

Given these metrics for the distance between a gesture 
segment and an individual part or a repetition, the overall 
distance between an example gesture and a script can then 
be defined as the average distance of its segments to the 
corresponding structures: 



 

 d(G,S0:K−1) =min
Γ
{ 1

K
d(GΓi ,Si )

0≤i<K
∑ }   (3) 

where Si is a structure (i.e., either a repetition or a part) 
and Γ is the segmentation. 

We segment an example gesture to best match a script by 
solving equation (3). We use dynamic programming: 

d(Ga:b,Sj:K−1) = min
a<i≤b, j<K

{ 1
K
d(Ga:i,Sj )+ d(Gi:b,Sj+1:K−1)}  (4) 

where a, b and i are end points in the gesture, and a:b 
means a gesture segment between point a and point b.  

For equation (2), we use a greedy algorithm. Although 
dynamic programming can be used, it has many states 
(n, θ, Δ) and it is nested within the dynamic programming 
for equation (4). Solving equation (2) using dynamic 
programming is therefore costly. We instead scan the end 
points in Gseg and find the segment with the lowest distance 
to equation (1)’s part Vpart. We use this as the first segment. 
We then repeat and update θ and Δ along the way until we 
reach the end point. To compensate for a lack of lookahead 
in the greedy approach, we then perform a back scan to 
merge segments that further reduce the distance. 

Updating Part Shapes and Iteration 
We can now match gesture examples to scripts and thus 
obtain a set of gesture segments for each part. To update the 
current estimate of the shape of a part, we compute the 
average of segments after normalization and alignment: 

 V part = Normalize( 1
T

V segi

0≤i<T
∑ )  (5) 

We then iterate between segmenting gesture examples and 
updating parts until the total distance between gestures and 
scripts can no longer be improved. 

Incorporating Interactive Feedback 
As previously discussed, developers can improve learning 
of parts by manually labeling the part segmentation points 
and by drawing examples of individual part shapes. We can 
integrate this interactive guidance into our unsupervised 
learning. For interactively labeled part segmentation points, 
we modify our matching algorithm in equation (2) and (4) 
to require selection of interactively labeled segmentation 
points. In the case of interactively provided examples of 
part shapes, we use them as the initial shapes in the search. 
This explicit developer guidance is more effective than 
random selection of an initial part shape. 

Gesture Synthesis 
After part shapes are learned, we can synthesize gesture 
examples by following the procedural steps specified in a 
rendering script. The goal is to help developers introduce 
variation into their examples. Synthesized examples can 
vary in their parameters (i.e., the angles between parts, the 
relative scale of parts, and the number of repetitions). 
However, we cannot simply use random values for these 
parameters. If the number of parameters is n and the 
number of values for each parameter is about m, the total 

number of different examples will be mn, most of which 
will not be meaningful. Randomly generated parameters are 
unlikely to generate helpful suggested examples. 

We therefore choose to vary one parameter at a time. 
We first use our part matching algorithm to find the values 
of one parameter in the existing examples, then map them 
in one dimension. We identify the largest gaps in this space 
(i.e., where no values have been previously selected), 
as these are promising regions for exploring variation. 
We then vary the parameter using values from these gaps. 

When developers reject generated examples, those 
parameter values are marked in their value space. We then 
prioritize the gaps between positive and negative example 
values, which may contain the most information. 

Gesture Recognition 
We now discuss creating the recognizer from examples, 
scripts, and parts. We compute features for each example, 
and then we train a linear SVM multi-class classifier. 

If there are N gesture classes, the features for a gesture 
consist of N+1 groups of features. The first group of 
features can be represented as {f0, f1, …, fN-1}, where fi is the 
minimum cosine distance of the gesture to example gestures 
in the i-th class. These features are the same distances used 
in Protractor [17], and including them preserves Protactor's 
strong example-only performance. 

The remaining N feature groups are generated from the 
script of the i-th gesture class, giving the recognizer access 
to additional information the script provides about gesture 
structure. For the i-th group, with a script containing K 
structures, an example gesture’s features are represented as 
{d0, d1, …, dK-1, r0,1, r1,2, …, rK-2,K-1, s1, s2, …, sK-1}. The 
example gesture is first matched to the script using our 
matching algorithm. We then compute features as follows: 
di is the distance between the i-th structure to the 
corresponding gesture segment per equation (1) or (2); 
ri,i+1 is the angle between the aligned angle of the i-th 
structure and that of the (i+1)-th structure; and si is the 
scale ratio of the i-th matched gesture segment to the first 
matched gesture segment. In essence, these features encode 
how well an example matches the parts in a script and how 
an example’s parts are arranged in terms of their relative 
angles and relative scales. 

