
Genie: Input Retargeting on the Web
through Command Reverse Engineering

Amanda Swearngin1, Amy J. Ko2, James Fogarty1
1Computer Science & Engineering, 2The Information School

DUB Group, University of Washington
amaswea@cs.washington.edu, ajko@uw.edu, jfogarty@cs.washington.edu

ABSTRACT
Most web applications are designed as one-size-fits-all,
despite considerable variation in people’s expertise, physical
abilities, and other factors that impact interaction. For example,
some web applications require the use of a mouse, precluding
use by many people with severe motor disabilities. Other
applications require laborious manual input that a skilled
developer could automate if the application were scriptable.
This paper presents Genie, a system that automatically
reverse engineers an abstract model of the underlying
commands in a web application, then enables interaction
with that functionality through alternative interfaces and
other input modalities (e.g., speech, keyboard, or command
line input). Genie comprises an abstract model of command
properties, behaviors, and dependencies as well as
algorithms that reverse engineer this model from an existing
web application through static and dynamic program
analysis. We evaluate Genie by developing several interfaces
that automatically add support for speech, keyboard, and
command line input to arbitrary web applications.

Author Keywords
Reverse engineering; web application; program analysis.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI).

INTRODUCTION
Many people rely on the web for diverse information needs,
such as tracking news and events, communicating with friends,
playing games, and monitoring personal finances. However,
these same people have a diverse set of computer skills and
physical abilities, often requiring them to interact with
websites in ways designers did not anticipate. For example,
for blind and low vision people, reading a web page requires
using a screen reader [4]. Alternatively, people with severe

motor impairments may be able to see a web page, but their
limited ability to use a mouse may leave many interactive
parts of the web almost impossible to use [13]. Other factors
such as culture [28] and gender [30] can impact how a person
perceives and interacts with a website. Websites are also
viewed through a multitude of devices, resolutions, and form
factors. It is infeasible for a developer to create a website that
suits every need and every type of device.

What interfaces people perceive as usable often depends on
their cultural background [28]. Reinecke et al. created
culturally adaptive interfaces that corresponded to a 22%
performance increase when compared to the original interfaces.
A person’s gender [20] can influence the appeal and
trustworthiness of a website. A person’s age can also affect
perception, hearing, cognitive, and motor abilities, requiring
new interface designs [17]. However, few of these factors are
considered by developers when designing web applications.

Another area where diverse needs are not always addressed
is in accessibility. Per a 2015 survey [31], 61.3% of screen
reader users stated that web content has become less
accessible or has not improved in the past year. The Web
Content Accessibility Guidelines [8] provide a set of
guidelines for making web content accessible, including
ARIA attributes [10], which enable screen readers and other
devices to translate and interpret interactive web content.
Unfortunately, one study [27] found that only 50.4% of
problems encountered by blind users were covered by the
success criteria in these guidelines, and while 16.7% of
websites implemented these guidelines, they did not solve
accessibility problems. Moreover, studies of a large set of
government and high-traffic websites found that most did not
even implement the guidelines that are helpful [16].

Prior work has explored novel ways of extracting abstract
models of user interfaces to make them more customizable to
alternative needs. For example, Prefab [11] is a system that
enables adding advanced behaviors on top of an existing
interface, such as a target-aware implementation of the
Bubble Cursor [23]. PAX [9] is a hybrid framework that
enhances the capabilities of pixel-based systems, combining
pixel-based information with the metadata exposed through
the Accessibility APIs built into most operating systems.
This approach enables more advanced interaction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2017, May 06 - 11, 2017, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05…$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025506

mailto:Permissions@acm.org

techniques, such as “Screen Search” which enables searching
for GUI components in an interface. SUPPLE [14]
discovered the needs of individual users through a
performance test and automatically generated a customized
interface based on their preferences.

Although prior work demonstrates the power of generating
abstract models of interfaces, building these models from
surface features such as pixels and accessibility APIs is
limiting. Interfaces can contain a variety of behaviors that
cannot be discovered from visible features, including keyboard
input, touchscreen gestures, and other custom commands.
This is particularly true on the web, where websites use a vast
array of different user interface toolkits and custom interactive
controls that can vary by platform and device.

This work presents Genie, a new approach to interface
modeling that applies program analysis techniques from
software engineering to reverse engineer a model of an
application's commands from source code. We explore this
approach on the web, where reverse engineering is simplified
due to the open access to user interface structure in the DOM
and the source code that handles inputs. Genie derives
models of the currently available commands from a web
application and enables access to them through other input
modalities. For example, Figure 1 shows a game that
originally supported only mouse and keyboard input. Genie
recovers the application’s underlying command structure and
provides an application-agnostic speech interface to access
the game’s commands. Speaking the command label “Left”
(a command label derived by Genie’s analysis) rotates the
hexagon left, performing the same functionality as clicking
the left mouse button or typing the left arrow key. This input

retargeting approach allows a web application designed to
support one input modality to be mapped onto any other
input modality, ensuring that users can access any website
according to their diverse needs.

The contributions of our work are:
• An application-agnostic abstract model of interactive

commands and their properties.
• A method for reverse engineering these commands from

an existing web interface into this abstract representation.
• An API that exposes a website’s commands, which can be

used to author interfaces that support other input modalities.
• Several application-agnostic interfaces that automatically

retarget input to add speech, keyboard, and command-line
input capabilities to arbitrary web applications.

In the rest of this paper, we describe the architecture and
implementation of our approach and then demonstrate the
potential of Genie in several examples of input retargeting.
We end with a discussion of how Genie builds upon prior
work, additional remaining challenges of input retargeting,
and several ideas for how Genie can augment a website to
support diverse needs.

THE GENIE FRAMEWORK
Genie models web application user interfaces as a set of
available commands. Each command has a set of properties
(shown in Figure 2), which represent command availability,
dependencies, and other metadata. Genie periodically refreshes
commands and their properties as the state of the interface
changes in response to user interaction or other application
background activity. Genie also provides generic support for

Figure 1. The Hextris web game (hextris.io) shown with a list
of speech commands created by Genie. Speaking the bolded
text label for each command triggers the corresponding actions.

