

Gesture Script: Recognizing Gestures and their Structure
using Rendering Scripts and Interactively Trained Parts

Hao Lü1,2, James Fogarty1, Yang Li2
1Computer Science & Engineering

DUB Group, University of Washington
Seattle, WA 98195

{hlv, jfogarty}@cs.washington.edu

2Google Research
1600 Amphitheatre Parkway
Mountain View, CA 94043

hlv@google.com, yangli@acm.org

ABSTRACT
Gesture-based interactions have become an essential part of
the modern user interface. However, it remains challenging
for developers to create gestures for their applications. This
paper studies unistroke gestures, an important category of
gestures defined by their single-stroke trajectories. We
present Gesture Script, a tool for creating unistroke gesture
recognizers. Gesture Script enhances example-based
learning with interactive declarative guidance through
rendering scripts and interactively trained parts. The
structural information from the rendering scripts allows
Gesture Script to synthesize gesture variations and generate
a more accurate recognizer that also automatically extracts
gesture attributes needed by applications. The results of our
study with developers show that Gesture Script preserves
the threshold of familiar example-based gesture tools, while
raising the ceiling of the recognizers created in such tools.

Author Keywords
Gesture recognition; interactive machine learning.

ACM Classification Keywords
H.5.2. [User Interfaces]: Input devices and strategies, Prototyping.
I.5.2. [Pattern Recognition]: Classifier design and evaluation.

INTRODUCTION
The continuing rise of ubiquitous touchscreen devices
highlights both needs and opportunities for gesture-based
interaction. Symbolic gestures are an important category of
gestures, defined by their trajectories (e.g., a circle, an
arrow, a spring, each character in an alphabet). Symbolic
gestures have been extensively studied [3,17,27,32,34], and
are increasingly common in everyday interaction. However,
implementation of gesture recognition remains difficult.
Because of this difficulty, many developers either decide
against adopting gesture recognition or instead limit
themselves to simple gestures to make recognition easier.

Extensive research examines tools to support developers
creating gestures for their applications [14,15,18,19,27].

This paper addresses symbolic, unistroke gestures. Current
approaches to tool support focus on example-based training.
One well-known exemplar of such tool support is the $1
Recognizer [34]. The $1 Recognizer allows developers to
create a gesture recognizer by providing examples of each
class of gesture. It then recognizes gestures using a
nearest-neighbor classifier based on a distance metric that is
scale and rotation invariant. At runtime, the recognizer
compares new gestures to the provided examples and
outputs a recognized class. Such an example-only approach
hides recognizer complexity, but has key limitations.

First, example-only approaches provide
little control to developers creating a
recognizer. Consider a scenario where a
recognizer is having trouble reliably distinguishing between
a triangle and a sector. In a strictly example-only system, a
developer’s only recourse is to provide more examples and
hope the system eventually learns to differentiate the
gestures. A better approach would allow developers to
provide more information about the gestures. For example,
a developer might indicate that a triangle is made of three
lines, while a sector is made of two lines and an arc.

Second, example-only approaches limit the complexity of
gestures developers can create for applications. Without any
other knowledge, it is hard to efficiently learn gestures from
only examples. For example, consider a spring gesture that
can contain a varying number of zigzags. Such a gesture
does not have a fixed shape, so it will be difficult for the $1
Recognizer to learn. With current example-only tools, a
developer is left to provide many examples that attempt to
cover the range of variation (e.g., illustrating examples of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2473-1/14/04...$15.00.
http://dx.doi.org/10.1145/2556288.2557263

triangle sector

Figure 1: Developers use Gesture Script to incorporate
gesture recognizers in their applications. They provide
example gestures, create scripts, and define parts to build
recognizers capable of both classifying gestures and
recovering important attributes from the gestures.

springs containing all possible numbers of zigzags). This
can be tedious and inefficient, and it often still does not
yield an acceptable recognizer.

Third, many applications require attributes of gestures
beyond just their recognized class. For example, an
application that recognizes an arrow gesture may also need
to know its orientation and length. Prior work has focused
on recognizing the correct class [3,17,27,32,34], so a
developer is generally left to recover such attributes on their
own. In our example, a developer might write custom code
to infer an arrow’s orientation and length by analyzing the
gesture’s two most distant points. Although straightforward
for an arrow, some attributes can require analyses that are
as complicated as the recognizer (e.g., recovering the
number of zigzags in a spring). A better approach would
allow developers to leverage the primary recognizer to
recover attributes of a gesture needed by an application.

This paper presents Gesture Script, a new tool for
developers incorporating gesture recognizers in their
applications. As in previous example-based tools, Gesture
Script allows developers to create a recognizer by simply
providing examples of desired gestures. But we also
enhance this core capability with several novel and
powerful techniques as shown in Figure 1. Gesture Script
allows developers to describe the structure of a gesture
using a rendering script. A rendering script describes the
process of performing a gesture as drawing a sequence of
user-defined parts. The parts of a gesture can be learned
from provided examples, and they can also be interactively
specified. Scripts and their parts allow synthesis of new
examples, helping developers quickly add greater variation
to their training examples. Taken together, these
capabilities allow developers to create more powerful
gesture recognizers than prior example-based gesture tools.
At runtime, the resulting recognizers are also able to

recover specified attributes of the structure of gestures,
extracting them and providing them to applications together
with the gesture’s recognized class.

The contributions of this work include:
 Introduction of rendering scripts as a technique to allow
developers to combine example-based training with more
explicit communication of gesture structure.