We scale each feature to the range of -1 to 1, then train a 
multi-class SVM classifier with a linear kernel. At runtime, 
the SVM predicts gesture category and we use the results of 
our matching to extract gesture parts and attributes. 

The computational cost of our recognizers is comparable to 
Protractor. In the simplest case with no scripts, the cost is 
that of Protractor plus a smaller cost from a linear SVM. 
When scripts are specified, the additional cost for each 
script over Protractor is O(k2 + k*m2*c + k’*m4), where k is 
the number of parts, m is the number of segmentation 
candidates, c is the number of sampling points, and k’ is the 



 

number of parts with repetition. Assuming k = 4, m = 10, 
k’ = 1, and c = 32, this is about the cost of an additional 
1000 examples in a Protractor recognizer. This is practical 
and has not been an issue in our experiments. 

VALIDATION 
To validate and gain insight into Gesture Script, we now 
present a series of experiments. First is an initial laboratory 
study with four developers, observing their use of and 
reactions to Gesture Script. Second is our collection of data 
to evaluate the performance of Gesture Script’s recognition. 
Finally, we analyze recognition performance from several 
perspectives: (1) we test recognizers that developers created 
in our study, (2) we examine recognition with a larger set of 
gesture classes, and (3) we examine recognition of simple, 
compound, and high-variation gesture datasets. 

Study with Developers 
To obtain initial feedback on the usability of Gesture Script 
and the usefulness of its features, we conducted a laboratory 
study with 4 programmers recruited from our organization 
(2 male and 2 female). None had previously programmed 
gesture recognition, but all had used machine learning. 

Study Setup 
We asked each participant to train a gesture recognizer for 
the seven gestures in Figure 6 and to extract gesture 
attributes including the direction of each arrow and number 
of repetitions in each spring. The size of the gesture set was 
chosen to be appropriate for a laboratory study. The specific 
gestures were chosen so they are not easily distinguishable 
to a simple instance-based recognizer. They require 
non-trivial effort to add examples, iterate on scripts, and 
train parts to achieve a good recognition performance. 

We first gave participants a tutorial on Gesture Script. We 
then walked through the process of creating a recognizer for 
two simple gestures, a triangle and a rectangle. Next, 
participants completed a warm-up task to train a recognizer 
for Figure 8’s “v” and “delete”. 

We then asked participants to work on the main task, 
creating a recognizer for the seven gestures from scratch. 
We asked participants to think as developers looking to 
create the recognizer for their software. The goal was to 
train a quality recognizer and to improve its recognition 
until satisfied. We limited the task time to one hour. 
Finally, participants completed a post-study questionnaire. 

The study was conducted on a ThinkPad X220 Tablet PC 
with stylus support. Participants had a keyboard and mouse, 
and all used the stylus for gesture input. 

Results 
All 4 participants completed the study with satisfactory 
recognition performance. Participants added a total of 341 
gesture examples (i.e., 12.2 examples per class per 
participant) and wrote a total of 26 scripts (with 82 
non-empty lines and 36 parts). Popular features included 
gesture synthesis (participants used 106 synthesized 
gestures) and providing examples for parts (participants 

provided 20 examples for individual parts). In the 
post-study questionnaire, all participants agreed Gesture 
Script is useful, easy to understand, and that it was easy to 
improve recognition. Figure 7 presents all Likert scales. 

When asked what they liked best, all participants mentioned 
Gesture Script’s ease of use. One commented “it provides a 
very high-level API for developers to construct a 
recognizer.” Another participant liked that they could “write 
scripts to break down a complicated gesture into parts.”  

When asked what had been most confusing, participants 
expressed the frustration of understanding why a recognizer 
was failing: “[what is] the reason behind why one gesture 
is confused with another gesture.” Consistent with prior 
machine learning tools [10,24,25], participants adopted 
iterative and exploratory strategies to improve their 
recognizers. Participants wanted an ability to see 
misclassified gestures, as they found accuracy and recall 
helpful to understand overall performance but also wanted 
to see how specific instances failed. 

We also added two features based on feedback from the 
participants. First, we added support for adding 
misclassified gestures directly to the training set from the 
testing window. Second, we added the ability to clear all 
user-labeled segmentations. As the participants iterated on 
scripts and parts, previously labeled segmentations could 
become incorrect and a hassle to remove or correct. 

3 participants suggested in the post-study questionnaire that 
they wanted the script language to be more powerful. They 
suggested being able to specify constraints on aspects of a 
script, such as referencing variables from multiple locations 
in a script. This aligns with our vision for future work. 