Command Property Definitions

Available: Dependent on the enabled and visible state.

Enabled: True if at least one data dependency with at least
one side effect is currently satisfied.

Visible: The command element is visible on the screen.

Data Dependency: A condition in an event listener that can
be evaluated to have the value of either true or false and is
associated with at least one side effect.

Side Effect: A statement in an event listener that has an
effect on the system when executed.

Device Dependencies: A list of commands that must be
performed before (pre) or after (post) a command based on
the implicit device requirements.

Required Input: A list of required inputs to the command.
Possibilities are mouse location, mouse button, key code,
and value. Knowing each required input value allows Genie
to generate them automatically, or request them from users,
when required.

Perform: Triggers the command automatically, supplying the
correct required input values, and triggering commands
corresponding to the pre and post device dependencies.

Figure 2. Genie abstract data model property definitions.

executing each command, allowing the implementation of
alternative interfaces that support other input modalities.

Genie is implemented as a Google Chrome extension that
accesses the web page DOM, event registrations, and source
code. Genie consists of five algorithms to 1) detect commands,
2) filter commands to those that are directly executable,
3) analyze properties of commands to update their status in
an interface, 4) describe commands obtain appropriate labels
for an interface, and 5) invoke commands by recreating their
inputs and event sequences. The following sections describe
each algorithm and how they discover and update the
properties and behaviors of the Genie data model.

Command Detection
The Genie system interposes application event registration to
detect commands. Genie assumes graphical user interfaces
consist of graphical elements that make up the interface,
events that are triggered by input devices performing various
actions on elements (e.g., click, keydown), and listeners
that receive and respond to events. This event-subscription
model is the dominant way of receiving and responding to
input in modern user interface frameworks. Web interfaces
also consist of a set of default interactive elements such as
links (i.e., <a>) or input fields. Genie maps each interactive
element and registered event listener to a unique command.

Genie detects commands by intercepting each event listener
registration as it occurs. The default DOM APIs, as described
by the W3C (www.w3.org), do not provide a method of
accessing all currently subscribed event listeners in the DOM.
We therefore monitor each registered event listener by
overriding the default DOM API for addEventListener.
This override notifies Genie that a new listener has been
registered, and calls the original addEventListener method
to register the listener with the browser. Event listeners can also
be registered using a secondary library (e.g., jQuery or D3).
These libraries wrap the addEventListener method, so
intercepting addEventListener calls is sufficient to capture
event listeners registered using these libraries. The override
is achieved by injecting a script into the original page before
DOM initialization so that all registered event listeners are
intercepted. The script then intercepts all event listeners
registered after DOM initialization to keep a currently updated
list of events, each of which corresponds to a new command.

The default DOM APIs provide a second method of
registering event listeners through global attributes. These
listeners are registered in two ways. One is through an inline
attribute on the DOM element in the format
onclick=“listenerName()” where the attribute name
can be onclick or any of the supported event types1.
Applications can also register global event listeners using the
format element.onclick=listenerName. Genie locates
and detects all registered global event listeners at document
initialization and monitors any updates to them using the

1 www.w3.org/TR/html-markup/global-attributes.html1

MutationObserver API2, which notifies Genie of any updates
to element attributes in the DOM. Genie also collects and
monitors interactive elements (e.g., <input>, <a>) using
the MutationObserver API.

Command Filtering
There are hundreds of events that can be triggered in a browser.
A small subset of these events corresponds to interactive
actions that a user can trigger by clicking, touching, or typing
a key. Genie distinguishes between events that can be
triggered by a user action, and those that happen as side
effects of user actions or are triggered by the system.

Genie categorizes events into three groups: direct, indirect,
and system. Direct events are those that can be triggered by
human actions (e.g., a mouse click - mousedown, a key
stroke - keydown). Indirect events happen as a side-effect of
triggering direct events (e.g., an element gains focus -
focusin, a field loses focus - blur). System events are
events that are triggered without user intervention, but occur
during interactive use of the system (e.g., a resource failed to
load - error, a resource has finished loading - load). Genie
collects each event listener registered to each direct event as
a command, and filters out all event listeners registered to
system events. Genie monitors indirect event listener
registrations but does not expose them as commands, instead
using them in the invoke module which we will describe later.
The output of the command filtering process is: (1) a set of
registered direct and indirect event listener and element
combinations, and (2) a set of default interactive elements.

Command Property Analysis
User interfaces can change at any time in response to user
interactions, events, and system status. To give an accurate
picture of what a person can do at any given point in time,
and to prevent needless interactions with disabled commands,
we analyze and monitor the visibility and enabled state of
each command, keeping the visible and enabled states in
Figure 2 current with the original user interface.

To discover the value of these properties, for each intercepted
event listener registration, we capture the event type, event
listener source code, and the DOM element the listener is
associated with. For the visible property, we query the
DOM element for its visibility through a set of properties that
can hide any element, such as setting the display attribute
to none or other standard methods of hiding elements.
Elements can also be off-screen or opaque, and we use
existing DOM APIs to inspect these forms of visibility.

A command can be disabled (enabled=false) in two
ways. First, a DOM element can set the disabled attribute.
However, this attribute is not required, so it is possible that
an element will appear interactive even if current conditions
in its event listener prevent it from having effect. The second
way a command can be disabled is therefore if the conditions
in its event listener that result in side effects are not currently

2 developer.mozilla.org/en-US/docs/Web/API/MutationObserver

satisfied. We define each condition as a data dependency and
each method call, state update, event, or other response in an
event listener as a side effect. Each event listener has one or
more data dependencies and each data dependency can have
one or more side effects. If none of the data dependencies of
a listener are currently satisfied, a command will have no
effect, and we mark the command’s enabled state as false.