 A novel developer tool that uses rendering scripts to learn
more accurate gesture recognizers, gives developers
additional control over learning, and supports automatic
recovery of gesture attributes.

 A set of interactive techniques for specifying the
primitive parts of gestures and for adding greater
variation to an example gesture set.

 A set of algorithms for learning the primitive parts of
gestures from example gestures, rendering scripts, and
interactive feedback on primitive parts, as well as
algorithms for learning a gesture recognizer.

 Validation of Gesture Script in both initial experiments
with developers and in detailed analyses of recognition
reliability for multiple gesture datasets.

The next section discusses how a developer uses Gesture
Script to interactively create a recognizer for a set of
unistroke gestures and how they extract important attributes
from those gestures. We then more formally introduce our
rendering scripts and discuss what gesture structures can be
described. Next, we discuss our algorithms for learning
user-defined parts, synthesizing gesture examples, and
learning the final gesture recognizer. We then evaluate
Gesture Script through an initial study with developers and
examination of recognition rates on multiple gesture
datasets. Finally, we survey related work, discuss
limitations and opportunities for future work, and conclude.

Figure 2: The main Gesture Script interface. Developers use the gesture bin on the left to define gesture classes and understand
recognition accuracy for each class. They also work with example gestures and the gesture canvas in the center to define and
inspect gestures and parts. On the right they author rendering scripts and incorporate examples synthesized from these scripts.

INTERACTING WITH GESTURE SCRIPT
We introduce Gesture Script by following a developer as
she implements a recognizer for a small set of unistroke
gestures. Ann needs to recognize four gestures in her
application, as shown in Figure 2: Arrow1 will create a
solid arrow of the same orientation and length as the
gesture, Arrow2 will create a hollow arrow in the same
orientation and length as the gesture, Spring1 will add a
resistor with the same number of zigzags as the gesture, and
Spring2 will add an inductor with the same number of coils
as the gesture. Note that Ann’s application needs to know
the orientation and length of arrows as well as the number
of zigzags and coils in springs in order to support
simulations informed by the gestures.

Example-Based Demonstration of Gestures
Like prior example-only systems, Gesture Script allows
developers to quickly create a recognizer simply by
demonstrating examples of each gesture class within the
Gesture Script interface. Ann first creates four gesture
categories in the gesture bin and names them accordingly
(i.e., Arrow1, Arrow2, Spring1, and Spring2). For each
gesture category, Ann records a few examples by drawing
on the gesture canvas in the center column of Figure 2’s
view of the interface. After the examples are recorded, Ann
immediately has a gesture recognizer. Although Ann will
extend the capabilities of her recognizer beyond what is
possible with prior example-only systems, Gesture Script
preserves the core interaction of quickly training a
recognizer by example (i.e., Gesture Script raises the
ceiling for gesture recognizer tools but preserves the same
low threshold as prior example-only systems [17,27,34]).

Experimental Cross-Validation
To experimentally test her recognizer, Ann clicks the blue
button in the upper-left corner of Figure 2’s gesture bin.
Gesture Script performs a random 10-fold cross validation
on the recorded gesture set and updates the blue button to
show result of the cross-validation as an estimate of the
accuracy of the current recognizer. Gesture Script also
displays the recall value for each gesture class next to its
thumbnail to inform the developer how many of the
provided examples are correctly recognized.

The cross-validation can only be interpreted as recognition
performance over the recorded gestures. When the recorded
gesture set fails to capture the qualities of real-world
gestures, the cross-validation can report high accuracy for a
recognizer that will actually perform poorly in practice.
This can occur if the gesture set is too small to illustrate a
space of gestures, or if the example gestures are too similar
and fail to demonstrate real-world variation within a class.
To produce a high-quality recognizer, Ann therefore needs
a good cross-validation result on a realistic set of example
gestures demonstrating real-world variation.

Describing Gestures with Rendering Scripts
When Ann sees that her cross-validation reports a low
accuracy, she seeks ways to improve her recognizer. She

could provide additional examples, or she can write
rendering scripts that describe the structure of her gestures.

Ann creates a simple rendering script that uses a sequence
of draw commands to describe Arrow1 as drawing a part
called Line followed by a part called Head1, as in Figure 3.
Similarly, Ann defines the slightly different Arrow2 as first
drawing a Line and then a Head2. Importantly, parts are all
user-defined. Gesture Script does not have any pre-existing
notion of a line or an arrowhead, but will learn these parts
from Ann’s examples and interactive guidance. Part names
are globally scoped, so the Line part in Arrow1’s script is
the same as the Line part in Arrow2’s script.

Spring1 and Spring2 are a bit more complicated, as the
bodies of the gestures contain repetitive patterns. Gesture
Script supports such gestures with a repeat command. Ann
describes Spring1 as first drawing a Spring1Head, then a
series of one or more Cap parts, and finally a Spring1Tail.
She similarly defines Spring2 to include a Spring2Head,
one or more Coil, and a Spring2Tail.

