
 

 

 
 

 
     

  
  

       
   

    
      

   
 

   
   

   
 

       
  

 
  

   
    

  

 

  

 

    
  

   

     

  
      

     

 
   
 

  

       
      

   

   
 

  
 

 
   

    
   

     
 

   
         

        
  

   
 

    

  

  
   

  

    
   

      
   

Interaction Proxies for Runtime Repair 

and Enhancement of Mobile Application Accessibility 

Xiaoyi Zhang1*, Anne Spencer Ross1*, Anat Caspi1,2, James Fogarty1, Jacob O. Wobbrock3 

1 Computer Science & Engineering, 2 Taskar Center for Accessible Technology, 3 The Information School 
DUB Group | University of Washington 


{xiaoyiz, ansross, caspian, jfogarty}@cs.washington.edu, wobbrock@uw.edu
	

ABSTRACT 
We introduce interaction proxies as a strategy for runtime repair 
and enhancement of the accessibility of mobile applications. 
Conceptually, interaction proxies are inserted between an 
application’s original interface and the manifest interface that 
a person uses to perceive and manipulate the application. This 
strategy allows third-party developers and researchers to modify 
an interaction without an application’s source code, without 
rooting the phone, without otherwise modifying an application, 
while retaining all capabilities of the system (e.g., Android’s 
full implementation of the TalkBack screen reader). This paper 
introduces interaction proxies, defines a design space of 
interaction re-mappings, identifies necessary implementation 
abstractions, presents details of implementing those abstractions 
in Android, and demonstrates a set of Android implementations 
of interaction proxies from throughout our design space. 
We then present a set of interviews with blind and low-vision 
people interacting with our prototype interaction proxies, using 
these interviews to explore the seamlessness of interaction, 
the perceived usefulness and potential of interaction proxies, 
and visions of how such enhancements could gain broad usage. 
By allowing third-party developers and researchers to improve 
an interaction, interaction proxies offer a new approach to 
personalizing mobile application accessibility and a new 
approach to catalyzing development, deployment, and 
evaluation of mobile accessibility enhancements. 
Author Keywords 
Interaction proxies; accessibility; runtime modification.  
ACM Classification Keywords 
H.5.m. Information Interfaces and Presentation (e.g., HCI); 
K.4.2. Assistive Technologies for Persons with Disabilities. 
INTRODUCTION 
Mobile devices and their applications (apps) have become 
ubiquitous in daily life. Ensuring full access to the wealth of 
information and services provided by such apps is a matter 

of social justice [39], but for the estimated 15% of the world 
population with a disability [60], many capabilities and 
services offered by apps remain inaccessible. Pursuing more 
complete access requires contributions from researchers, 
from developers of mobile platforms (e.g., Apple, Google), 
and from the developers of thousands of individual apps. 

Although individual apps can improve their accessibility in 
many ways, the most  fundamental is adhering to platform 
accessibility guidelines. For example, the Android Accessibility 
Developer Checklist guides developers to “provide content 
descriptions for UI components that do not have visible 
text” [1]. This in turn allows the Android TalkBack screen 
reader to provide meaningful feedback to a person using the 
screen reader to interact with the app. Unfortunately, many 
apps fail to implement accessibility guidelines, including 
flagship corporate apps (e.g., as of August 2016, this paper 
finds missing metadata in current Android apps for Wells Fargo 
and Yelp that makes key functionality inaccessible). The 
problem is analogous to developer failure to provide 
alternative text for images on the web [6] or to implement 
accessibility guidelines in desktop applications [28].  

When an app fails to implement fundamental accessibility 
support, people seeking to use that app often have few or no 
options for resolving the failure. An app’s developer may 
lack awareness or  knowledge needed  to implement a fix.  
They may delay a fix due to competing development priorities 
(e.g., prioritizing new features), and other app updates may 
even introduce new accessibility failures. Alternatively, it 
might be difficult or impossible to obtain updates if original 
development of an app was contracted out or if the app is 
otherwise abandoned by its developer. A new approach to 
deploying accessibility enhancements could allow individuals 
or communities to quickly address accessibility failures that 
an app’s original developer is unable or unwilling to address. 

Finally, mobile platforms also face significant challenges and 
tradeoffs in prioritizing, designing, and implementing potential 
platform-level accessibility improvements. Although the 
impact of built-in platform support can be large, many 
promising techniques never make it to platform-level adoption. 
At the same time, researchers cannot reasonably rebuild a 
platform’s entire accessibility infrastructure as part of 
exploring a new approach, so research is often limited to 
prototype apps. A new approach to deploying accessibility 
enhancements could both: (1) improve research by enabling 
* The first two authors contributed equally to this work. 

   
   

  
  

     
    

      
    

        
     

  
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be  
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from permissions@acm.org. 
CHI 2017, May 06 - 11, 2017, Denver, CO, USA 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-4655-9/17/05…$15.00 
DOI: http://dx.doi.org/10.1145/3025453.3025846 

http://dx.doi.org/10.1145/3025453.3025846
http:978-1-4503-4655-9/17/05�$15.00
mailto:permissions@acm.org
mailto:wobbrock@uw.edu
mailto:jfogarty}@cs.washington.edu


 

 

   

    
   

    

 
    

    
     

  
  

     
      

 

  
    

 
      

      

    
  

    
   

  
      

  
      

   
       

        
  

 

         
     

      
 
 

    
 

    
    

 
    

    
    

    
     

    

 

    

  

   
 

  

    
    

     
 

 
   

      
     

    
   

    
   

deployment  and evaluation  of potential  techniques, and  
(2) accelerate the impact of research by allowing promising  
accessibility enhancements to reach more people. 

This paper  introduces interaction proxies as   a   strategy   for   
runtime repair and enhancement of mobile app accessibility. 
Interaction proxies are inserted between an app’s  original 
interface and  the  manifest interface [14]  that a  person  uses to  
perceive and  manipulate  that  app  (e.g.,  the interface  exposed  
by a  screen reader like  Android’s TalkBack). As  a strategy  
for third-party accessibility enhancements, interaction proxies  
therefore contrast  with  both:  (1)  fixes in individual  apps  
(which  can  only  be  made by  an app’s  developer), and 
(2) platform-level enhancements (which  can  only  be made  
by  the platform  developer). The strategy  is analogous to  web  
proxies that modify a  page between a  server and a browser 
(including  web  proxies that  modify  pages to improve their 
accessibility [6,8,53]), but extended to address the design 
and implementation challenges of mobile app accessibility. 

We demonstrate interaction proxies on Android, modifying 
interactions without an app’s source code, without rooting the 
phone or otherwise modifying an app, while retaining all 
capabilities of the system (e.g., Android’s full implementation 
of the TalkBack screen reader). Our implementations achieve 
this by modifying selected interactions using an accessibility 
service that creates overlays above an app while listening to 
and generating events to coordinate an interaction. 

We then present a set of interviews with blind and low-vision 
people interacting with prototype interaction proxies, discussing 
their experiences and thoughts regarding such enhancements. 
As we will emphasize throughout this paper, our contribution 
is not intended to be any one specific accessibility enhancement. 
Rather, we aim to demonstrate the potential of interaction 
proxies as a strategy to support a variety of repairs and 
enhancements to the accessibility of mobile apps. 

The specific contributions of our work therefore include: 
•	 We introduce interaction proxies as a strategy for runtime 

repair and enhancement of the accessibility of mobile apps. 
•	 We explore a design space of interaction re-mappings that 

can be implemented by an interaction proxy. This provides 
a framework for considering the design and implementation 
of mobile accessibility repairs and enhancements. 

•	 We present a set of techniques for implementing interaction 
proxies and demonstrate implementations on Android without 
rooting the phone or otherwise modifying an app. A set of 
proof-of-concept Android implementations of interaction 
proxies demonstrate a range of technical techniques that 
developers and researchers can employ in implementing, 
deploying, and evaluating accessibility improvements. 

•	 We present two sets of interviews with blind and low-vision 
people who use screen readers, first exploring accessibility 
barriers they encounter in apps and then exploring their 
reactions to using prototype interaction proxies as well as 
their thoughts on the potential of interaction proxies for 
enhancing the accessibility of mobile apps. 

Figure 1. Interaction proxies are inserted between an app’s 
original interface and the manifest interface a person uses to 
perceive and manipulate that app. This allows third-party 
developers and researchers to modify the interaction. 