Our system discovers data dependencies by analyzing the
event listener source code as shown in Figure 3. First, our
system parses the event listener to construct an abstract
syntax tree (AST). Our system traverses this AST to
construct an expression for each data dependency. We
compute data dependency expressions by tagging each
variable node in the AST with the node where it was either
previously defined or declared. Then, we locate each
conditional (e.g., if, while, switch). Within each
conditional expression (i.e., the expression that must be true
to reach the path specified inside conditional block), we
locate each variable identifier and replace it first with where
it was last assigned, and secondly, where it was last declared
if we do not find any other assignments besides the variable’s
declaration. This process continues recursively until we have
replaced all identifiers in a conditional expression with their
corresponding assignments or declarations.

Figure 3 shows an event listener that handles clicking on a
game’s start button. There are three possible data
dependencies corresponding to the three potential paths
through the code, labeled by “DD” under output. These
expressions depend on the current state of the Start button
and the number of lives remaining. The first expression is
constructed by combining the first if conditional with the
second nested if conditional. The startBtn reference in the

first conditional is resolved to the value $(“#startBtn”)
based on where it was last assigned in the listener, which
occurs on the previous line.

Each data dependency is associated with one or more side
effects. Identifying side effects is important for interpreting
and displaying to a person what effects the command will
have when it is executed. In Figure 3, startGame() is a side
effect. Each line of code that would be executed if a data
dependency expression is satisfied is a potential side effect.
This method of side effect detection is potentially accurate if
each method call, state update, or response is causing an
update to the state of the system, affecting future interactions.
However, this may not always be the case. To improve this
method, we could potentially identify output affecting
statements (e.g., as in [21]), and link each method call or state
update to its last assigned location outside of the event
listener, linking it to its origin in the website’s source code.
These could be searched for output affecting statements, or
Ajax calls that cause data changes. However, this method
would mostly be an approximation.

A command is disabled (enabled=false) if none of its data
dependencies are currently satisfied, if none of its data
dependencies have side effects, and if it has no side effects
outside of conditional expressions. For example, Figure 1
shows a set of four disabled commands, Enter, Left, Q, and
Right. This event listener for the Left command, shown in
Figure 4, consists of only a single data dependency
(MainHex && gameState !== 0), and a two side effects
(MainHex.rotate(1), MainHex.hexagonPosition--).
Before the game starts, the value of gameState is 0. After a
person starts the game, its value is 1, resulting in this
expression evaluating to true, and allowing the side effects
to occur when the event listener is called.

Command Monitoring
After reverse engineering each command’s data dependencies
and side effects, Genie evaluates them to determine each
command’s availability. This process runs in an update
service which calls the JavaScript method eval to evaluate
each data dependency in a global scope. The results of eval
are sent to each Genie interface through the update service.
For example, the speech interface shown in Figure 1 updates

Input: AST for handleStartGame()
function handleStartGame(e) {
 var startBtn = $(“#startBtn”);
 if(!startBtn.attr(“disabled”)){
 startBtn.attr(“disabled”,false);
 // Start the game
 // If there are lives remaining
 if(livesRemaining > 0) {
 startGame();
 }
 }
}

Output: data dependencies (DD) & side effects (SE)

DD: !$(“startBtn”).attr(“disabled”)
 && livesRemaining > 0
SE: startBtn.attr(“disabled”,false), startGame()

DD: !$(“startBtn”).attr(“disabled”)
 && !(livesRemaining > 0)
SE: startBtn.attr(“disabled”,false)

DD: $(“startBtn”).attr(“disabled”)
SE: None

Figure 3. An event listener that starts a game if the start button
is not disabled and if there are any remaining lives. Genie
discovers three data dependencies in its analysis of this listener.

Input: AST for rotateHexagonLeft()
// Rotate the hexagon left
function rotateHexagonLeft() {
 if (MainHex && gameState !== 0) {
 // Rotate hexagon left
 MainHex.rotate(1);
 // Update the position counter
 MainHex.hexagonPosition--;
 }
}

Output: Rotate the hexagon left, rotate hexagon left, rotate,
update the position counter, hexagon position

Figure 4. Inputs and outputs for command description
algorithm for the rotateHexagonLeft event listener.

the status in the interface by giving the disabled commands
a grey color. Our analysis currently only resolves data
dependencies in the local event listener scope (excluding
expressions defined outside this scope such as MainHex).
This is because it is not possible to access the closure of
registered event listeners to recreate the scoping of these
variables. In future work, we will explore how we can
evaluate these expressions more accurately within the
constraints of JavaScript scoping.

Genie’s update service runs every second, evaluating the
enabled and visible states of each command as a person
interacts with the system, providing them with timely
feedback about command availability.

Describing Commands
Alternative interfaces that display available commands need
some way to describe the commands so that people know
what effect each command will have before they invoke it.
For example, Genie derives and displays command labels in
the speech interface shown in Figure 1, giving each
command a name and basic description of its effects.

To derive these labels, Genie identifies labels from command
metadata by searching for natural language phrases starting
with an imperative verb followed by a noun. For example, the
phrases in Figure 1 include “Resume game” or “Show help”.
If a command label cannot be found in the “verb noun”
format, Genie searches each metadata string for verbs and
nouns to use as labels, if they can be found.

Genie collects collect command metadata from two sources:
element and listener metadata. Element metadata comes
directly from the attributes of a command’s DOM element.
Global attributes are those common to all types of DOM
elements, which include title, id, and class. These three
attributes frequently and conventionally contain semantic
metadata to describe the object or concept that a DOM
element represents. <input> elements have an additional
set of commonly useful attributes: placeholder, alt, and
value. Another subset of elements, <input>, <button>,
<fieldset>, <textarea>, and <select> have a name
attribute. <a> elements have an href attribute that also
frequently contains descriptive metadata.

Listener metadata comes from command event listener
source code. Genie analyzes four sources of listener
metadata: 1) comments on the event listener, 2) the event
listener name, 3) comments on expression calls and
assignments (i.e., side effects), and 4) the expression calls
and assignments. To parse these sources, the algorithm splits
each assignment, function call, and function name into
separate identifiers (e.g., each token in Figure 4, such as
MainHex and hexagonPosition), parsing each identifier
and attribute value separately and identifying them as either
a phrase or an individual word.