There are multiple scripts that can describe the same
gesture, including multiple potential alternatives for each of

Gesture One option Alternative

Arrow1

draw(Line)
draw(Head1)

draw(Line)
draw(ThickLine)
draw(Line)

Arrow2

draw(Line)
draw(Head2)

draw(Line)
draw(Line)
draw(Line)
draw(Line)

Spring1

draw(String1Head)
repeat
 draw(Cap)
draw(String1Tail)

or

draw(Line)
draw(Line)
repeat
 draw(V)
draw(Line)
draw(Line)

Spring2

draw(String2Head)
repeat
 draw(Coil)
draw(String2Tail)

draw(Line)
draw(Arc)
repeat
 draw(Coil)
draw(Arc)
draw(Line)

Figure 3: Scripts provide multiple ways to define a gesture.
For instance, this table presents two different scripts for
each gesture. There can also be alternative interpretations of
a part for the same script, as shown in gesture Spring1.

Ann’s scripts. Even for the same script, multiple
interpretations of the named parts might be consistent with
provided examples. Figure 3 shows example alternative
scripts for each of Ann’s gestures as well as two different
interpretations of the parts in her Spring1 script. Some
scripts are more effective in improving recognition. In our
experience, a good strategy is to reuse parts among scripts
when possible, as this helps the recognizer isolate and focus
on the other more discriminative parts of gestures.

Interactively Training User-Defined Parts
Scripts define a global set of user-defined parts. However,
the shapes of those parts are unknown (i.e., Gesture Script
does not have any pre-conceived notion of a line as the
shortest path between two points, nor of the two different
styles of arrowhead in Ann’s scripts). When a gesture class
is selected, Gesture Script shows its current understanding
of the appearance of each part defined in the gesture’s
rendering script (see the top center of Figure 2). An empty
box is shown if Gesture Script has not yet learned a shape.

After defining her scripts, Ann clicks on the refresh
button in the center of the Gesture Script interface.
Gesture Script then tries to learn all of the parts defined in
Ann’s scripts. It tries to learn the appearance of each part
from the example gestures (i.e., searching among potential
shapes of parts to find those that best fit the gesture
examples). The learned parts are then visualized.

Unfortunately, the space of possible shapes for parts is very
large. Given computational constraints, Gesture Script is
only able to find a set of local minima and pick the best.
When gestures are simple, Gesture Script is generally able
to find parts that match the developer’s intent. However, it
does not always find the best shapes for parts. Figure 4
shows an example where Gesture Script has not identified
the intended distinction between Line and Head2 in Ann’s
Arrow2 gesture. Gesture Script provides developers with
two methods for interactively guiding part learning.

Interactively Labeling Part Segmentation
A developer can interactively specify one or more
segmentation points in any of their example gestures by
clicking that point in the gesture visualization. For example,
Ann can label the end of the Line in any of her examples of
Arrow2. Interactively provided segmentations thus guide
search to the intended part shapes (e.g., see Figure 4a).

Providing Examples of User-Defined Parts
With a large number of examples, labeling segmentations
can be laborious. Gesture Script also allows providing a
rough part shape by directly drawing the part within the box
intended to visualize that part (i.e., within the boxes at the
top center of Figure 2). The demonstration is then used as a
rough indication of the desired shape of that part and guides
search to the intended part shapes (e.g., see Figure 4b).

Synthesizing Additional Examples
As we previously discussed, training a high-quality
recognizer requires that a developer obtain examples that

illustrate sufficient variation to enable good performance on
future real-world data. To help developers include greater
variation in their example gestures, Gesture Script uses
rendering scripts and learned parts to generate new potential
examples of gestures, as displayed in the bottom right of
Figure 2. Gesture Script introduces variation by changing
the relative scale of each part and the angles of rotation
between parts. Ann can quickly scan the synthesized
examples, select interesting cases, and add them to her
training set. When she finds examples that demonstrate so
much variation that she no longer considers them an
example of the gesture, she selects them and clicks the
“Reject and Refresh” button. Gesture Script uses this
feedback to guide its generation of additional examples.

Recovering Attributes of Gesture
Gesture Script allows developers to include variables in
scripts that specify attributes that should be recovered from
a recognized gesture. Specifically, we currently support
recovering the number of times a part is repeated within a
given gesture as well as the angles between parts in a
particular gesture. For example, in Figure 5 Ann recovers
the orientation of the Line in Arrow1 gesture by adding a
rotate command using the dir variable. Similarly, she
recovers the number of repeated Cap parts in a Spring1
gesture by adding the variable n to her repeat command.
When using the recognizer in her application, Ann can
access these attributes by simply accessing the variables
dir and n on recognized instances of these gestures.

Iterative Improvement and Evaluation
The overall process of training an effective recognizer is
highly iterative and exploratory. Ann adds more examples,
modifies her rendering scripts, interactively defines parts,

Figure 4: Gesture Script presents feedback in red when
developers interactively define parts. When an undesired
shape is learned for a part, developers have two options:
they can manually label a segmentation point, or they can
draw over the visualized part to define its appearance.

Figure 5: Script variables are used to define the attributes
that will be extracted from a gesture. Here the developer
specifies dir to extract a gesture’s initial rotation, and n to
extract the number of repetitions in a gesture.

and examines the cross-validation performance of her
recognizer as she works. Gesture Script also allows Ann to
interactively test her current recognizer. When Ann gestures
in the test window, Gesture Script presents the current
recognizer’s predicted class and any extracted gesture
attributes. If Ann creates an example that is misrecognized
or otherwise interesting, she can directly add it to her
example gestures. When complete, Ann has a reliable
recognizer that automatically extracts gesture attributes.

Incorporating the Recognizer
This paper focuses on creating the recognizer. After a
recognizer is created, incorporating it in the developer’s
application is analogous to prior work [34]. Ann will add
two things: (1) the recognition module containing the
algorithms and (2) the model files for her gestures as
created, trained, and exported from Gesture Script.