INTERACTION PROXIES 
Effective interaction requires bridging both the gulf of evaluation 
(i.e., perceiving and understanding the state of an app) and 
the gulf of execution (i.e., manipulating the state of an app) [30]. 
These gulfs are bridged using an interface. For many people 
without disabilities, that interface is the original touch screen 
display. But it is important to clarify that people commonly 
use different interfaces to access the same underlying app. 
Many blind or low-vision people choose a screen reader 
interface (e.g., Slide Rule [34], Android’s TalkBack, iOS’s 
VoiceOver), which re-maps touch to support navigation 
separate from activation and may completely disable visual 
display of an app. Many people with motor impairments choose 
a scanning interface, which relies on visual perception but 
re-maps manipulation by scanning through potential targets 
that a person then activates using a switch. Even attaching an 
external keyboard or an additional display to a device can be 
considered a change in the interface used for interaction. 

Borrowing from Cooper [14], we refer to the interface a person 
directly perceives and manipulates as the manifest interface. 
We contrast this with the original interface created by an app 
developer. For many people, the manifest interface may be 
the same as the original interface. However, many people 
with disabilities elect an alternative manifest interface. 
Conceptually, interaction proxies are inserted between an app’s 
original interface and the manifest interface a person uses to 
perceive and manipulate that app, as illustrated in Figure 2. 

We adopt the term “proxy” to be analogous to the web, where 
proxies can modify webpages between a server and their 
rendering in a browser (including web proxies with a purpose 
of improving web accessibility [6,8,53]). However, mobile 
app architectures do not allow the same approach to directly 
modifying the underlying representation of an interface prior to 
its rendering. Inserting an interaction proxy therefore aims to 
improve interaction by modifying how an app is perceived or 



 
      
   

       

Figure 2. This interaction proxy repairs accessibility metadata than an app provides to a platform screen reader. (a) Toggl 
is a popular time-tracking app. (b) Its interface includes elements with missing or inappropriate metadata, which a screen 
reader manifests as “Navigate Up” and “One, Unlabeled”.  (c) Our third-party interaction proxy repairs the interaction 
with appropriate metadata for each element, so a screen reader manifests these elements as “Menu” and “Start Timer”. 

 

 

manipulated, without  actually  modifying the app. Key  benefits  
are:  (1) this does not  require modifying the  app,  and  (2)  this 
does not  require modifying the renderer of a manifest  interface  
(e.g., a  person  continues to  use Google’s full implementation 
of  Android’s TalkBack screen  reader). Figure 1 illustrates 
insertion  of  an  interaction  proxy to  implement  repairs of 
accessibility metadata in Figure 2. Using floating windows 
and  other  methods we detail  in  this  paper,  the interaction 
proxy provides corrected accessibility metadata. This can be 
implemented  by  a  third-party  developer or  researcher,  and the  
interaction proxy’s  modifications  are then presented as  part  of  
the interface that is manifested  by the platform  screen reader.  

There is significant overall promise in  interaction proxies, 
which we  examine in implementing several  proof-of-concept  
enhancements and  in  interviews  with  blind  and low-vision 
people  interacting with  those prototypes.  But  the interaction  
proxy  strategy  also has  limitations. Specifically, the strategy  
is limited to  interactions where a proxy can integrate itself  into  
perception and manipulation of  an app via a particular interface. 
A proxy  must  support  both:  (1)  perception  and understanding 
of  the underlying  app  and  the  proxy’s  modifications via  the  
manifest interface (e.g., Figure 1’s upward arrow), and 
(2)  manipulation  of  the  underlying app and the proxy’s 
modifications  via  the  manifest  interface (e.g., Figure 1’s  
downward  arrow).  Proxies  may  simplify  this  by  targeting  
only small portions of   an interaction,   leaving   most   of   the   
original  interaction unmodified. But  care  is required  in  
developing  an  interaction  proxy,  as  any  seams  or failures  
introduced by an interaction proxy can create new barriers to  
bridging the gulfs of evaluation and  execution.  
RELATED WORK  
Our current  work builds upon and is  informed by  prior research 
in  mobile  accessibility  implementation, in accessibility  repair  
and enhancement, and in runtime interface modification.  
Mobile Accessibility Implementation 
Designing and implementing support  for mobile accessibility  
requires diverse contributions. One example can be seen in 
the design, adoption, and implementation of support  for screen 
readers  that make mobile apps  more accessible to blind  and  
low-vision people. Motivated  by  the research challenge of  
supporting  blind people in  using  touch screens, Slide Rule 
introduced techniques for re-mapping gestures to support 
navigating and exploring the screen separately  from  activating 
targets in an interface [34]. These techniques  were adopted  
by  developers of screen readers for major mobile  platforms  
(e.g., Android’s TalkBack, iOS’s VoiceOver), and now improve 

accessibility of apps on those platforms [42]. However, 
accessibility of apps on those platforms remains critically 
dependent  upon  the  many  developers  of individual  apps [1].  
It is best for apps to  be designed and developed to  be broadly 
accessible [58], but third-party interaction proxies provide a 
complementary  strategy when apps fall  short  of this goal.  

One key requirement of  the  developers of  individual apps  is 
to provide metadata needed to support platform  accessibility 
enhancements such as screen readers. Developers often fail to 
provide metadata for a variety of reasons (e.g., being unaware  
they should, lacking knowledge of how  to  do  so, or failing to  
prioritize accessibility). This problem  has been most studied 
on  the web  (e.g., with  missing  image alternative text  [6]). 
Despite education and improved testing  (e.g., [12,31,47]), 
such accessibility failures remain common on the web [25].  

The same underlying challenge occurs in  mobile and desktop  
interfaces, with  individual app  developers failing  to  implement  
platform  accessibility support. The extent of the problem  is  
difficult to  measure, due  to  a relative lack  of testing  tools.  
Hurst  et al.  found roughly  25% of desktop elements are 
completely missing from  the accessibility implementation of 
common desktop interfaces  [28]. Milne  et  al.  examined  the  
accessibility of apps provided with mobile health sensors, 
finding none appropriately  implemented platform  accessibility 
standards [43].  The greater maturity of education and  tooling  
in web accessibility makes it likely that mobile and desktop  
accessibility  implementations  are at least as poor as on  the web,  
and blind and low-vision interview  participants in  this paper 
report missing accessibility metadata is a frequent barrier. 
Accessibility  Repair and Enhancement 
Prior work  repairing  accessibility failures generally focuses  
on the web, where the representation rendered by  a browser  
is  available  and can  be  directly  modified. We use  the  term  
“proxy” to be  analogous  to prior  research  using  web proxies  
to improve web accessibility [6,8,53], but our implementation 
mechanisms  are quite different. Some  accessibility repairs 
can  be automated,  such as attempting  to  automatically  
identify sources of  alternative text  for web  images [6] or 
automatically increasing  font  size to  improve  readability [4].  
Other approaches emphasize social  annotation, wherein  
people contribute accessibility repairs that benefit additional  
people who encounter the same  accessibility failure [37]. Such  
research  has  examined collaborative  authoring of missing 
image alternative text and other  metadata [51,54,55], sharing 
of  scripts to  implement site-specific repairs [7], and  more 
recent work focusing on crowdsourcing contributions [27]. 



 

 

  
 

   
   

  
    

      
     

   
     

  
     

  
  

      
  

      
 

 
   

    
      

  

  
 

 
 

        

  

      
    

 
 

 
    

   
        

    
    

  
 

 

    
    

       
 

   
  

  
   

      
        

    
   

  
       

  

   
  

  

 
   

  
   

   
  

  
 

 
    

       

      
  

  
   

     
  

 
       

  

In addition to work on visual accessibility, many people with 
motor impairments choose accessibility techniques that modify 
how they manipulate an interface. SUPPLE modifies interface 
elements according to personal motor abilities [23,58]. Other 
systems leave interface layout unchanged, but apply techniques 
to ease pointing. Examples include making targets “sticky” 
[29,59], dynamically modifying cursor behavior according to 
a person’s movement profile [57], and breaking a pointing 
interaction into multiple interactions that disambiguate the 
intended target [22,33,63]. Other research has explored 
alternative pointing for physically large devices [36]. 

Prior research examines how people adapt to accessibility 
barriers in  mobile devices and how devices can enhance  
access in the physical world [35]. VizWiz examines supporting 
blind people in using a mobile device to take a picture and 
ask a crowd a question about that picture [5,11]. Extensions 
examine conversational interaction with the crowd [41] and 
soliciting volunteer assistance in social networks [9,10]. 
Related insights have been applied to supporting deaf students 
through real-time captioning for classroom activities [40]. 