3 github.com/cfinke/Typo.js

Genie identifies phrases from both element and listener
metadata by splitting on common identifier splitting
conventions (e.g., camel casing, underscores, dashes). A
part-of-speech tagger tags each sentence, phrase, or
individual word, while the system discards non-English
strings using an open source spell checker library3. The
algorithm then searches each string for the first verb,
followed by the first noun. If both can be found, the system
generates a command label.

Genie uses command labels to uniquely identify and trigger
commands. The system prioritizes imperative phrases and
verbs to use as these labels, but if none can be found will fall
back to remaining metadata. Developers can use the
remaining metadata to provide a more detailed description of
the command to be shown in an interface, such as the one
shown in Figure 5. This remaining metadata is labeled as
description metadata. Thus, the two outputs of this process
are a command label and description metadata. In Figure 5,
the multiplication command has a command label Multiply
and description metadata of Operator button, and Ops.

Invoking Commands
Performing commands through an alternate interface
requires some way of triggering the original functionality

Figure 5. A calculator interface with incomplete keyboard
support (a-calculator.com), enhanced to provide a keyboard
shortcut for each command, as enabled by Genie’s analyses.

through the new interface. The JavaScript DOM API
provides a dispatchEvent method for creating and
triggering custom events. Genie uses this API to allow Genie
interfaces to dispatch events to the original interface,
creating a new Event object with the necessary inputs, and
triggering them through the dispatchEvent method
defined in the EventTarget DOM API.

However, Genie cannot simply trigger only the event
corresponding to the command. Web interfaces instead
expect one or more sequences of events to be triggered by a
motor action (e.g., clicking the left mouse button, typing a
key). For example, a mouseup event and a mousedown
event must be triggered before the click event is triggered,
as an application’s semantics may depend on these events
occurring. We call these event ordering requirements device
dependency events (see definition in Figure 2). Each
command has a list of pre device dependencies and post
device dependencies describing events that need to be
triggered before and after the event, in the correct order.
Device dependencies consist of both direct events, such as
mouseup and mousedown, and indirect events, such as blur
and focus. When a Genie interface requests to perform a
command, Genie executes pre and post device dependencies
before and after a command in the correct order if there are
commands corresponding to those events.

Many events also require additional input that originates
from device specific input, such as a mouse location, or key
code. Genie analyzes and discovers these dependencies
through a command’s event listener. To do this, Genie
traverses the AST of the event listener to locate mouse
location and keyboard dependencies. Event listeners
typically reference device location through properties on the
event object (e.g., evt.clientX, evt.clientY, evt.x,
and evt.y). Our algorithm searches the AST for references
to these properties, typically in assignment or conditional
expressions. For example, Figure 6 shows that
mouseMoveHandler() references the clientX property of
the event object and stores it in the relativeX variable. The
conditional test expression then references the variable
relativeX. We transitively detect any dependencies that

we can statically determine will effect the control flow
through the event listener.

Genie detects keyboard dependencies similarly (Figure 7),
looking for references in the AST to code, key, or keyCode
properties on the event object. If the key code of the event is
assigned to a variable that is referenced on a conditional
expression, or if the key code is referenced directly, we
collect the corresponding value that the keyCode is
compared to (e.g., if(evt.keyCode == 13)). If the
keyCode value is not hard-coded, Genie transitively
determines the value, if possible.

As Figure 2 shows, each command has a required input
property. Each key code value we discover (e.g., 13) is added
to the required input list. If we cannot find a possible value
for a key code reference, in cases where the key code value
is assigned to a global variable or variable declared outside
the function, and not referenced later in a conditional, we do
not add a value to required input because we cannot
determine that value statically. Genie detects mouse button
dependencies through traversing references to the button
and buttons properties of the event object, and collects the
corresponding values in a similar manner to keyCode.

Each key code or mouse button value in the required input
property is mapped to one or more side effects. When a
command has multiple required input values, Genie splits the
command into multiple pseudo-commands, where each
required input value is a command, has a command label
corresponding to its input value or side effect metadata, and
has a set of side effects that will occur if the command is
given that specific input. Figure 1 is an example where the
commands “Left” and “Right” originate from the same
event listener. In the Genie system, a pseudo-command is
represented in the same way as a regular command.

Each Genie command also has a perform method that
triggers the command, supplying the required input and pre
and post device dependencies. For a pseudo-command,
Genie supplies the associated required input value.

Genie API
To support developers in building applications with Genie
models, we built an API that exposes any web page’s current
set of commands, properties, and behaviors. Developers can
create a Genie interface which can subscribe to an abstract
list of commands that Genie keeps up to date. Genie notifies
each interface when the state of a property (e.g., visible,

Input: mouseMoveHandler AST
function mouseMoveHandler(e) {
 var relativeX = e.clientX;
 relativeX = relativeX – canvas.offsetLeft;
 if(relativeX > 0
 && relativeX < canvas.width){
 paddleX = relativeX – paddleWidth/2;
 }
}

Output: True – Command dependent on mouse position

Figure 6. This event listener references the clientX property of
the event object. This is stored in the variable relativeX which
is referenced in the conditional statement, which guards a side
effect. Our system detects these dependencies and determines
that the command is dependent upon mouse location.

Input: keyDownHandler AST
function keyDownHandler(e) {
 if(e.keyCode == 13) {
 submitOnEnter();
 }
}

Output: KeyCode: 13, submitOnEnter()
Figure 7. This event listener references the keyCode property
of the event object and compares it to the value. Genie returns
the value 13 and the corresponding side effect.

enabled) has changed, or when a command is added or removed.
Each Genie interface requires defining a new representation
of the interface to use for a command (i.e., HTML structure
and CSS), and code that defines how to update an interface
when a command’s enabled or visible status changes.
However, a Genie interface does not need to define any code
that interacts with the abstract set of commands.

Each Genie interface can trigger the command using the
framework and pass in the required arguments. Interfaces
can define their custom command triggers for each
command, which Genie then invokes automatically. Genie
provides each interface a set of default labels for a command,
including a command trigger label that is unique to each
command (e.g., the bolded labels shown in Figure 1) and an
additional set of labeling metadata. The framework is meant
to be simple, only requiring a new Genie interface to
implement the behaviors required for command activation.