DESCRIBING GESTURES USING RENDERING SCRIPTS
Prior to discussing our implementation, we first detail our
rendering script language, as it defines how developers can
communicate the intended structure of gestures and is
important to the effectiveness of Gesture Script.

Unistroke gestures have been extensively studied, and we
surveyed gestures found in the research literature and
commercial applications [1,5,16,21,23,28,33,35]. Unistroke
gestures can be arbitrarily complex in theory, but in practice
are much simpler. One reason is that people must be
capable of remembering and reliably producing the gesture.
We have found most unistroke gestures can be broken into
a fixed number of parts, while others contain repetition.
Our script language supports this, describing gestures as a
sequence of structures. Each structure can be either a
user-defined part or a repetition of a user-defined part.

Under such a description, possible gesture attributes include
the angles between structures, the number of repetitions of a
part, and the angle between repetitions. The size and
location of a particular part can also be useful and is easily
retrieved from the bounding box of a part.

The syntax of our script language is defined as:
 Script :- Structure*;
 Structure :-
 [rotate(X)]?
 [repeat[(N[, Y)]?]?]?
 draw(P);

P is gesture part. X, N, and Y are script variables. They do
not describe gestures, but rather allow developers to
indicate what gesture attributes are of interest.

ALGORITHMS
We now present the algorithms Gesture Script uses to learn
parts, synthesize gesture examples, and learn a recognizer.

Learning Gesture Parts
The provided rendering scripts introduce a set of global
parts. This section first addresses the unsupervised learning
problem, where we learn parts from only gesture examples.

As a high-level overview, we first heuristically generate a
shape for each part. We then use these initial part shapes to
segment each example in the way that best matches the
corresponding parts in its script. We score the match that
results from segmentation of each example and then
compute a total score over all examples. After segmenting
all the examples, we have a set of gesture segments
corresponding to each part, which we then use to update our
estimate of the shape of the part. We iteratively improve
our estimate of the shapes of parts until there is no
improvement in the total score. We repeat this process
several times (20 in our current implementation), each time
with different initial random part shapes. This subsection
details each step and how we incorporate interactive
feedback (i.e., part segmentation and provided part shapes).

Preprocessing and Initial Shapes
Gestures typically contain hundreds of points, and
considering every point as a segmentation boundary
becomes computationally prohibitive. We therefore first
approximate the gesture as a sequence of line segments
using the bottom-up segmentation algorithm described by
Keogh et al. [13]. We then only consider endpoints of these
line segments as candidates for boundaries between parts.

As in prior instance-based gesture recognition [17,34], we
represent a part by sampling a set of equidistant points
along its trajectory, normalized by its vector magnitude:
(x1, y1, x2, y2, …, xn, yn), with n = 32 in our implementation.

To generate initial part shapes, we find the simplest
example corresponding to a script that contains the part
(i.e., the example with the fewest segmentation candidates).
We then randomly pick a segment as the initial part shape.

Matching a Gesture to a Script
To segment an example gesture to match a script, we first
define our similarity metric. Our similarity metric is based
on Protractor [17]. When a gesture segment is matched to a
simple part, their distance is the cosine distance defined as:
 d(Gseg,V part) = arccos(V seg V part) (1)
where Vseg is a resampling of Gseg rotated to an aligned
angle. We assume vectors are normalized by magnitude.

When a gesture segment is matched to a repetition, we find
the best way to break it into subsegments that each matches
the part shape, then use the average distance of the
subsegments to the part shape as a distance measure:

d(Gseg,R(V part)) = min
n,θ ;Δ;Γ

{ 1
n
d(GΓi

seg(θ + i×Δ),V part)
i
∑ } (2)

where n is the number of repetitions, θ is the initial angle,
Δ is the change in angle between each repetition, and Γ is
the segmentation.

Given these metrics for the distance between a gesture
segment and an individual part or a repetition, the overall
distance between an example gesture and a script can then
be defined as the average distance of its segments to the
corresponding structures:

 d(G,S0:K−1) =min
Γ
{ 1

K
d(GΓi ,Si)

0≤i<K
∑ } (3)

where Si is a structure (i.e., either a repetition or a part)
and Γ is the segmentation.

We segment an example gesture to best match a script by
solving equation (3). We use dynamic programming:

d(Ga:b,Sj:K−1) = min
a<i≤b, j<K

{ 1
K
d(Ga:i,Sj)+ d(Gi:b,Sj+1:K−1)} (4)

where a, b and i are end points in the gesture, and a:b
means a gesture segment between point a and point b.

For equation (2), we use a greedy algorithm. Although
dynamic programming can be used, it has many states
(n, θ, Δ) and it is nested within the dynamic programming
for equation (4). Solving equation (2) using dynamic
programming is therefore costly. We instead scan the end
points in Gseg and find the segment with the lowest distance
to equation (1)’s part Vpart. We use this as the first segment.
We then repeat and update θ and Δ along the way until we
reach the end point. To compensate for a lack of lookahead
in the greedy approach, we then perform a back scan to
merge segments that further reduce the distance.

Updating Part Shapes and Iteration
We can now match gesture examples to scripts and thus
obtain a set of gesture segments for each part. To update the
current estimate of the shape of a part, we compute the
average of segments after normalization and alignment:

 V part = Normalize(1
T

V segi

0≤i<T
∑) (5)

We then iterate between segmenting gesture examples and
updating parts until the total distance between gestures and
scripts can no longer be improved.