There has been much less research in repairing or enhancing 
the accessibility of mobile apps. Notable examples include  
supporting macros motivated by accessibility needs [48] and 
implementations of pointing enhancements [63]. The SWAT 
framework examines system-level instrumentation of content 
and events to support developer creation of accessibility 
services [49], but requires rooting a device, which is a 
significant security risk and presents a technical expertise 
barrier. Our work explores a larger design space of 
re-mappings while working within the Android accessibility 
and security model. We thus extend the spirit of prior work 
in repair and enhancement, while developing new techniques 
for third-party accessibility enhancements in mobile apps. 
Runtime Interface Modification 
We also extend prior research in runtime modification of 
desktop interfaces. Such work employs different approaches 
than on the web, necessitated by a lack of ability to directly 
access or modify an interface’s internal representation. Early 
work replaced a toolkit drawing object and intercepted 
commands (e.g., draw_string) [21,46]. More recently, Scotty 
examined runtime toolkit overloading, developing abstractions 
for implementing modifications in code injected directly into 
the interface runtime [20]. Complementary work explores 
input-output re-direction in the window manager [56], using 
information from the desktop accessibility API to make 
changes in an interface façade [52]. To overcome limitations of 
the desktop accessibility API and incomplete implementations 
of that API, recent work examines interpretation of interface 
pixels [28]. Runtime modification can be implemented using 
only pixel-level analysis [15,16,17,18,19,61] or in combination 
with information from an accessibility API [13]. Such 
approaches can allow authoring more specialized or accessible 
manifestations of underlying application functionality [62]. 

Our work builds on insights from the desktop, but the mobile 
app context does not allow prior approaches (i.e., does not 

allow direct modification of interface internals, nor surface 
modification via window manager redirection). We develop a 
new approach (i.e., using floating windows while coordinating 
perception and manipulation in the manifest interface), and we 
explore implications for mobile accessibility modifications. 
RE-MAPPING INTERACTION 
We now present a design space for supporting researchers 
and developers in the design of interaction proxies, considering 
implementation abstractions in the next section. Recall from 
Figure 2 that an interaction proxy helps a person to bridge 
the gulf of evaluation and/or the gulf of execution. A proxy 
achieves this by modifying: (1) perception in an interaction, 
(2) manipulation in an interaction, or (3) both. We consider 
such modifications in terms of how a proxy re-maps existing 
interaction into new interaction. This section considers each 
of five identified patterns of re-mapping and discusses potential 
interaction proxies in that region of the design space. 

Although many potential enhancements fit cleanly into this 
design space, we note that some enhancements are better 
thought of as a combination of several interaction proxies, 
each of which re-maps an interaction according to this space. 
From Zero to One 
A re-mapping from zero to one adds a new interaction where 
there was none. By definition, this adds new information or 
functionality to a manifest interface, and we contrast it with 
later examples that correct or replace an existing interaction. 
Re-mappings might integrate new information obtained from 
an outside service or restore elements of an original interface 
that are inaccessible in a person’s chosen manifest interface. 

Figure 3 shows an example of adding information from an 
outside service. In interviews presented in this work, blind 
and low-vision people report they often do not have ready 
access to information about an app’s accessibility prior to 
attempting to use the app. If a third-party service rated app 
accessibility, it would be preferable to make ratings available 
directly at the time that information is needed. Figure 3’s 
proof-of-concept shows how a third-party interaction proxy 
could add a button for accessing such accessibility ratings 
from within the app store itself. Google’s Accessibility Scanner 
app similarly inserts a floating button that allows invoking an 
accessibility checker for the current screen [24], but it targets 
developer inspection of an app rather than end-users seeking 
information about the accessibility of potential apps. 

  
  

  
 

Figure 3. This interaction proxy adds third-party accessibility 
ratings directly within the app store. (a) An “Accessibility 
Ratings” button is added in empty space. (b) Selecting it 
shows third-party accessibility information for that app. 



 

 

  
    

  

  
   

   
      

 
    
  
    

   
   

 
 

    
       

   

  
     

      
   

  
    

       

 
  

   
   

   

       
     

  
  

   
    

   
    

 
  

       
  
   

    
     

   
        

Later sections discuss Figure 7, an example of zero-to-one 
re-mappings that restore functionality missing in an interface 
manifested by a screen reader. Specifically, the Wells Fargo 
app fails to expose several of its interface elements, leaving 
them inaccessible to a person manifesting the interface with 
a screen reader. An interaction proxy repairs this, restoring 
access to each of the menu items from the original interface. 
Figure 8 presents the same problem occurring with the stars 
on Yelp’s rating page. Inaccessible when using a screen reader, 
an interaction proxy restores these to the manifest interface. 
From One to Zero 
A re-mapping from one to zero removes an interaction. 
Examples include: (1) modifying a manifest interface to remove 
information or functionality from the original interface, and 
(2) modifications to correct or improve undesirable interactions 
introduced by a person’s chosen manifest interface. For 
example, stencils-based tutorials remove access to much of 
an interface by limiting interaction to the current step in the 
tutorial [26,38]. iOS’s Guided Access feature similarly 
allows disabling a phone’s motion detection or disabling 
touch in a region of an interface [3]. Additional examples can 
include removing interactions that provide no value or are 
problematic in a person’s chosen manifest interface 
(e.g., advertising, interstitial screens, spurious animations 
that generate distracting notifications with a screen reader). 
From One to One 
A re-mapping from one to one replaces an existing interaction 
with another. Figure 1 shows an example of elements with 
missing or incorrect accessibility metadata, which are 
therefore inappropriately manifested by a screen reader 
(e.g., presented as “One, Unlabeled”). Manipulation thus 
works as desired, but elements are difficult to correctly 
perceive. A third-party interaction proxy can correct this 
(e.g., presenting the button as “Start Timer”), proxying any 
manipulation to the underlying original interface. Although 
such a correction could also be considered a combination of 
a one-to-zero re-mapping (i.e., removing the incorrect data) 
and a zero-to-one re-mapping (i.e., adding the correct data), 
it is more straightforward to consider such direct replacement 
of an existing interaction as a one-to-one re-mapping. 

Alternatively, an interaction proxy can modify manipulation 
while leaving information in individual elements unchanged. 
For example, our blind and low-vision interview participants 
report needed functionality can sometimes be difficult to reach 
when manifested by a screen reader. Because swiping gestures 
traverse elements serially, an example difficulty is when a 
screen reader manifests a target at the end of a list that must 
be traversed to access it (e.g., Toggl’s “Create Timer” button 
prominently floats above the interface but the screen reader 
manifests it after all existing timers, Yelp’s search box is 
readily available in the original interface but the screen 
reader manifests at the end of a list). Later sections discuss 
Figure 8 and our implementation of interaction proxies to 
modify navigation order in such interfaces.  

   
  
    

     
 

Figure 4. This interaction proxy replaces one interaction 
with a sequence of two interactions. (a) An interface contains 
several small adjacent targets. (b) Replaced with a single 
larger “Tools” button. (c) Selection displays a menu of the 
original targets. (d) A selected item is activated. 
We note existing platform  support  for re-mapping interaction  
tends to be  strongest  for  one-to-one re-mapping  (e.g., both  
Android and iOS support  interactively  labeling elements  that  
are missing screen reader  metadata). But interaction proxies 
further allow third-party  developers and researchers to  develop, 
deploy, and evaluate  new  approaches  (e.g.,  neither  Android  
nor iOS provide  integrated support  for  social annotation  
approaches to crowdsourcing accessibility text, as has been 
proposed and examined in web-based systems [27,51,54,55]).   
From One to  Many  
A re-mapping  from  one to  many  replaces a  single  interaction 
with  multiple interactions. This is often  because the original  
interaction makes ability assumptions that are inaccessible to  
some  people, such  as fine-grained motor  assumptions [58].  
Unpacking  such  an  interaction into  a  sequence of  interactions  
can make it more  accessible to more  people. This  generally 
requires designing  for both perception  and  manipulation, as 
a person  must  navigate  the new  sequence of  interactions. For  
example, prior  work  explores  two-stage  selection of  small  
targets [22,33,63].  Figure 4  shows  an  interaction proxy  that  
replaces a  set of small adjacent targets with a  single larger 
target that invokes a menu for  choosing among them.  
From Many  to One  
A re-mapping from  many to one  replaces  multiple interactions  
with  a  single interaction.  For  example, prior work  has explored  
this  in accessibility macros [48].  Such  macros  can provide a  
new method for manipulating  an app through a  sequence of  
interactions  that might otherwise be  difficult or  laborious  
(e.g., interfaces that rely upon  timing  constraints  or  active  
modes that are difficult for a person  with a  motor impairment 
to  perform). A  macro might  also  be  invoked  using  a different  
modality, as with CoFaçade’s support  for configuring devices 
so an older adult can access functionality with  on-screen  
buttons, with  physical buttons, or  with  physical gestures like  
scanning  an  RFID  tag  [62].  In contrast  to many-to-one 
re-mapping  of  manipulation,  many-to-one  re-mapping  of  
perception can be implemented by  summaries. For example, a 
home  automation app might  contain many  visual  indicators of  
devices, which a screen  reader  manifests by serially scanning 
through each   device and its status, but a   proxy could add   
support for a  summary of which devices are currently on.  