GENIE INTERFACE EXAMPLES
The benefit of having an abstract model of application
commands is that we can easily translate web interfaces to
support a range of input, without having to design built-in
support for this range of input. We validated Genie by
building several diverse applications showcasing these
translations, and we motivate them through their potential for
making the web more powerful and accessible. Each of these
applications is demonstrated on a single website, but the
applications themselves are generic and are meant to be
applied to any website based on Genie’s analyses.

Automatic Speech Input
Many people have severe motor impairments that make
using a mouse or physical keyboard almost impossible [13].
However, many people with motor impairments can use
speech interfaces. Using the Genie API, we built the speech
interface shown in Figure 1. The Genie interface displays a
list of currently available commands on the page. People can
trigger any of the commands by simply speaking the label
shown in bold. Commands shown in dark grey are currently
disabled and cannot be triggered. Genie monitors and updates
the states of these commands as the user interacts with the
web page. We implemented this interface using the Genie
API, defining the interface structure and styles, integrating
the Web Speech API4 to process speech input, and mapping
each speech input to the corresponding Genie command.
This only required about 150 lines of JavaScript code.

The web site shown in Figure 1 demonstrates our speech
interface active on a game called Hextris, which consists of
a rotating hexagon. The objective of the game is to prevent
blocks from leaving the outside of the gray hexagon. The two
main commands to play the game are speaking “Left” and
“Right” to rotate the hexagon in either direction. Genie
allows anyone to play this game via speech, in addition to
using the built-in mouse and keyboard commands.

4 https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API

Automatically Generated Keyboard Shortcuts
Most websites only support mouse input, or selectively
implement support for a small set of keyboard accelerators.
For example, the calculator shown in Figure 5 is a basic
calculator with simple number, operator (e.g., +, *), and
memory functions (e.g., MR, MC). It has keyboard shortcuts
for numbers, but not for operators or memory functions,
rendering the calculator useless without a mouse. Such
applications are less accessible to people who do not use a
mouse, such as people with severe motor impairments or
people who use screen readers.

We used Genie to build the interface shown in Figure 5. This
interface displays a list of commands and a corresponding
automatically generated keyboard shortcut for each command.
Implementing this interface required defining shortcut
triggers using the Keypress API5 and defining a function to
generate a shortcut for each command. We defined a simple
method to define shortcuts using the first letter of the
command label and the modifier ctrl. If a shortcut is
already used, the interface assigns the second letter as the
shortcut, and so on. Each keyboard shortcut has a unique
command label and a corresponding metadata description.
This required about 130 lines of code.

Figure 5 shows the calculator interface with our Genie
interface active. This interface can be used on any website to
activate automatically generated shortcuts, so the calculator
interface is used here as just an example. The interface
displays a shortcut that can be used to trigger each number,
operator, and memory command. Number commands contain
the metadata “number button”, operators have the metadata
“operator button”, and memory buttons have the metadata
“memory button”, along with other collected metadata,
shown by each command description. For this interface, the
labels happen to originate from the referenced listener name
in the onclick attribute which for each of the buttons has
the value onclick=”operatorButton(‘+’)”.

Keyboard-Based Mouse Input
Many people cannot use a mouse to interact with the web,
preventing them from using applications that rely on
fine-grained pointer input such as drawing or diagramming
tools [13,19]. With Genie, we can easily create alternate
ways of supplying precise pointer input using the keyboard.

Figure 8 shows an automatic keyboard-based mouse input
application we built currently active on a graph drawing
application. Typing ctrl-i triggers the command “Insert
node” as labeled in the figure. Triggering the “Insert node”
command displays a grid covering the surface of the canvas.
Typing in the numbers corresponding to the desired cell
generates a mouse location used as input to Genie when the
command is triggered. Implementing this Genie interface
using the framework simply required implementing the
method of inputting coordinates, integrating the Canvas API

5 dmauro.github.io/Keypress

to draw the grid, and registering keydown listeners to
process location input. In all, this interface required only
about 75 lines of JavaScript.

This method of input, while not having the precision of
clicking a mouse on the canvas, does provide a method of
entering this input. This interface could easily be extended
with more accurate methods of input, such as an onscreen
cursor that could be moved with keyboard or voice commands.
This interface could also work with other input devices. For
example, people could speak the cell numbers to input the
location or use the command line interface that we describe
in the next section. The developer of each Genie interface
would need to create this mapping, but as we have shown,
such mappings require very little implementation work.

A Command Line Interface for Web Automation
Most web applications are not scriptable. Many web forms
require painstaking input needing a skilled programmer to
automate. Web automation tools such as CoScripter [22] and
Chickenfoot [5] provided powerful solutions to this problem.
Genie can easily recreate such functionality, providing a
command line scripting console for arbitrary web applications.

Figure 9 shows our example command-line applied to a
simple to-do list application (flask.io). This application
allows people to create to-do lists, save to-do lists to a profile,
and share tasks with other people. Typing “commands” into
the terminal presents the user with a list of the available
commands discovered by Genie. Commands for the
application shown include “write task” which corresponds to
typing a value into the field labeled “Write your next task
here”, and “save task” which saves the task to the interface.
Typing “help” into the terminal displays the list of command
triggers along with more detailed descriptions from the
collected command metadata. The command line interface

supports macro creation allowing for automation of multiple
commands and inputs. The user creates a macro using the
following format.
<macroName>="<commandName1>":"<commandInput1
(optional)>","<commandName2>"…

The paperReview macro in Figure 9 creates and saves three
tasks to the list: read paper, write review, and submit review.
These are three hypothetical tasks that a reviewer might
create to remember to complete all steps of submitting a
paper review. The macro could potentially be persisted
across sessions so that adding subsequent paper reviews
would require simply typing the command paperReview.

RELATED WORK
Prior work has explored various aspects of the Genie system,
from enabling creation of more personalized and accessible
websites to retargeting the inputs of an application from one
modality to another. Fewer systems have explored discovering
the interactive behaviors or models of an application and
modifying the discovered behaviors. Genie goes beyond
such work by integrating program analysis techniques to
enable command discovery and customization.