Incorporating Interactive Feedback
As previously discussed, developers can improve learning
of parts by manually labeling the part segmentation points
and by drawing examples of individual part shapes. We can
integrate this interactive guidance into our unsupervised
learning. For interactively labeled part segmentation points,
we modify our matching algorithm in equation (2) and (4)
to require selection of interactively labeled segmentation
points. In the case of interactively provided examples of
part shapes, we use them as the initial shapes in the search.
This explicit developer guidance is more effective than
random selection of an initial part shape.

Gesture Synthesis
After part shapes are learned, we can synthesize gesture
examples by following the procedural steps specified in a
rendering script. The goal is to help developers introduce
variation into their examples. Synthesized examples can
vary in their parameters (i.e., the angles between parts, the
relative scale of parts, and the number of repetitions).
However, we cannot simply use random values for these
parameters. If the number of parameters is n and the
number of values for each parameter is about m, the total

number of different examples will be mn, most of which
will not be meaningful. Randomly generated parameters are
unlikely to generate helpful suggested examples.

We therefore choose to vary one parameter at a time.
We first use our part matching algorithm to find the values
of one parameter in the existing examples, then map them
in one dimension. We identify the largest gaps in this space
(i.e., where no values have been previously selected),
as these are promising regions for exploring variation.
We then vary the parameter using values from these gaps.

When developers reject generated examples, those
parameter values are marked in their value space. We then
prioritize the gaps between positive and negative example
values, which may contain the most information.

Gesture Recognition
We now discuss creating the recognizer from examples,
scripts, and parts. We compute features for each example,
and then we train a linear SVM multi-class classifier.

If there are N gesture classes, the features for a gesture
consist of N+1 groups of features. The first group of
features can be represented as {f0, f1, …, fN-1}, where fi is the
minimum cosine distance of the gesture to example gestures
in the i-th class. These features are the same distances used
in Protractor [17], and including them preserves Protactor's
strong example-only performance.

The remaining N feature groups are generated from the
script of the i-th gesture class, giving the recognizer access
to additional information the script provides about gesture
structure. For the i-th group, with a script containing K
structures, an example gesture’s features are represented as
{d0, d1, …, dK-1, r0,1, r1,2, …, rK-2,K-1, s1, s2, …, sK-1}. The
example gesture is first matched to the script using our
matching algorithm. We then compute features as follows:
di is the distance between the i-th structure to the
corresponding gesture segment per equation (1) or (2);
ri,i+1 is the angle between the aligned angle of the i-th
structure and that of the (i+1)-th structure; and si is the
scale ratio of the i-th matched gesture segment to the first
matched gesture segment. In essence, these features encode
how well an example matches the parts in a script and how
an example’s parts are arranged in terms of their relative
angles and relative scales.

We scale each feature to the range of -1 to 1, then train a
multi-class SVM classifier with a linear kernel. At runtime,
the SVM predicts gesture category and we use the results of
our matching to extract gesture parts and attributes.

The computational cost of our recognizers is comparable to
Protractor. In the simplest case with no scripts, the cost is
that of Protractor plus a smaller cost from a linear SVM.
When scripts are specified, the additional cost for each
script over Protractor is O(k2 + k*m2*c + k’*m4), where k is
the number of parts, m is the number of segmentation
candidates, c is the number of sampling points, and k’ is the

number of parts with repetition. Assuming k = 4, m = 10,
k’ = 1, and c = 32, this is about the cost of an additional
1000 examples in a Protractor recognizer. This is practical
and has not been an issue in our experiments.

VALIDATION
To validate and gain insight into Gesture Script, we now
present a series of experiments. First is an initial laboratory
study with four developers, observing their use of and
reactions to Gesture Script. Second is our collection of data
to evaluate the performance of Gesture Script’s recognition.
Finally, we analyze recognition performance from several
perspectives: (1) we test recognizers that developers created
in our study, (2) we examine recognition with a larger set of
gesture classes, and (3) we examine recognition of simple,
compound, and high-variation gesture datasets.

Study with Developers
To obtain initial feedback on the usability of Gesture Script
and the usefulness of its features, we conducted a laboratory
study with 4 programmers recruited from our organization
(2 male and 2 female). None had previously programmed
gesture recognition, but all had used machine learning.

Study Setup
We asked each participant to train a gesture recognizer for
the seven gestures in Figure 6 and to extract gesture
attributes including the direction of each arrow and number
of repetitions in each spring. The size of the gesture set was
chosen to be appropriate for a laboratory study. The specific
gestures were chosen so they are not easily distinguishable
to a simple instance-based recognizer. They require
non-trivial effort to add examples, iterate on scripts, and
train parts to achieve a good recognition performance.

We first gave participants a tutorial on Gesture Script. We
then walked through the process of creating a recognizer for
two simple gestures, a triangle and a rectangle. Next,
participants completed a warm-up task to train a recognizer
for Figure 8’s “v” and “delete”.

We then asked participants to work on the main task,
creating a recognizer for the seven gestures from scratch.
We asked participants to think as developers looking to
create the recognizer for their software. The goal was to
train a quality recognizer and to improve its recognition
until satisfied. We limited the task time to one hour.
Finally, participants completed a post-study questionnaire.

The study was conducted on a ThinkPad X220 Tablet PC
with stylus support. Participants had a keyboard and mouse,
and all used the stylus for gesture input.