 

 

 
 

      
    

  

     
 

  
  

 

 
 

  
   

   
   

 
      

    
 

 
    

 
    

 

 
   

       
  

    
  

    
   

 
  

  
  

 

  
      

   
  

     
  

 
     

   
  

 
 

 
  

   

       
    

 

   
    

    

     

  
         

  
  

      
 

     
   

        

 
  

 
 

   
      

     
  

   

   
   

   
  

     
         

         

    
  

   

 
   

 
    

  
   

        

 
     

 

Composing Multiple Re-Mappings in an Enhancement 
Apps and potential enhancements to those apps are composed 
of many interactions. In applying this design space to consider 
current and potential enhancements, it is helpful to consider 
enhancements as composed of many re-mappings, each of 
which is characterized by one of these five patterns. 

A simple case is when an enhancement applies the same type 
of re-mapping to multiple interactions (e.g., modifying screen 
reader metadata on multiple elements, modifying navigation 
order among multiple elements, disabling multiple elements as 
part of a stencils-based tutorial). But complex enhancements 
can also be understood as compositions of many re-mappings. 
Later sections discuss personalized interface layout in Figure 10, 
as motivated by SUPPLE’s generation of interface layouts 
adapted to an individual’s motor abilities [23,58]. Considering 
such a complex enhancement  in terms of  its underlying  
re-mapping of many interactions can provide a useful 
framework for approaching its design and implementation. 
IMPLEMENTATION IN ANDROID 
The prior section provides a framework for considering design 
of interaction proxies. We now present a set of implementation 
abstractions and how each is implemented in Android. Our 
abstractions are sometimes similar to prior examinations of 
runtime interface modification (e.g., [20,52]), so we focus on 
details for interaction proxies in Android. Abstractions provide 
a higher-level language for discussing enhancements and convey 
what is needed to achieve these behaviors on other platforms. 
After introducing the primary abstractions, we discuss their 
composition to coordinate perception and manipulation over 
the course of modifying an interaction. Maintaining this 
coordination of the interaction is critical for an effective proxy.  

Our interaction proxies are installed as Android accessibility 
services. This provides a proxy with some ability to inspect 
and manipulate other apps using privileged Android APIs. 
Installing an accessibility service requires explicit consent, 
and none of our enhancements require rooting the phone or 
otherwise modifying the operating system, as we believe it is 
inappropriate to require a person to compromise basic security 
of their device to access an app. Nevertheless, protecting against 
malicious accessibility services is an important topic for 
additional security research [32]. Prior research has explored 
composing interfaces from mutually distrustful elements [50], 
and the development of effective abstractions is important to 
improving the security of accessibility enhancements. 
Abstractions for Android Interaction Proxies 
Our basic strategy is to minimize the scale and complexity of 
an interaction proxy by intervening as little as necessary in an 
interaction. We achieve this using a combination of floating 
windows with the introspection and automation capabilities of 
an accessibility service. We note the percentage of Android 
devices on which each of the core requirements are available, 
reporting availability as of December 2016 [2]. Some 
capabilities are limited to more recent versions of Android, 
which have more limited market share. These will become 
more available as people transition to newer devices. 

Floating Windows: Our interaction proxies intervene between 
an app’s original interface and the manifest interface by 
creating floating windows that the interface manifests instead 
of the underlying app. Similar to overlapping windows on the 
desktop, floating windows sit above the app in z-order 
(e.g., Facebook Messenger’s floating chat heads allow reading 
and replying to messages from the context of other apps). 
The floating windows capability has been included since 
Android 1.0 and is therefore available on all Android devices. 

We further define a Full Overlay as a floating window that 
occludes the entire underlying app, and a Partial Overlay as 
occluding one or more elements while leaving other interactions 
unmodified. Enhancements composed of multiple re-mappings 
will often coordinate multiple partial overlays within an app. 

Event Listeners: Some enhancements require detecting events 
in the underlying app (e.g., to trigger an update in an overlay). 
Android allows an accessibility service to listen to interface 
accessibility events (e.g., a button click, a text field focus, 
a view update, an app screen switch, a device app switch). 
Although limited to accessibility events that are invoked by 
the app, many necessary events are implemented by the 
default Android tools. This capability has been included since 
Android 1.6 and is available on 99.9% of Android devices [2]. 

Content Introspection: Some enhancements require knowledge 
of the content of elements in an underlying app. Proxies can 
inspect the app accessibility service representation. This 
provides a tree describing an app, where each node provides 
information about an element (e.g., content, size, state, 
possible actions), though we have noted that apps do not 
always expose correct or complete information via this 
representation. This capability has been included since 
Android 4.1 and is available on 97.5% of Android devices [2]. 

Automation: Some enhancements require manipulating an 
underlying app. Accessibility service automation support 
allows programmatic invocation of common manipulations 
of elements exposed via the accessibility service representation 
(e.g., click, long press, select, scroll, or text input directed to 
a node in the tree). This has been included since Android 4.1 and 
is currently available on 97.5% of Android devices [2]. 

Screen Capture: Some enhancements require information or 
presentation details not available through content introspection. 
This can include details of a view that the corresponding 
accessibility representation does not include in its model 
(e.g., pixel-precise positioning of content). The accessibility 
metadata provided by an app may also be incomplete or 
incorrect. Screen capture allows application of pixel-based 
methods developed in prior work (e.g., [13,15,16,17,18,19]), 
though some apps intentionally disable screen capture 
(e.g., banking apps). Screen capture has been included since 
Android 5.0 and is available in 60.7% of Android devices [2]. 

Gesture Dispatch: Some enhancements require simulating a 
gesture or touch. This can be because the automation events 
are not expressive enough for an enhancement to obtain a 
desired behavior, or it can be because an enhancement needs 



 

 

       
 

 
      

   

 
    

     
  

       
  

      
      

      
 

  
   

      
   

        
   

 
  

     
 

  
  

 
     

   
   

    
 
 

 

  
     

  
   

  
   

   
 

     
   

  
     

  
     

    

   
  

    
  

   
     

  

to manipulate an element that is not properly exposed by the 
accessibility representation. Gesture dispatch allows simulating 
a gesture or touch at any screen location. This capability is 
new in Android 7.0, but we have noted such capabilities will 
become more common as people transition to newer devices.  

Current Implementation Limitations: We focus on Android, 
but  support for  these abstractions  in other mobile platforms  
should similarly enable interaction proxies. We have also 
identified a few limitations of Android’s current support. 
First, Android does not provide a robust unique identifier for 
each screen within an app. Similarly, the field used for 
differentiating among elements within a screen is optional 
and often not specified by developers. It can therefore be 
challenging to reason about the state of an app. Our current 
proxies use signatures computed from the tree exposed for 
content introspection. Pixel-based methods for annotation of 
interface elements could also be valuable [19]. Second, although 
an accessibility service can observe events, it cannot consume 
them (i.e., cannot redirect or prevent an event from occurring). 
The next section presents one implication of this in coordinating 
perception and manipulation. Finally, we have noted that 
accessibility services rely on app developers providing 
necessary events and metadata. Default tools provide this 
automatically whenever possible, but it is often missing. Our 
inclusion of screen capture and gesture dispatch provide 
additional options for interaction proxy implementation. 
Coordinating Perception and Manipulation 
A person perceives and manipulates the manifest interface, 
but that interaction must be re-mapped to the underlying original 
interface. Coordination of perception and manipulation in a 
re-mapping is critical to the illusion of the manifest interface 
remaining seamless (i.e., the interaction proxy being perceived 
as part of the interface, as opposed to itself being disruptive). 
The complexity of this coordination will vary according to 
the nature of the interaction and how it is re-mapped. 

We have found that direct interaction is generally most 
straightforward to coordinate, as illustrated in Figure 5. 
Proxy implementation using floating windows means an 
interface is composed of layers. Projecting these into the 
display (i.e., flattening the layers along the z-axis) naturally 
results in interaction proxies occluding anything below. 
Manipulation is similarly straightforward. Figure 5 (left) 
shows selecting a button in the manifest interface, with Figure 5 
(right) showing that hit-testing finds nothing at that location in 
the proxy layer and so selection passes to the underlying 
original interface. This straightforward coordination similarly 
extends to other direct interaction in the flattened interface. 
For example, the expected elements are naturally presented 
by Android TalkBack’s exploration mode (i.e., as a person 
moves a finger around the screen to browse an interface with 
the screen reader, the expected element is naturally presented). 