One prior focus of web personalization is web accessibility.
ARIA [10] attributes enable screen readers to interpret web
content, and a few prior works have dynamically analyzed and
injected ARIA attributes into a website. One method describes
dynamic updates by monitoring and dynamically injecting
ARIA attributes onto the updated content [6]. Another method
detects and makes static content accessible [7]. However,
these methods primarily operate within the existing input
modality of the page, improving the interaction for people

Figure 9. A Genie-enabled command line terminal that allows
command automation and macro creation.

Figure 8. A graph builder augmented with Genie’s input grid
for capturing mouse coordinates via keyboard.

who could already access the page via that modality, but not
enabling access via entirely new modalities.

In addition to ARIA attributes, some other approaches have
used the power of crowdsourcing and collaboration to
identify web accessibility issues and apply fixes, including
AccessMonkey [3] and CAN [18]. These systems enable
developers to write scripts to fix specific accessibility issues.
However, these scripts are mostly written for a specific
website or subset of websites. They typically modify a
specific aspect of behavior or add a new functionality. In
contrast, Genie focuses on a generic method for discovering
and describing existing functionality to support alternates
forms of access to that existing functionality.

Prior work also explores automatically generating interfaces
to make them more accessible or efficient to use. SUPPLE [14]
had users take a one-time performance test that enabled
generation of a custom interface suited to personal abilities,
improving efficiency of generated interfaces. The EKOGI
system [1] accounted for a person’s abilities and the
interactions that best suit those abilities, generating a tailored
interface. The contributions of Genie could allow such
solutions to leverage a more application-agnostic model of
commands. Genie could notify such systems what commands
are available, and a corresponding Genie interface could be
created per each person’s detected abilities. Additionally,
these interfaces could potentially be even more personalized
because they could select and use an alternate input modality
that is more appropriate to a person’s abilities.

In addition to Genie, a few systems have enabled input
retargeting to translate the modality of an application to one
that is more accessible or efficient to use, but these systems
have hard-coded input mappings. Gesture Avatar [24]
allowed people to interact with an existing mobile interface
through gestures. Their method operated on the pixel-level,
creating a mapping between gestures and their corresponding
objects in the interface. Their approach creates custom
mappings from one input domain to another, while Genie
allows for the creation of generic mappings.

Genie relies on the ability to automatically discover interactive
behaviors of an application. Prior work in program analysis
has discovered these interactive behaviors, but has primarily
focused such efforts toward GUI testing. For example, some
prior work has utilized web crawling to produce models of
the interactive components of web interfaces [25,29]. For
desktop user interfaces, some prior work has discovered
these interactive components using accessibility APIs [27]
and computer vision techniques [15].

A few systems have both detected and enabled modifying the
behavior of the interactive components of an application.
Runtime toolkit overloading in Scotty [12] is one approach,
a technique for supporting manual program analysis for
adding functionality to existing runtime behavior. Prefab [11],
Sikuli [32], and Waken [2] all use pixel-based analyses to
discover interface components through templates and machine

vision techniques. These systems also enable modifying the
behavior of the detected interface components. Because
these methods only have access to the pixel-level appearance
of an application’s interface, but not the application’s source
code, they can only understand visible behaviors. Unlike
Genie, they have no understanding about whether components
they are detecting are actually interactive, nor any way of
predicting their behavior.

Only a few prior works have analyzed source code for
enhancing accessibility or usability. Ko et al. applied program
analysis to detect paths in a web application that did not result
in any feedback in the interface [21]. Genie builds upon these
techniques, using both static and dynamic analysis, to
support automatic interface translation and adaptation.
LIMITATIONS
Many of Genie’s limitations are due to limited availability of
metadata in an application’s source code. For instance, a key
limitation of Genie’s command labels and the descriptions
Genie discovers is that many websites use “minification” to
improve performance and obfuscate code, limiting the
information Genie can extract and present in alternate
interfaces. Even if a site is not minified, many websites do
not include descriptors in the comments or source code of
their event listeners or on their command elements. Even if
the information exposed by Genie is not detailed or high
quality, the ability of Genie to at least expose what actions
are possible may still be useful. Better metadata might also
be attached through social annotation techniques [20],
applied to the original interface or to Genie’s representation.

Other limitations are due to imprecision in the program
analyses that we used in our prototype. For example, we only
analyze the functions registered as event listeners, and not
the functions they transitively call. We could have done a full
program analysis, tracking the full extent of downstream side
effects following a function call, potentially discovering a
more precise set of command states (e.g., enabled, disabled),
side effects, and descriptions. Not having these precise states
might mean that a command label is not descriptive enough,
or that a command that is currently disabled is shown as
enabled. However, triggering the command through Genie
will have the same behavior as triggering the command
through the regular interface, and relevant feedback of the
disabled command will still be presented. Discovering more
precise command states is a matter of applying more advanced
program analysis techniques from prior work in software
engineering, but it was outside the scope of our prototyping.

Another limitation we discovered with larger websites was
that Genie discovered large numbers of commands that made
it difficult to discern which command triggered which
functionality. Future work should explore reverse engineering
more metadata to help organize and group relevant
commands together so that they are more discoverable.

DISCUSSION & FUTURE WORK
During the process of creating our alternate interfaces, we
generated several additional ideas for Genie interfaces. Many
of these involved creating input retargeting support for other
modalities, including touch input, brain-computer input, or
any other types of future input devices. However, we also
generated several other interface enhancements that go
beyond input. For example, Genie might be used to
automatically create a help interface that display tooltips that
describe each command and its side effects. In investigating
this, we found that the metadata we could collect from the
real applications used in this paper was not detailed enough
to support this type of description, but would still give some
indication as to the behavior of the command and could be
useful in many cases. More advanced analysis of command
side effects might allow us to generate tutorials that suggest
a specific sequence of commands to complete a particular
task, thus providing more advanced and automated help.