Results
All 4 participants completed the study with satisfactory
recognition performance. Participants added a total of 341
gesture examples (i.e., 12.2 examples per class per
participant) and wrote a total of 26 scripts (with 82
non-empty lines and 36 parts). Popular features included
gesture synthesis (participants used 106 synthesized
gestures) and providing examples for parts (participants

provided 20 examples for individual parts). In the
post-study questionnaire, all participants agreed Gesture
Script is useful, easy to understand, and that it was easy to
improve recognition. Figure 7 presents all Likert scales.

When asked what they liked best, all participants mentioned
Gesture Script’s ease of use. One commented “it provides a
very high-level API for developers to construct a
recognizer.” Another participant liked that they could “write
scripts to break down a complicated gesture into parts.”

When asked what had been most confusing, participants
expressed the frustration of understanding why a recognizer
was failing: “[what is] the reason behind why one gesture
is confused with another gesture.” Consistent with prior
machine learning tools [10,24,25], participants adopted
iterative and exploratory strategies to improve their
recognizers. Participants wanted an ability to see
misclassified gestures, as they found accuracy and recall
helpful to understand overall performance but also wanted
to see how specific instances failed.

We also added two features based on feedback from the
participants. First, we added support for adding
misclassified gestures directly to the training set from the
testing window. Second, we added the ability to clear all
user-labeled segmentations. As the participants iterated on
scripts and parts, previously labeled segmentations could
become incorrect and a hassle to remove or correct.

3 participants suggested in the post-study questionnaire that
they wanted the script language to be more powerful. They
suggested being able to specify constraints on aspects of a
script, such as referencing variables from multiple locations
in a script. This aligns with our vision for future work.

Data Collection
To obtain additional data for further evaluating Gesture
Script, we collected 24 gesture classes from 10 participants.
Each participant was asked to perform 10 gestures for each
class, yielding a total of 2400 gestures. Data collection was
done on a ThinkPad X220 Tablet PC, and all gestures were
input with the stylus. All participants were right handed.

Arrow1

Arrow2

Arrow3

Spring1

Spring2

W_O

O_O

Figure 6: Our study includes seven gestures. The arrows can
point any direction, springs can have arbitrary number of
repetitions, and the W_O and O_O gestures can place the
circle part at arbitrary locations indicating region for action.

Figure 7: The Likert scales from our post-study survey,
presented from strongly agree to strongly disagree.

We explicitly asked participants to include variation in how
they performed gestures of the same class.

The 24 gestures are illustrated in Figure 8. The leftmost 16
are from the website for the $1 Recognizer (except for
“zigzag”, these are identical to the gestures in [34]).
The rightmost 8 are new gestures with more flexible
structures. For instance, the springs can have an arbitrary
number of repetitions and the circle in the “w_o” gesture
can be placed at any position relative to w. All these
gestures are from the literature or commercial contexts, and
have practical applications. In the remainder of our
analyses, we refer to the leftmost 16 gestures as simple.
We refer to the rightmost 8 as compound gestures.

Recognition Evaluation
We first tested the four recognizers created in our study
against the newly collected data. We tested only the 7
gesture classes the developers had trained, a total of 700
gestures. We compare the results against recognizers
trained using the $1 Recognizer, Protractor, and Gesture
Script without scripts. Results are presented in Figure 9.
With an average accuracy of 89.6%, these results show that
the recognizers from the study have much better accuracy
than existing example-only methods. The best recognizer is
from P4, whose accuracy is 94.7%. When scripts are not
used, as in the other three conditions, accuracies drop to an
average of 68.7%. Enabling a developer who has never
programmed gestures to build an accurate recognizer for a
non-trivial set of gestures in less than an hour is promising.

To further examine Gesture Script recognition, we next
conducted cross-validation experiments with our full
dataset. We expected recognition of compound gestures to
be more difficult, so we considered them separately from
simple gestures. To examine the impact of the number and
diversity of training examples, we conducted two
cross-validations. Train-on-1 considered limited training
data, training on examples from 1 person and testing on
examples from the other 9. Train-on-9 considered greater
training data availability, training on examples from 9
people and testing on examples from the other 1. We again
compare Gesture Script with the $1 Recognizer, Protractor,
and Gesture Script without scripts. In the Gesture Script
condition, the authors created a script for each gesture.

Results are presented in Figure 10. For compound gestures,
Gesture Script obtains the best results in both the train-on-1
and train-on-9 conditions. Gesture Script obtains 89.6%
accuracy in the compound train-on-1 data, compared to an
average of 68.0% for example-only conditions. Gesture
Script obtains 99.5% accuracy in the compound train-on-9
data, compared to an average of 92.1% for example-only
conditions. On simple gestures, all recognizers have similar
performance. These results are consistent with our goal of
raising the ceiling for gesture creation tools while
preserving the low threshold of existing example-only tools.

Given the extreme accuracy of all train-on-9 recognizers
for simple gestures, we suspected a ceiling effect (i.e., the
experiment was too easy to differentiate the recognizers).
We suspected this is because of the high consistency in
simple gestures (i.e., low variation in how they were
performed). As an early investigation, we created a new
high-variation dataset. This consists of 10 examples of each
simple gesture, created by the authors to exhibit high
variation in form. We then tested the recognizers from our
previous train-on-1 and train-on-9 cross-validations against
the high-variation data. Recall these were trained on data

Figure 8: The 24 types of gestures in our data collection,
with 16 simple on the left and 8 compound on the right.