Coordination can be more challenging for indirect interaction. 
Figure 6 presents an example of a gesture-based interaction 
(i.e., swiping right to the next element in the navigation order). 
The manifest interface includes a button with correct metadata 

Figure 5. Direct interaction is generally straightforward to 
coordinate, with interface layers behaving as expected in their 
occlusion and in mapping input to the appropriate element. 

 
    
    

  

 

Figure 6. Indirect interaction can require more coordination. 
Here a gesture-based navigation requires an event listener to 
watch for “One, Unlabeled” to get focus and then immediately 
gives focus to “Start Timer”. Perception in the manifest 
interface is seamless because the screen reader truncates 
reading of “One, Unlabeled”, but this illustrates the type of 
coordination an interaction proxy may need to implement. 

(i.e., “Start  Timer”) inserted  to replace an  original interface  
button that lacked metadata (i.e., “One, Unlabeled”). Figure  6  
(top) illustrates the interaction experienced, swiping  right  to  
hear Android’s  TalkBack read “Start  Timer”. Figure 6 (bottom)  
reveals  the  navigation gesture is  received by the original 
interface, which  is unaware of the interaction  proxy  and  gives  
focus  to  “One, Unlabeled”.  The  proxy  detects  this  using  an  
event  listener and immediately gives focus  to  “Start  Timer”, 
which is read aloud. In the instant  that “One,  Unlabeled” has 
focus,  the  screen  reader  begins to  read  it. However, this is 
imperceptible because focus moves to “Start Timer” and the  
screen reader  aborts the  prior reading (by design, ensuring  
prompt perception of interaction  state  during  rapid navigation). 
The illusion of the manifest interface is therefore maintained.  
Although we do not  present  all  of our interaction proxy  
implementations  in this same detail, this example is intended  
to illustrate a typical coordination  of an indirect interaction. 
DEMONSTRATION IMPLEMENTATIONS 
Prior sections  have introduced  several demonstration interaction 
proxies as part  of  conveying  the strategy, design space, and 
implementation  abstractions. This section  presents additional  



 

 

 
    

     
   

      

 
 

  

 
  

     
    

 
 

   
    

     
     
    
     

   
 

    
    

 
  

     
      

 
      

  
 

  

   
    
    

  
  

 
    

     
 

   
   

     
   

    
   

 
    

  
 

   
  

  
       

     

     
 

    

   
       

    
   

  
 

 
    

 
 

 
    

    
   

     
 

 

     
     

      
 

 
  

  
   

        

details and demonstrations. All of our demonstrations were 
developed as proof-of-concept prototypes. By showing and 
explaining their key technical approaches, we aim to inform 
future development of the interaction proxy strategy. Details 
of these proof-of-concept implementations can also be found 
in their code, available at: https://github.com/appaccess. 
Adding or Correcting Accessibility Metadata 
Developers often fail to provide appropriate accessibility 
metadata for interface elements (e.g., labels for text fields). 
Although default tools provide this automatically whenever 
possible, people often encounter apps that have incomplete 
or incorrect metadata. Platforms have begun to support 
interactive correction, allowing a person to apply a custom label. 
But support is limited (e.g., Android only supports custom 
labels for elements with a ViewIDResourceName, which is 
itself optional and often not specified by app developers). 
Interaction proxies offer a strategy for third-party developers 
and researchers to develop and explore new approaches 
(e.g., social annotation approaches that have been proposed 
and examined in web-based systems [27,51,54,55]). 

Figure 1 shows an example from Toggl, a popular time 
tracking app. The “Start Timer” button is missing metadata 
(i.e., the screen reader announces it as “One, Unlabeled”) and 
the menu button has metadata resulting from an implementation 
artifact (i.e., is read as “Navigate Up”). Figure 7 shows a 
similar example in the Wells Fargo banking app (i.e., the 
label “Hamburger Button” is an implementation term better 
presented as “Menu”). Our interaction proxies identify these 
failures through content introspection, then obtain an image 
of the element using screen capture. Captured images can be 
used to obtain content descriptions (e.g., our proof-of-concept 
prototype uses a local database, envisioning social annotation 
mechanisms in future systems). Each failure is then repaired 
using a floating window to create a partial overlay that replaces 
the element in the manifest interface. Any manipulation of 
the element in the floating window is proxied to the original 
interface using automation to activate the appropriate element. 

   
     

 

Figure 7. This interaction proxy corrects a “Menu” label and 
repairs interaction with the app’s dropdown menu, which is 
otherwise completely inaccessible with a screen reader. 

   

     
    

Figure 8. The Yelp app manifests its five-star rating system 
as a single element that cannot meaningfully be manipulated 
using a screen reader, and its navigation order using a screen 
reader makes it needlessly difficult to access “Search”. 

Restoring Missing Interactions
Figure 7 also illustrates repairing a similar but more severe 
failure in the Wells Fargo banking app. The original interface’s 
dropdown menu includes several important functions, but does 
not correctly present itself to accessibility services. It therefore 
manifests as a single large element, is read as “Wells Fargo 
Mobile”, and activates whatever menu item is in its physical 
center (e.g., “Make an Appointment”). Figure 8 shows a similar 
flaw in the Yelp app, which exposes its five-star rating system 
as a single element that cannot be meaningfully manifested 
by a screen reader. An interaction proxy repairs these using 
screen capture, a floating window, and content introspection. 
The proxy cannot use automation to manipulate underlying 
items, as this will again activate whatever item happens to be 
in the physical center of the erroneously monolithic element. 
The proxy instead activates the correct underlying item using 
gesture dispatch (i.e., sending a two-finger touch to the 
correct screen coordinate, which is consumed by the screen 
reader, generating a touch in the underlying original interface). 
Modifying Navigation Order 
Navigation order is a significant aspect of an interface, and 
optimal navigation may differ for different manifest interfaces 
(e.g., parallel visual scanning, touch-based exploration using 
a screen reader, serial navigation using a switch interface). 
Inappropriate orders can also result from an implementation 
failure, similar to other incorrect accessibility metadata. 
Figure 8 shows an example where an implementation error 
means the Yelp search box visually appears before the scrolling 
list of businesses, but is manifested after that list in a screen 
reader (i.e., making it difficult to access via serial navigation). 
Toggl similarly includes a “Create Timer” button that visually 
floats above the list of existing timers for easy and prominent 
access, but is manifested to a screen reader at the end of the 
list of existing timers. Our interaction proxies modify these 
navigation orders, moving the appropriate elements to the 
beginning of the manifest interface, using content introspection, 
event listeners, and automation, coordinating the interaction 
similar to the manner discussed in association with Figure 6. 
Fully-Proxied Interfaces 
Our prior interaction proxies have been minimal, emphasizing 
the ability to repair or enhance the accessibility of an interaction 
without needing to re-implement unrelated portions of the 
original interface. Such targeted re-mappings also highlight 
challenges of coordinating an interaction so that it blends in 
to the surrounding interface. Our same abstractions can also be 
applied in enhancements that proxy the entire interface, more 
completely changing the interface’s manifestation. 

Figure 9 shows an example of re-mapping interaction to 
implement stencils-based tutorials, a technique designed to 
help guide and focus a person through an interaction using 
“translucent colored stencils containing holes that direct the 
user’s attention to the correct interface component and prevent 
the user from interacting with other components” [26,38]. 
Stencils could complement features like iOS Guided Access, 
providing additional capabilities, and enabling third-party 
development of different potential guides for varying needs 

https://github.com/appaccess


 

 

   
     

  
 

     
   

     
  

 

 
  

     

     
  

    
    

  
        

    
   

    

      
   

  
     
    

    

   
   

        

 
     

 
 

   
 

         
 

   
  

  

  
  

  
      

     

   
     

  
   

   
         

   
       

 
   
      

   
    

  

 
   

  
    

  
  

     

     
    

 
 

 
  

     
  

 
   

  
  
 

   
    

 

Figure 9. This interaction proxy implements a stencils-based 
tutorial. At each tutorial step, only the appropriate element is 
available. All other elements are obscured and disabled. 

  
  

 

Figure 10. Motivated by research in personalized interface 
layout, this interaction proxy creates a completely new 
personalized layout for interacting with the underlying app. 

(e.g., stencils in Figure 9 guide a person to a device setting). 
Our proxy is implemented using a floating window to create 
a full overlay, displayed as a translucent overlay and capturing 
all input. For each tutorial step, it uses content introspection 
to determine the bounds of elements that should be visible 
through the overlay (i.e., holes in the stencil), then automation 
to proxy manipulation of those elements. An event listener 
ensures the proxy’s prompt response to interface changes, as 
when the interface advances between each step in the tutorial. 