Data Collection 
To obtain additional data for further evaluating Gesture 
Script, we collected 24 gesture classes from 10 participants. 
Each participant was asked to perform 10 gestures for each 
class, yielding a total of 2400 gestures. Data collection was 
done on a ThinkPad X220 Tablet PC, and all gestures were 
input with the stylus. All participants were right handed. 
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Arrow3 
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W_O 

 

O_O 

Figure 6: Our study includes seven gestures. The arrows can 
point any direction, springs can have arbitrary number of 
repetitions, and the W_O and O_O gestures can place the 
circle part at arbitrary locations indicating region for action. 

 
Figure 7: The Likert scales from our post-study survey, 
presented from strongly agree to strongly disagree. 

 



 

We explicitly asked participants to include variation in how 
they performed gestures of the same class.  

The 24 gestures are illustrated in Figure 8. The leftmost 16 
are from the website for the $1 Recognizer (except for 
“zigzag”, these are identical to the gestures in [34]). 
The rightmost 8 are new gestures with more flexible 
structures. For instance, the springs can have an arbitrary 
number of repetitions and the circle in the “w_o” gesture 
can be placed at any position relative to w. All these 
gestures are from the literature or commercial contexts, and 
have practical applications. In the remainder of our 
analyses, we refer to the leftmost 16 gestures as simple. 
We refer to the rightmost 8 as compound gestures. 

Recognition Evaluation 
We first tested the four recognizers created in our study 
against the newly collected data. We tested only the 7 
gesture classes the developers had trained, a total of 700 
gestures. We compare the results against recognizers 
trained using the $1 Recognizer, Protractor, and Gesture 
Script without scripts. Results are presented in Figure 9. 
With an average accuracy of 89.6%, these results show that 
the recognizers from the study have much better accuracy 
than existing example-only methods. The best recognizer is 
from P4, whose accuracy is 94.7%. When scripts are not 
used, as in the other three conditions, accuracies drop to an 
average of 68.7%. Enabling a developer who has never 
programmed gestures to build an accurate recognizer for a 
non-trivial set of gestures in less than an hour is promising. 

To further examine Gesture Script recognition, we next 
conducted cross-validation experiments with our full 
dataset. We expected recognition of compound gestures to 
be more difficult, so we considered them separately from 
simple gestures. To examine the impact of the number and 
diversity of training examples, we conducted two 
cross-validations. Train-on-1 considered limited training 
data, training on examples from 1 person and testing on 
examples from the other 9. Train-on-9 considered greater 
training data availability, training on examples from 9 
people and testing on examples from the other 1. We again 
compare Gesture Script with the $1 Recognizer, Protractor, 
and Gesture Script without scripts. In the Gesture Script 
condition, the authors created a script for each gesture. 

Results are presented in Figure 10. For compound gestures, 
Gesture Script obtains the best results in both the train-on-1 
and train-on-9 conditions. Gesture Script obtains 89.6% 
accuracy in the compound train-on-1 data, compared to an 
average of 68.0% for example-only conditions. Gesture 
Script obtains 99.5% accuracy in the compound train-on-9 
data, compared to an average of 92.1% for example-only 
conditions. On simple gestures, all recognizers have similar 
performance. These results are consistent with our goal of 
raising the ceiling for gesture creation tools while 
preserving the low threshold of existing example-only tools. 

Given the extreme accuracy of all train-on-9 recognizers 
for simple gestures, we suspected a ceiling effect (i.e., the 
experiment was too easy to differentiate the recognizers). 
We suspected this is because of the high consistency in 
simple gestures (i.e., low variation in how they were 
performed). As an early investigation, we created a new 
high-variation dataset. This consists of 10 examples of each 
simple gesture, created by the authors to exhibit high 
variation in form. We then tested the recognizers from our 
previous train-on-1 and train-on-9 cross-validations against 
the high-variation data. Recall these were trained on data 

  
Figure 8: The 24 types of gestures in our data collection, 
with 16 simple on the left and 8 compound on the right. 

 
Figure 9: Gesture Script recognizers created by the 
developers in our study obtain better recognition results 
than example-only methods. 
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Figure 10: Gesture Script obtains better results on compound 
gestures, while being no worse on simple gestures. This is 
consistent with raising the ceiling for gesture creation tools 
while preserving the low threshold of example-based tools. 

 



 

containing little variation, so our goal was to test how 
methods perform on examples containing previously unseen 
variation. Results are shown in Figure 11. This provides an 
early indication that Gesture Script is overall more accurate 
and robust to variation, even in simple gestures. 

We also examined performance of our parts matching by 
randomly verifying 5 example gestures per script from the 
26 scripts collected from the 4 developers in our study 
(i.e., 130 total gestures). We marked a match as correct if 
we would have matched the parts in exactly the same way; 
partially correct if one or two segmentation points were 
slightly off; and otherwise incorrect. Figure 12 illustrates a 
correct match and two examples of erroneous matches. In 
the 130 gestures we examined, 98 (75.4%) are correct, 29 
(22.3%) are partially correct, and 3 extractions (2.3%) are 
incorrect. This indicates the matching is largely effective. 