Figure 9: Gesture Script recognizers created by the
developers in our study obtain better recognition results
than example-only methods.

 Train-on-1 Train-on-9

Compound

Simple

Figure 10: Gesture Script obtains better results on compound
gestures, while being no worse on simple gestures. This is
consistent with raising the ceiling for gesture creation tools
while preserving the low threshold of example-based tools.

containing little variation, so our goal was to test how
methods perform on examples containing previously unseen
variation. Results are shown in Figure 11. This provides an
early indication that Gesture Script is overall more accurate
and robust to variation, even in simple gestures.

We also examined performance of our parts matching by
randomly verifying 5 example gestures per script from the
26 scripts collected from the 4 developers in our study
(i.e., 130 total gestures). We marked a match as correct if
we would have matched the parts in exactly the same way;
partially correct if one or two segmentation points were
slightly off; and otherwise incorrect. Figure 12 illustrates a
correct match and two examples of erroneous matches. In
the 130 gestures we examined, 98 (75.4%) are correct, 29
(22.3%) are partially correct, and 3 extractions (2.3%) are
incorrect. This indicates the matching is largely effective.

RELATED WORK
Many symbolic gesture recognition algorithms have been
developed, with learning-based approaches gaining
significant popularity. Various models have been studied,
including neural networks [26], decision trees [27,28],
Hidden Markov Models [2,6,30], and instance-based
learning [3,17,32,34]. Instance-based approaches have
recently received extensive attention, due to their ease of
implementation and good performance. $1 and $N
recognizer use the Euclidean distance of two aligned
gestures [3,34]. Protractor instead uses cosine distance [17].
Although Gesture Script learns its gesture recognizer from
examples using a SVM, Gesture Script enhances
example-based learning with declarative guidance through
explicit structures in rendering scripts. Moreover, existing
tools only recognize gesture class. Gesture Script is able to
extract gesture attributes to support application needs.

From an algorithmic point of view, a symbolic gesture is
largely the same as a sketched symbol. Extensive work has
examined recognizing and understanding sketches [12,29].
While enhancing example-based learning with rendering
scripts is a novel approach, our work relates to this rich
body of work in several ways. First, declarative scripts are
used to define gestures in systems such as LADDER [8].
While Gesture Script also includes scripts, our rendering
scripts are not gesture definitions but serve as optional
information in addition to the example gestures. As a result,
our scripts are much simpler and developers can be less
precise. Second, many sketch recognition systems use parts
in recognition [29], most based on identifying predefined
primitive shapes using perceptual attributes such as
curvature. In contrast, our parts are user-defined and can be
of arbitrary shape, and we currently do not rely on
perceptual attributes. While other systems have looked at
arbitrary part shapes [31] and features [22], no prior work
has the problem of learning user-defined part shapes across
classes in an unsupervised setting. Third, Hammond and
Davis [9] also study generating examples from scripts.
While their purpose is to debug scripts, ours is to directly

incorporate generated examples in learning. Moreover, in
addition to having a different script language, our method
considers both scripts and developer-provided examples.

Gesture tools are also well studied [14,15,18,19,20,27].
The example-based approaches [18,19,27] allow developers
to create and test gestures by recording examples. Gesture
Script preserves this core interaction, but enables much
more. We support interactive user guidance about the
structure of a gesture, and believe this general strategy can
be extended to recognition tools for other types of data.

DISCUSSION AND FUTURE WORK

Implementation
Gesture Script is implemented using Java. The parser for
rendering scripts is implemented using ANTLR [4]. The
SVM within the gesture recognizer is provided by LIBSVM
[7]. Our code and data are available under open license at
https://code.google.com/p/gesture-script/.

Variation in Gestures
As in Figure 11, and as discussed by Kane et al. [11],
recognizer performance can be dramatically impacted by
variations. Because gesture tools capture gestures outside
any application context, it is important for developers to
include gesture examples that exhibit the gesture variation
expected in real use. In our data collection, although we
explicitly asked the participants to vary their performance
of gestures, the amount of variation was still limited. One
hypothesis is people tend to perform gestures consistently
and it is hard to manually introduce variation. Gesture
Script synthesizes gestures to introduce additional variation.
The initial feedback from developers was positive. One
opportunity for future work is to investigate the impact of
synthesized gestures on the recognizer performance.

Alternative Ways to Perform a Gesture
The gestures discussed in this paper each have a unique
way they are performed (e.g., a circle must be

 Train-on-1 Train-on-9

High
Variation

Figure 11: Gesture Script obtains better results when tested
against high-variation data. This provides an early indication
Gesture Script is more accurate in the presence of variation.

Figure 12: We manually inspected gesture segmentations to
gauge how well they matched expectations. Here we show
three cases highlighting the segmentation that was found
(in red) versus that our annotator preferred (in green).

counter-clockwise). Instance-based learning is robust to
multiple alternative demonstrations of the same class, but
rendering scripts face challenges due to: (a) assuming a
unique way to perform each part, and (b) assuming a unique
ordering of parts. One future direction is to support multiple
alternative rendering scripts for each class of gesture.

CONCLUSION
We present Gesture Script, a tool for creating unistroke
gestures. It enhances example-based learning with
declarative guidance through rendering scripts, preserving
the low threshold of example-based gesture tools while
raising the ceiling of the recognizers created in such tools.