Figure 10 shows an example of a personalized interface layout, 
motivated by SUPPLE’s approach to arranging entire interfaces 
to match an individual’s motor abilities [23,58]. Although such 
personalization is promising for many accessibility needs, 
adoption of such methods is limited by a need for interfaces 
to be re-written as abstract specifications [45]. We instead 
propose an interaction proxy could re-map an original interface 
into an abstract specification which is then used to generate a 
personalized interface. As a proof-of-concept, our interaction 
proxy pictured in Figure 10 re-maps the original interface for 
Lose It! (a popular food journaling app) into model-level 
variables, then manifests those in a new interface. The new 
interface uses a different layout strategy to support larger text 
and buttons, and it presents underlying functionality differently 
(e.g., replacing a small sliding widget toggle with a larger 
checkbox element). Full implementation of this strategy is 
future research, but our proof-of-concept demonstrates the 
necessary combination of a floating window as a full overlay, 
perceiving the original interface using content introspection 
with event listeners, and manipulating it using automation. 
INTERVIEWS REGARDING INTERACTION PROXIES 
We conducted two sets of interviews with blind and low-vision 
people who use screen readers. Interviews were overall focused 
on: (1) accessibility barriers and the contexts in which they 
are encountered, (2) the experience of using an interface with 

an interaction proxy, (3) usefulness and potential of interaction 
proxies, and (4) potential for adoption of such enhancements. 
Method 
Our first set of interviews included eight people who are blind 
or low-vision and use a screen reader. We discussed what 
types of accessibility barriers these participants encounter in 
apps, how they navigate the barriers, how barriers could be 
addressed, and specific apps in which barriers are encountered. 
These interviews informed many of the interaction proxies 
developed in this paper. Specifically, participants identified 
three common barriers that potentially could be addressed 
with interaction proxies: mislabeled elements, inaccessible 
functionality, and challenging navigation. Participants also 
identified three major categories of app to be of interest: 
community engagement, productivity, and banking apps. 
Our proof-of-concept demonstrations and our second set of 
interviews therefore focused on these needs and opportunities. 

Our second set of interviews included six people who are blind 
or low-vision and use a screen reader (including two from the 
first set). We developed three proof-of-concept enhancements 
to present to participants in support of these interviews: 
(1) Yelp: As illustrated in Figure 8, we repaired the stars on 
the business rating page to make it possible for a person using 
a screen reader to rate a business and repaired the navigation 
order to make the search box easier to reach. (2) Toggl: As 
illustrated in Figure 1, we repaired missing screen reader labels 
for elements associated with each existing timer. We also 
repaired navigation order to make the “Start New Timer” button 
easier to reach. (3) Wells Fargo: As illustrated in Figure 7, 
we repaired the items in the dropdown menu to be accessible 
with a screen reader and repaired the label of the menu button. 

Interviews with these participants focused on the potential of 
interaction proxies to support accessibility enhancements. 
We asked each participant to use the Android Talkback screen 
reader to  interact with the above three  apps (on a Google  
Nexus 6P with Android 7.0). For each app, participants first 
completed simple tasks while our interaction proxy applied 
its repairs, then again with the screen reader manifesting the 
original interface. We chose this approach (e.g., instead of 
counterbalancing), in part because tasks generally could not 
be completed without the interaction proxy. Our focus was 
therefore on qualitative reactions rather than task metrics, and 
asking participants to begin with a task we knew was impossible 
would have undermined the interview. Participants discussed 
the feeling of the interaction with the interaction proxy active, 
how well it addressed accessibility barriers, and their ideas 
for the potential of accessibility enhancements. Interviews 
were transcribed and then analyzed using open coding. 

Participants primarily reported using an iPhone, the more 
popular choice for people in the United States who use 
accessibility services [44]. Two reported using Android. 
Interaction with iOS’s VoiceOver screen reader is similar to 
Android’s TalkBack, and the barriers within apps are similar 
between platforms. We therefore believe these participants 
provided useful insight into the interaction proxy strategy.  



 

 

 
   

 
  

 
 

    
   

          
   

       
    

  
   

     
    

  
 
 

   
 

 
    

 
    

      
    

     
  

    
    

  
    

  
        

   
  

      

    
   

 
  

   

  

 
    

       
 

 
   

  
  

 
  

 
     

    
   

      
    

 
   

  
   

   
     

  
      

      

  
 

     

   
  

  
   

 
  

  
 

         
 

   

   

   
      

     
  

   

   
  

   
 

    
   
    

      
   

 

Results 
Interview participants reported our proof-of-concept prototype 
interaction proxies worked well for improving the accessibility 
of interactions. P3 said “I think in every case [the enhancement] 
made it a much better experience than it would normally be”, 
while P5 said “I think the enhancements have made it better”. 

One goal for participant interaction with our prototypes during 
interviews was to examine seamlessness of the interaction 
(i.e., an interaction proxy being perceived as part of the interface, 
as opposed to itself being disruptive). Interviews explicitly 
probed this, in part by having participants first interact with 
the enhanced interface and then the app with its underlying 
accessibility failures. Participants ideally would not be able 
to distinguish between a natively accessible interface versus an 
interface that had been repaired or enhanced by an interaction 
proxy, and several participants commented that interactions 
were seamless. P3 said “[the enhancements] made it behave 
as I would expect it to. I think, when the enhancements were 
on, I generally didn't have any trouble completing the tasks, 
which definitely means it's working”, while P2  said “[the 
enhanced Yelp app] acted the way I would expect it to act”. 

Two participants commented on swipe-based navigation when 
using a proxy that repairs metadata by changing screen reader 
focus (as discussed with Figure 6). P1 described “lagginess”, 
and we did note the app and enhancement were unusually slow 
for this participant. P2 described “oversensitivity” that made it 
more difficult to use swipe-based navigation to select a target 
without skipping it. However, P2 also explicitly noted that 
the value provided by the enhancement was enough to outweigh 
“oversensitivity”. Even when prompted, participants did not 
mention any other unusual or bothersome interactions. 

Participant responses to the specific enhancements we showed 
were varied. For example, all participants agreed it was an 
improvement for the Wells Fargo app menu to be accessible, 
but all felt the “Forgot Password” item was still difficult to find 
because the app hid it in the dropdown menu. Even when an 
interaction proxy improves accessibility of an interface, there 
can still be usability barriers due to poor interface design choices. 

All participants described how the types of enhancements we 
demonstrated could be made to address barriers they encounter, 
and all expressed interest in using such enhancements. P1 said 
“In email…forward and reply all are at the very bottom of the 
message and if it's a really long message, it's really a pain to 
have to scroll all the way to the bottom of the message”. 
P5 said “[an enhancement] would definitely be a value to be 
able to get the Greyhound app accessible so that I could be able 
to purchase tickets and look at the schedules and so forth”. 

In discussions regarding the potential for broad deployment, 
all participants said they would be willing to submit apps 
needing repair or enhancement if they thought it was likely 
the enhancement would be created. P3 is a software developer 
and indicated he would be willing to create enhancements if 
good tools were available. P3 and P5 also expressed concern 
over whether enough people would contribute enhancements. 

P6 was more optimistic about participation, saying “I do think 
that people would be very interested in it, and I think people 
would want to help contribute to the actual programming, 
and then people would also be interested in making 
suggestions.” Finally, participants discussed their trust of 
third-party enhancements. They reported that primary factors in 
whether they would trust an enhancement enough to download 
it are the reputation of the source, endorsements from known 
organizations (e.g., the National Federation for the Blind), and 
feedback from other people who use screen readers. 
DISCUSSION AND CONCLUSION 
We have introduced interaction proxies as a strategy for runtime 
repair and enhancement of the accessibility of mobile apps. 
Inserted between an app’s original interface and a manifest 
interface, an interaction proxy allows third-party developers 
and researchers to modify an interaction without an app’s 
source code, without rooting the phone or otherwise modifying 
an app, while retaining all capabilities of the system. We 
have examined the interaction proxy strategy through a 
design space of interaction re-mappings, by defining and 
developing key implementation abstractions, and in Android 
implementations of proof-of-concept interaction proxies. Details 
of these proof-of-concept implementations can also be found 
in their code, available at: https://github.com/appaccess. 

These conceptual and technical contributions are our primary 
contributions, and our interviews with blind and low-vision 
people who use screen readers provide support for further 
developing this strategy. Participants were enthusiastic for the 
strategy, based on our proof-of-concept prototypes repairing 
accessibility failures in popular real-world apps. Including these 
prototypes in our interviews provided a real-world context for 
discussing the potential of interaction proxies, and participants 
used this as a starting point for discussing other apps in which 
they have encountered accessibility barriers that might be 
addressed. Participants saw a need and potential for third-party 
enhancements, expressing interest in the value they could 
provide even if a repaired interaction was not quite seamless. 