Another promising use for Genie might be in adding
enhanced ARIA metadata to existing websites, which is a
standard for making interactive websites screen readable.
For example, the attribute aria-disabled indicates that an
element is perceivable but not interactive. Hidden elements
in a page should be marked with the attribute aria-hidden
which indicates that the interactive element is not visible or
perceivable. As the Genie data model already exposes and
notifies a Genie interface when these two properties are
updated for any command, it would be simple to implement
a Genie interface that keeps these two properties up to date
for any web interface. In fact, utilizing a combination of
static and dynamic analysis has the potential of being able to
monitor the state of many attributes, such as aria-invalid,
aria-expanded, and others. We will explore extending
Genie to monitor additional properties in future work.

There are a diverse set of issues with existing web interfaces
that could also be enhanced or repaired with the metadata
Genie collects. We have explored building a Genie interface
that would automatically detect and repair usability issues in
an interface. For example, previous work [21] analyzed a set
of 115 web applications, and found 37% did not provide
feedback to users after completing an action. Augmenting
Genie to detect when a command does not provide feedback,
and generating customized feedback messages, could be a
promising application. Genie additionally analyzes the
disabled state of commands, so using this information to
provide reasoning to users about why a command is currently
disabled, or what commands can be performed to enable it,
could also be useful applications of Genie’s analysis.

In future work, we plan to scale up our evaluation to
demonstrate the effectiveness of our techniques on a larger
set of websites selected from the Alexa.com rankings. This
will allow us to fully evaluate the benefits and limitations of
Genie across a more representative set of websites, and
discover areas of improvement for future work.

CONCLUSION
This paper has presented Genie, a framework to reverse
engineer the interactive commands from a website,
retargeting their inputs to alternate input modalities. Genie
enables alternate access to a broad range of websites that were
not designed for diverse abilities. By implementing a set of
alternate interfaces using the Genie framework, we have
shown that this approach has the potential to create more
efficient and customizable interfaces that can enhance the
ability to interact with existing websites. Through the many
opportunities to enhance the metadata that Genie collects, and
through more advanced methods of program analysis, we
hope to create a system where every website can be accessed
by any person that desires to use it, through any method of
interaction they require based on their individual abilities.

ACKNOWLEDGMENTS
We thank Dastyni Loksa, Alex Rowell, William Menten-Weil,
and Dakota Miller for early feedback on the work and
prototypes. We also thank Annie Ross for reading and
providing feedback. This material is based upon work
supported in part by the National Science Foundation under
awards CCF-1153625, IIS-1053868, and IIS-1314399.

REFERENCES
1. Julio Abascal, Amaia Aizpurua, Idoia Cearreta, Borja

Gamecho, Nestor Garay-Vitoria, and Raúl Miñón.
2011. Automatically Generating Tailored Accessible
User Interfaces for Ubiquitous Services. In
Proceedings of the International ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS
’11), 187–194.
http://doi.org/10.1145/2049536.2049570

2. Nikola Banovic, Tovi Grossman, Justin Matejka, and
George Fitzmaurice. 2012. Waken: Reverse
Engineering Usage Information and Interface Structure
From Software Videos. In Proceedings of the Annual
ACM Symposium on User Interface Software and
Technology (UIST ’12), ACM Press, 83–92.
http://doi.org/10.1145/2380116.2380129

3. Jeffrey P. Bigham and Richard E. Ladner. 2007.
Accessmonkey: A Collaborative Scripting Framework
for Web Users and Developers. In Proceedings of the
International Cross-Disciplinary Conference on Web
Accessibility (W4A ’07), ACM Press, 25–34.
http://doi.org/10.1145/1243441.1243452

4. Jeffrey P. Bigham, Tessa Lau, and Jeffrey Nichols.
2008. Trailblazer: Enabling Blind Users to Blaze Trails
Through the Web. In Proceedings of the International
Conference on Intelligent User Interfaces (IUI ’09),
ACM Press, 177-186.
http://doi.org/10.1145/1502650.1502677

5. Michael Bolin, Matthew Webber, Philip Rha, Tom
Wilson, and Robert C. Miller. 2005. Automation and
Customization of Rendered Web Pages. In Proceedings
of the Annual ACM Symposium on User interface
Software and Technology (UIST ’05), ACM Press,
163–172. http://doi.org/10.1145/1095034.1095062

6. Yevgen Borodin, Jeffrey P. Bigham, Rohit Raman, and
I. V. Ramakrishnan. 2008. What’s new?: Making Web
Page Updates Accessible. In Proceedings of the
International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’08), ACM
Press, 145–152.
http://doi.org/10.1145/1414471.1414499

7. Andy Brown and Simon Harper. 2013. Dynamic
Injection of WAI-ARIA into Web Content. In
Proceedings of the International Cross-Disciplinary
Conference on Web Accessibility (W4A ’13), ACM
Press, Article 14.
http://doi.org/10.1145/2461121.2461141

8. Ben Caldwell, Michael Cooper, Loretta Guarino Reid,
Gregg Vanderheiden. 2008. Web Content Accessibility
Guidelines (WCAG) 2.0. Retrieved September 18,
2016 from https://www.w3.org/TR/WCAG20/

9. Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. 2011.
Associating the Visual Representation of User
Interfaces with their Internal Structures and Metadata.
In Proceedings of the Annual ACM Symposium on
User Interface Software and Technology (UIST ’11),
ACM Press, 245-256.
http://doi.org/10.1145/2047196.2047228

10. Michael Cooper. 2016. WAI-ARIA Overview.
Retrieved September 18, 2016 from
https://www.w3.org/WAI/intro/aria

11. Morgan Dixon and James Fogarty. 2010. Prefab:
Implementing Advanced Behaviors Using Pixel-Based
Reverse Engineering of Interface Structure. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10), ACM Press,
1525–1534. http://doi.org/10.1145/1753326.1753554

12. James R. Eagan, Michel Beaudouin-Lafon, and Wendy
E. Mackay. 2011. Cracking the Cocoa Nut: User
Interface Programming at Runtime. In Proceedings of
the Annual ACM Symposium on User Interface
Software and Technology (UIST ’11), 225–234.
http://doi.org/10.1145/2047196.2047226