RELATED WORK 
Many symbolic gesture recognition algorithms have been 
developed, with learning-based approaches gaining 
significant popularity. Various models have been studied, 
including neural networks [26], decision trees [27,28], 
Hidden Markov Models [2,6,30], and instance-based 
learning [3,17,32,34]. Instance-based approaches have 
recently received extensive attention, due to their ease of 
implementation and good performance. $1 and $N 
recognizer use the Euclidean distance of two aligned 
gestures [3,34]. Protractor instead uses cosine distance [17]. 
Although Gesture Script learns its gesture recognizer from 
examples using a SVM, Gesture Script enhances 
example-based learning with declarative guidance through 
explicit structures in rendering scripts. Moreover, existing 
tools only recognize gesture class. Gesture Script is able to 
extract gesture attributes to support application needs. 

From an algorithmic point of view, a symbolic gesture is 
largely the same as a sketched symbol. Extensive work has 
examined recognizing and understanding sketches [12,29]. 
While enhancing example-based learning with rendering 
scripts is a novel approach, our work relates to this rich 
body of work in several ways. First, declarative scripts are 
used to define gestures in systems such as LADDER [8]. 
While Gesture Script also includes scripts, our rendering 
scripts are not gesture definitions but serve as optional 
information in addition to the example gestures. As a result, 
our scripts are much simpler and developers can be less 
precise. Second, many sketch recognition systems use parts 
in recognition [29], most based on identifying predefined 
primitive shapes using perceptual attributes such as 
curvature. In contrast, our parts are user-defined and can be 
of arbitrary shape, and we currently do not rely on 
perceptual attributes. While other systems have looked at 
arbitrary part shapes [31] and features [22], no prior work 
has the problem of learning user-defined part shapes across 
classes in an unsupervised setting. Third, Hammond and 
Davis [9] also study generating examples from scripts. 
While their purpose is to debug scripts, ours is to directly 

incorporate generated examples in learning. Moreover, in 
addition to having a different script language, our method 
considers both scripts and developer-provided examples. 

Gesture tools are also well studied [14,15,18,19,20,27]. 
The example-based approaches [18,19,27] allow developers 
to create and test gestures by recording examples. Gesture 
Script preserves this core interaction, but enables much 
more. We support interactive user guidance about the 
structure of a gesture, and believe this general strategy can 
be extended to recognition tools for other types of data. 

DISCUSSION AND FUTURE WORK 

Implementation 
Gesture Script is implemented using Java. The parser for 
rendering scripts is implemented using ANTLR [4]. The 
SVM within the gesture recognizer is provided by LIBSVM 
[7]. Our code and data are available under open license at 
https://code.google.com/p/gesture-script/. 

Variation in Gestures 
As in Figure 11, and as discussed by Kane et al. [11], 
recognizer performance can be dramatically impacted by 
variations. Because gesture tools capture gestures outside 
any application context, it is important for developers to 
include gesture examples that exhibit the gesture variation 
expected in real use. In our data collection, although we 
explicitly asked the participants to vary their performance 
of gestures, the amount of variation was still limited. One 
hypothesis is people tend to perform gestures consistently 
and it is hard to manually introduce variation. Gesture 
Script synthesizes gestures to introduce additional variation. 
The initial feedback from developers was positive. One 
opportunity for future work is to investigate the impact of 
synthesized gestures on the recognizer performance. 

Alternative Ways to Perform a Gesture 
The gestures discussed in this paper each have a unique 
way they are performed (e.g., a circle must be 
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Figure 11: Gesture Script obtains better results when tested 
against high-variation data. This provides an early indication 
Gesture Script is more accurate in the presence of variation. 

 
Figure 12: We manually inspected gesture segmentations to 
gauge how well they matched expectations. Here we show 
three cases highlighting the segmentation that was found 
(in red) versus that our annotator preferred (in green). 



 

counter-clockwise). Instance-based learning is robust to 
multiple alternative demonstrations of the same class, but 
rendering scripts face challenges due to: (a) assuming a 
unique way to perform each part, and (b) assuming a unique 
ordering of parts. One future direction is to support multiple 
alternative rendering scripts for each class of gesture. 

CONCLUSION 
We present Gesture Script, a tool for creating unistroke 
gestures. It enhances example-based learning with 
declarative guidance through rendering scripts, preserving 
the low threshold of example-based gesture tools while 
raising the ceiling of the recognizers created in such tools. 
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