Our ultimate goal is to help catalyze advances in mobile app 
accessibility. Where contributions have previously been limited 
to developers of individual apps or the underlying mobile 
platform, interaction proxies open an opportunity for third-party 
developers and researchers to develop and deploy accessibility 
repairs and enhancements into widely-used apps and platforms. 
P1 motivated a multi-faceted approach by saying “I mean I 
think what you did is great, to make some more improvements, 
but also how we can work with community people and ideally 
Google and [app] developers”. Interaction proxies therefore 
provide an additional tool that complements efforts to educate 
and support developers in improving the accessibility of their 
apps, as well as improvements in platform accessibility support. 
ACKNOWLEDGEMENTS 
We thank our participants for their contributions, and reviewers 
for their feedback on an earlier draft of this paper. This work 
was supported in part by the National Science Foundation 
under awards IIS-0811063 and IIS-1053868. 

https://github.com/appaccess


 

 

REFERENCES 
1. 		 Android Open  Source Project. Accessibility Developer 

Checklist.  
http://developer.android.com/guide/topics/ui/accessibili 
ty/checklist.html#requirements 

2. 		 Android Open Source Project.  Dashboards.  
http://developer.android.com/about/dashboards/index.html  

3. 	 Apple Inc. Use  Guided Access with iPhone, iPad, and 
iPod touch.  

https://support.apple.com/en-us/HT202612 


4. 		 Jeffrey P. Bigham. (2014). Making  the Web Easier to 
See with Opportunistic Accessibility Improvement. 
Proceedings of the ACM Symposium on User Interface 
Software and Technology (UIST 2014), 117–122.  
http://doi.org/10.1145/2642918.2647357 

5. 		 Jeffrey P.  Bigham, Chandrika Jayant, Hanjie Ji, Greg 
Little, Andrew Miller, Robert C. Miller, Aubrey 
Tatarowicz, Brandyn Wh ite, Samuel White, and  Tom  
Yeh. (2010). VizWiz: Nearly Real-time Answers  to 
Visual  Questions. Proceedings of the ACM Symposium 
on User Interface Software and Technology  
(UIST 2010), 333–342.  
http://doi.acm.org/10.1145/1866029.1866080 

6. 		 Jeffrey P.  Bigham, Ryan S. Kaminsky, Richard E. 
Ladner, Oscar M.  Danielsson,  and Gordon  L. 
Hempton. (2006).  WebInSight:  Making  Web Images 
Accessible. Proceedings of the ACM Conference on 
Computers and Accessibility (ASSETS  2006), 181–188.  
http://doi.org/10.1145/1168987.1169018 

7. 		 Jeffrey P.  Bigham  and Richard E. Ladner. (2007). 
Accessmonkey: a Collaborative Scripting Framework 
for Web  Users  and  Developers. Proceedings of  the 
International Conference on Web accessibility 
(W4A 2007), 25–34.  
http://doi.acm.org/10.1145/1243441.1243452 

8. 		 Jeffrey P.  Bigham, Craig M.  Prince, and Richard E. 
Ladner.  (2008). WebAnywhere: a Screen Reader On-
the-Go. Proceedings of the International Workshop on  
Web Accessibility (W4A 2008), 73–82.  
http://dx.doi.org/10.1145/1368044.1368060 

9. 		 Erin L. Brady,  Yu  Zhong, Meredith Ringel Morris, and  
Jeffrey P. Bigham. (2013). Investigating  the 
Appropriateness of Social  Network  Question Asking as 
a Resource for  Blind Users.  Proceedings of  the 
Conference on  Computer Supported Cooperative Work  
(CSCW 2013), 1225–1236.  
http://dx.doi.org/10.1145/2441776.2441915 

10. 		Erin Brady,  Meredith Ringel Morris, and Jeffrey  P.  
Bigham. (2015). Gauging Receptiveness to Social 
Microvolunteering. Proceedings of the ACM 
Conference on  Human Factors in Computing Systems 
(CHI 2015), 1055–1064.  
http://doi.acm.org/10.1145/2702123.2702329 

11. 		Erin Brady,  Meredith Ringel  Morris,  Yu  Zhong,  
Samuel White, and  Jeffrey P. Bigham. (2013). Visual 
Challenges  in the Everyday  Lives of Blind People.  
Proceedings of the ACM Conference on Human Factors 
in Computing Systems (CHI  2013), 2117–2126.  
http://doi.org/10.1145/2470654.2481291 

12. 	Jim  A. Carter and David W. Fourne. (2007). 
Techniques to Assist in  Developing Accessibility 
Engineers. Proceedings of the ACM Conference on 
Computers and Accessibility (ASSETS  2007), 123–130.  
http://dx.doi.org/10.1145/1296843.1296865 

13. 	Tsung-Hsiang Chang, Tom  Yeh, and Robert C. Miller. 
(2011). Associating  The Visual Representation of User 
Interfaces with their Internal Structures and Metadata. 
Proceedings of the ACM Symposium on User Interface 
Software and Technology (UIST 2011), 245–256.  
http://doi.acm.org/10.1145/2047196.2047228 

14. 		Alan Cooper. (1995).  About Face: The Essentials of  
User Interface Design. John Wiley & Sons, Inc., 
New York, NY.  

15. 	Morgan Dixon and  James Fogarty. (2010). Prefab:  
Implementing Advanced Behaviors Using Pixel-Based 
Reverse Engineering of Interface Structure. Proceedings 
of the ACM Conference on Human Factors in  
Computing Systems (CHI 2010), 1525–1534.  
http://doi.acm.org/10.1145/1753326.1753554 

16.  Morgan Dixon, James Fogarty, and Jacob O. 
Wobbrock. (2012).  A General-Purpose  Target-Aware 
Pointing  Enhancement using  Pixel-Level Analysis of 
Graphical Interfaces. Proceedings of the ACM 
Conference on  Human Factors in Computing Systems 
(CHI 2012), 3167–3176.  
http://doi.acm.org/10.1145/2207676.2208734 

17.  Morgan Dixon, Gierad Laput, and James Fogarty. 
(2014). Pixel-Based  Methods for Widget State and 
Style in a Runtime Implementation  of Sliding  Widgets. 
Proceedings of the ACM Conference on Human Factors 
in Computing Systems (CHI  2014), 2231–2240.  
http://doi.acm.org/10.1145/2556288.2556979 

18.  Morgan Dixon, Daniel Leventhal, and James Fogarty. 
(2011). Content and Hierarchy in Pixel-Based Methods 
for Reverse  Engineering Interface Structure. 
Proceedings of the ACM Conference on Human  
Factors in Computing Systems (CHI  2011), 969–978.  
http://doi.acm.org/10.1145/1978942.1979086 

http://doi.acm.org/10.1145/1978942.1979086
http://doi.acm.org/10.1145/2556288.2556979
http://doi.acm.org/10.1145/2207676.2208734
http://doi.acm.org/10.1145/1753326.1753554
http://doi.acm.org/10.1145/2047196.2047228
http://dx.doi.org/10.1145/1296843.1296865
http://doi.org/10.1145/2470654.2481291
http://doi.acm.org/10.1145/2702123.2702329
http://dx.doi.org/10.1145/2441776.2441915
http://dx.doi.org/10.1145/1368044.1368060
http://doi.acm.org/10.1145/1243441.1243452
http://doi.org/10.1145/1168987.1169018
http://doi.acm.org/10.1145/1866029.1866080
http://doi.org/10.1145/2642918.2647357
https://support.apple.com/en-us/HT202612
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/guide/topics/ui/accessibili


 

 

19.  Morgan Dixon, A. Conrad Nied, and James Fogarty. 
(2014). Prefab Layers and Prefab Annotations: Ex tensible 
Pixel-Based Interpretation of Graphical Interfaces. 
Proceedings of the ACM Symposium on User Interface 
Software and Technology (UIST 2014), 221–230.  
http://doi.acm.org/10.1145/2642918.2647412 

20. 		James R. Eagan, Michel  Beaudouin-Lafon, and  Wendy  
E. Mackay. (2011). Cracking the Cocoa  Nut: User 
Interface Programming at Runtime. Proceedings of the 
ACM Symposium on  User Interface Software and  
Technology (UIST 2011), 225–234.  
http://doi.org/10.1145/2047196.2047226 

21. W. Keith Edwards, Scott E. Hudson, Joshua Marinacci, 
Roy  Rodenstein, Thomas Rodriguez, and Ian E. Smith. 
(1997). Systematic Output Modification in a 2D User 
Interface Toolkit. Proceedings of the ACM Symposium 
on User Interface Software and Technology  
(UIST 1997), 151–158.  
http://doi.org/10.1145/263407.263537 