13. Leah Findlater, Alex Jansen, Kristen Shinohara, et al.
2010. Enhanced Area Cursors: Reducing Fine Pointing
Demands for People with Motor Impairments. In
Proceedings of the Annual ACM Symposium on User
Interface Software and Technology (UIST ’10), ACM
Press, 153–162.
http://doi.org/10.1145/1866029.1866055

14. Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S.
Weld. 2007. Automatically Generating User Interfaces
Adapted to Users’ Motor and Vision Capabilities. In
Proceedings of the Annual ACM Symposium on User
Interface Software and Technology (UIST ’07), ACM
Press, 231–240.
http://doi.org/10.1145/1294211.1294253

15. Paul Givens, Aleksandar Chakarov, Sriram
Sankaranarayanan, and Tom Yeh. 2013. Exploring the
Internal State of User Interfaces by Combining
Computer Vision Techniques with Grammatical
Inference. In Proceedings of the International
Conference on Software Engineering (ICSE ’13), IEEE
Press, 1165–1168. Retrieved from
http://dl.acm.org/citation.cfm?id=2486951

16. Vicki L. Hanson and John T. Richards. 2013. Progress
on Website Accessibility? ACM Transactions on the
Web 7, 1: 1–30.
http://doi.org/10.1145/2435215.2435217

17. Andreas Holzinger, Gig Searle, and Alexander
Nischelwitzer. 2007. On Some Aspects of Improving
Mobile Applications for the Elderly. In International
Conference on Universal Access in Human-Computer
Interaction, 923–932.
http://doi.org/10.1007/978-3-73279-2_103

18. Yun Huang, Brian Dobreski, Bijay Bhaskar Deo, et al.
2015. CAN: Composable Accessibility Infrastructure
via Data-Driven Crowdsourcing. In Proceedings of the
Web for All Conference (W4A ’15), ACM Press,
Article 2. http://doi.org/10.1145/2745555.2746651

19. Faustina Hwang, Simeon Keates, Patrick Langdon.
2004. Mouse Movements of Motion-Impaired users: A
Submovement Analysis. In Proceedings of the ACM
SIGACCESS Conference on Computers and
Accessibility (ASSETS ’04), 102–109.
http://doi.org/10.1145/1028630.1028649

20. Shinya Kawanaka, Yevgen Borodin, Jeffrey P. Bigham,
Darren Lunn, Hironobu Takagi, and Chieko Asakawa.
2008. Accessibility Commons: A Metadata
Infrastructure for Web Accessibility. In Proceedings of
the International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’08), 153–160.
http://doi.org/10.1145/1414471.1414500

21. Amy J. Ko and Xing Zhang. 2011. Feedlack Detects
Missing Feedback in Web Applications. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’11), ACM Press,
2177–2186. http://doi.org/10.1145/1978942.1979260

22. Greg Little, Tessa A. Lau, Allen Cypher, James Lin,
Eben M. Haber, and Eser Kandogan. 2007. Koala:
Capture, Share, Automate, Personalize Business
Processes on the Web. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’07), ACM Press, 943-946.
http://doi.org/10.1145/1240624.1240767

23. Tovi Grossman and Ravin Balakrishnan. 2005. The
Bubble Cursor: Enhancing Target Acquisition by
Dynamic Resizing of the Cursor’s Activation Area. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’05), 281–290.
http://doi.org/10.1145/1054972.1055012

24. Hao Lü and Yang Li. 2011. Gesture Avatar: A
Technique for Operating Mobile User Interfaces Using
Gestures. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’11), 207–
216. http://doi.org/10.1145/1978942.1978972

25. Alessandro Marchetto, Paolo Tonella, and Filippo
Ricca. 2012. ReAjax: A Reverse Engineering Tool for
Ajax Web Applications. IET Software 6, 1: 33–49.
http://doi.org/10.1049/iet-sen.2010.0152

26. Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and
Atif Memon. 2014. GUITAR: An Innovative Tool for
Automated Testing of GUI-Driven Software.
Automated Software Engineering 21, 1: 65–105.
http://doi.org/10.1007/s10515-013-0128-9

27. Christopher Power, André Freire, Helen Petrie, and
David Swallow. 2012. Guidelines Are Only Half of the
Story: Accessibility Problems Encountered by Blind
Users on the Web. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’12), ACM Press, 433–442.
http://doi.org/10.1145/2207676.2207736

28. Katharina Reinecke and Abraham Bernstein. 2011.
Improving Performance, Perceived Usability, and
Aesthetics with Culturally Adaptive User Interfaces.
ACM Transactions on Computer-Human Interaction
(ToCHI ’11), 18, 2: 1–29.
http://doi.org/10.1145/1970378.1970382

29. Carlos E. Silva and José C. Campos. 2013. Combining
Static and Dynamic Analysis for the Reverse
Engineering of Web Applications. In Proceedings of
the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS ’13), 107–112.
http://doi.org/10.1145/2494603.2480324

30. Steven John Simon and Steven John. 2001. The Impact
of Culture and Gender on Web Sites. ACM SIGMIS
Database: The Database for Advances in Information
Systems 32, 1: 18–37.
http://doi.org/10.1145/506740.506744

31. WebAIM: Web Accessibility in Mind. 2015. WebAIM:
Screen Reader User Survey #6 Results. Retrieved
September 18, 2016 from
http://webaim.org/projects/screenreadersurvey6/

32. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
2009. Sikuli: Using GUI Screenshots for Search and
Automation. In Proceedings of the Annual ACM
Symposium on User Interface Software and
Technology (UIST ’09), 183–192.
http://doi.org/10.1145/1622176.1622213

	Genie: Input Retargeting on the Web through Command Reverse Engineering
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	THE GENIE FRAMEWORK
	Command Detection
	Command Filtering
	Command Property Analysis
	Command Monitoring
	Describing Commands
	Invoking Commands
	Genie API

	GENIE INTERFACE EXAMPLES
	Automatic Speech Input
	Automatically Generated Keyboard Shortcuts
	Keyboard-Based Mouse Input
	A Command Line Interface for Web Automation

	RELATED WORK
	LIMITATIONS
	DISCUSSION & FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