ACKNOWLEDGEMENTS
We thank Morgan Dixon and Daniel Epstein for comments
on earlier drafts. This work is sponsored in part by the
National Science Foundation under award OAI-1028195,
the Intel Science and Technology Center for Pervasive
Computing, and by a Google Faculty Research Award.

REFERENCES
1. Alvarado, C. and Davis, R. SketchREAD: A Multi-Domain

Sketch Recognition Engine. UIST 2004, 23-32.
2. Anderson, D., Bailey, C., and Skubic, M. Hidden

Markov Model Symbol Recognition for Sketch-Based
Interfaces. AAAI Fall Symposium, (2004), 15-21.

3. Anthony, L. and Wobbrock, J.O. A Lightweight Multistroke
Recognizer for User Interface Prototypes. GI 2010, 245-252.

4. ANTLR 4. http://www.antlr.org/.
5. Appert, C. and Zhai, S. Using Strokes as Command

Shortcuts. CHI 2009, 2289-2298.
6. Cao, X. and Balakrishnan, R. Evaluation of an On-Line Adaptive

Gesture Interface with Command Prediction. GI 2005, 187-194.
7. Chang, C.-C. and Lin, C.-J. LIBSVM: A Library for

Support Vector Machines. ACM TIST, 2 (3), 2011, 1-27.
8. Hammond, T. and Davis, R. LADDER, A Sketching

Language for User Interface Developers. Computers &
Graphics, 29 (4), 2005, 518-532.

9. Hammond, T. and Davis, R. Interactive Learning of
Structural Shape Descriptions From Automatically
Generated Near-Miss Examples. IUI 2006, 210-217.

10. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.R.
Authoring Sensor-Based Interactions by Demonstration
with Direct Manipulation and Pattern Recognition.
CHI 2007, 145-154.

11. Kane, S.K., Wobbrock, J.O., and Ladner, R.E. Usable
Gestures for Blind People  : Understanding Preference
and Performance. CHI 2011, 413-422.

12. Kara, L.B. and Stahovich, T.F. Hierarchical Parsing and
Recognition of Hand-Sketched Diagrams. UIST 2004, 13-22.

13. Keogh, E., Chu, S., Hart, D., and Pazzani, M. Segmenting
Time Series: A Survey and Novel Approach. Data
Mining in Time Series Databases, 57, 2004, 1-22.

14. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton: Multitouch Gestures as Regular Expressions.
CHI 2012, 2885-2894.

15. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton++: A Customizable Declarative Multitouch
Framework. UIST 2012, 477-486.

16. Kurtenbach, G. and Buxton, B. GEdit: A Test Bed for
Editing by Contiguous Gestures. ACM SIGCHI Bulletin,
23 (2), 1991, 22-26.

17. Li, Y. Protractor  : A Fast and Accurate Gesture Recognizer.
CHI 2010, 2169-2172.

18. Long, A.C., Landay, J.A., and Rowe, L.A. Implications
for a Gesture Design Tool. CHI 1999, 40-47.

19. Lü, H. and Li, Y. Gesture Coder: A Tool for Programming
Multi-Touch Gestures by Demonstration. CHI 2012,
2875-2884.

20. Lü, H. and Li, Y. Gesture Studio: Authoring Multi-Touch
Interactions through Demonstration and Composition.
CHI 2013, 257-266.

21. Morris, M.R., Wobbrock, J.O., and Wilson, A.D.
Understanding Users’ Preferences for Surface Gestures.
GI 2010, 261-268.

22. Oltmans, M. Envisioning Sketch Recognition: A Local
Feature Based Approach to Recognizing Informal
Sketches. Doctoral Dissertation. 2007.

23. Ouyang, T.Y. and Davis, R. A Visual Approach to
Sketched Symbol Recognition. IJCAI 2009, 1463-1468.

24. Patel, K., Bancroft, N., Drucker, S.M., Fogarty, J., Ko, A.J.,
and Landay, J. Gestalt: Integrated Support for Implementation
and Analysis in Machine Learning. UIST 2010, 37-46.

25. Patel, K., Fogarty, J., Landay, J.A., and Harrison, B.
Investigating Statistical Machine Learning as a Tool for
Software Development. CHI 2008, 667-676.

26. Pittman, J.A. Recognizing Handwritten Text. CHI 1991, 271-275.
27. Rubine, D. Specifying Gestures by Example.

SIGGRAPH 1991, 329-337.
28. Rubine, D. Combining Gestures and Direct Manipulation.

CHI 1992, 659-660.
29. Saund, E., Fleet, D., Larner, D., and Mahoney, J.

Perceptually-Supported Image Editing of Text and Graphics.
UIST 2003, 183-192.

30. Sezgin, T.M. and Davis, R. HMM-Based Efficient Sketch
Recognition. IUI 2005, 281-283.

31. Sharon, D. and Van De Panne, M. Constellation Models
for Sketch Recognition. SBIM 2006, 19-26.

32. Vatavu, R.-D., Anthony, L., and Wobbrock, J.O. Gestures
as Point Clouds: A $P Recognizer for User Interface
Prototypes. ICMI 2012, 273-280.

33. Wobbrock, J.O., Morris, M.R., and Wilson, A.D.
User-Defined Gestures for Surface Computing. CHI 2009,
1083-1092.

34. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures
without Libraries, Toolkits or Training: A $1 Recognizer
for User Interface Prototypes. UIST 2007, 159-168.

35. Zhai, S. and Kristensson, P.-O. Shorthand Writing on
Stylus Keyboard. CHI 2003, 97-104.