22. Leah Findlater, Alex Jansen, Kristen Shinohara, 
Morgan Dixon, Peter Kamb, Joshua  Rakita, and Jacob 
O. Wobbrock. (2010). Enhanced Area Cursors: 
Reducing  Fine-Pointing Demands for People with  
Motor Impairments. Proceedings of the ACM 
Symposium on User Interface Software  and  
Technology (UIST 2010), 153–162.  
http://doi.org/10.1145/1866029.1866055 

23. 	Krzysztof  Z. Gajos,  Daniel S. Weld, and Jacob O. 
Wobbrock. (2010). Automatically Generating  
Personalized User Interfaces with SUPPLE. Artificial 
Intelligence, 174(12–13), 910–950.  
http://doi.org/10.1016/j.artint.2010.05.005 

24. 	Google Inc. Accessibility Scanner.  
https://play.google.com/store/apps/details?id=com.goo 
gle.android.apps.accessibility.auditor 

25. 	Vicki L. Hanson  and John T. Richards. (2013). 
Progress on Website Accessibility?  ACM Transactions 
on the Web, 7(1), 2:1-2:30.  
http://dx.doi.org/10.1145/2435215.2435217 

26. 	Kyle J. Harms, Jordana H. Kerr, and Caitlin L. 
Kelleher. (2011). Improving  Learning Transfer from  
Stencils-Based Tutorials. Proceedings of the  
International Conference on Interaction Design  and  
Children (IDC  2011), 157–160.  
http://dx.doi.org/10.1145/1999030.1999050 

27. 		Yun Huang, Brian Dobreski, Bijay Bhaskar Deo, 
Jiahang Xin, Natã Miccael Barbosa, Yang Wang, and 
Jeffrey P. Bigham. (2015). CAN: Composable 
Accessibility Infrastructure via Data-Driven 
Crowdsourcing.  Proceedings of the Web for All  
Conference (W4A 2015), 1–10.  
http://dx.doi.org/10.1145/2745555.2746651 

28. 		Amy  Hurst,  Scott  E. Hudson, and  Jennifer Mankoff.  
(2010). Automatically Identifying Targets  Users 
Interact With During  Real World Tasks. Proceedings 
of the International Conference on  Intelligent User 
Interfaces (IUI 2010), 11–20.  
http://dx.doi.org/10.1145/1719970.1719973 

29. 	Amy Hurst, Jennifer  Mankoff, Anind K. Dey, and  
Scott  E. Hudson. (2007). Dirty Desktops: Using a  
Patina of Magnetic Mouse Dust to Make Common  
Interactor Targets Easier to Select. Proceedings of  the  
ACM Symposium on  User Interface Software and  
Technology (UIST 2007), 183–186.  
http://doi.acm.org/10.1145/1294211.1294242 

30. 		Edwin L.  Hutchins, James D. Hollan, and Donald A.  
Norman. (2009). Direct Manipulation Interfaces. 
Human–Computer Interaction, 1(4), 311–338.  
http://dx.doi.org/10.1207/s15327051hci0104_2 

31. IDI Web Accessibility Checker : Web Accessibility 
Checker.  

http://achecker.ca/checker/index.php 


32. 		Yeongjin Jang,  Chengyu Song, Simon P. Chung,  Tielei  
Wang, and  Wenke Lee. (2014). A11y Attacks: 
Exploiting Accessibility in  Operating Systems. 
Proceedings of the ACM Conference on Computer and 
Communications Security (CCS 2014), 103–115.  
http://doi.org/10.1145/2660267.2660295 

33. Alex Jansen, Leah Findlater, and Jacob O. Wobbrock. 
(2011). From The Lab to The World: Lessons from  
Extending  a Pointing  Technique for Real-World Use. 
Extended Abstracts of  the ACM Conference on  Human 
Factors in  Computing Systems (CHI 2011), 1867–1872.  
http://doi.org/10.1145/1979742.1979888 

34.  Shaun K.  Kane, Jeffrey P. Bigham, and Jacob O. 
Wobbrock. (2008). Slide Rule: Making Mobile Touch 
Screens Accessible to Blind People Using Multi-Touch 
Interaction  Techniques. Proceedings of the ACM 
Conference on Computers and Accessibility 
(ASSETS 2008), 73–80.  
http://doi.acm.org/10.1145/1414471.1414487 

http://doi.acm.org/10.1145/1414471.1414487
http://doi.org/10.1145/1979742.1979888
http://doi.org/10.1145/2660267.2660295
http://achecker.ca/checker/index.php
http://dx.doi.org/10.1207/s15327051hci0104_2
http://doi.acm.org/10.1145/1294211.1294242
http://dx.doi.org/10.1145/1719970.1719973
http://dx.doi.org/10.1145/2745555.2746651
http://dx.doi.org/10.1145/1999030.1999050
http://dx.doi.org/10.1145/2435215.2435217
https://play.google.com/store/apps/details?id=com.goo
http://doi.org/10.1016/j.artint.2010.05.005
http://doi.org/10.1145/1866029.1866055
http://doi.org/10.1145/263407.263537
http://doi.org/10.1145/2047196.2047226
http://doi.acm.org/10.1145/2642918.2647412


 

 

35.  Shaun K.  Kane, Chandrika Jayant, Jacob O. Wobbrock, 
and Richard E. Ladner. (2009). Freedom to  Roam: A  
Study of Mobile Device Adoption  and Accessibility for  
People with Visual and Motor Disabilities. 
Proceedings of the ACM Conference on Computers  
and  Accessibility (ASSETS 2009), 115–122.  
http://doi.org/10.1145/1639642.1639663 

36. 	Shaun K. Kane,  Meredith Ringel Morris, Annuska Z. 
Perkins, Daniel J. Wigdor, Richard E. Ladner, and 
Jacob O. Wobbrock. (2011). Access Overlays: Improving 
Non-Visual Access to  Large Touch Screens for  Blind 
Users.  Proceedings of the ACM Symposium  on User  
Interface Software and Technology (UIST 2011), 273–282.  
http://dx.doi.org/10.1145/2047196.2047232 

37. 		Shinya  Kawanaka, Yevgen Borodin, Jeffrey  P. 
Bigham, Darren Lunn, Hironobu  Takagi, and Chieko 
Asakawa. (2008). Accessibility Commons: A Metadata 
Infrastructure for Web Accessibility. Proceedings of  
the ACM Conference on Computers and Accessibility 
(ASSETS 2008), 153–160.  
http://doi.org/10.1145/1414471.1414500 

38. 	Caitlin Kelleher and Randy Pausch. (2005). Stencils-
Based Tutorials: Design and Evaluation.  Proceedings 
of the ACM Conference on Human Factors in  
Computing Systems (CHI 2005), 541–550.  
http://dx.doi.org/10.1145/1054972.1055047 

39.  Richard E. Ladner. (2015). Design for User 
Empowerment. Interactions, 22(2), 24–29.  

http://dx.doi.org/10.1145/2723869 


40. 	Walter Lasecki, Christopher Miller, Adam  Sadilek,  
Andrew Abumoussa, Donato  Borrello, Raja 
Kushalnagar, and Jeffrey Bigham. (2012). Real-Time 
Captioning by  Groups of Non-Experts. Proceedings of  
the ACM Symposium on  User Interface  Software and  
Technology (UIST 2012), 23–34.  
http://dx.doi.org/10.1145/2380116.2380122 

41.  Walter S. Lasecki, Phyo Thiha, Yu Zhong, Erin Brady,  
and Jeffrey P. Bigham. (2013). Answering  Visual 
Questions with Conversational Crowd Assistants. 
Proceedings of the ACM Conference on Computers  
and  Accessibility (ASSETS 2013), 18:1–18:8.   
http://doi.org/10.1145/2513383.2517033 

42.  Jonathan Lazar, Daniel F. Goldstein,  and Anne Taylor. 
(2015). Ensuring Digital Accessibility through Process 
and Policy.  
http://www.elsevier.com/books/ensuring-digital-
accessibility-through-process-and-policy/lazar/978-0-
12-800646-7 

43.  Lauren R. Milne, Cynthia L. Bennett, and Richard E.  
Ladner. (2014). The Accessibility of Mobile Health  
Sensors  for  Blind  Users.  International Technology  and  
Persons with Disabilities Conference Scientific/Research 
Proceedings (CSUN 2014), 166–175.  
http://doi.org/10211.3/133384 

44.  J. Morris and J. Mueller. (2014). Blind and  Deaf 
Consumer Preferences for Android and iOS 
Smartphones. In Inclusive Designing. Springer 
International  Publishing, Cham, 69–79.  
http://doi.org/10.1007/978-3-319-05095-9_7 

45.  Brad Myers, Scott E. Hudson, and Randy Pausch. 
(2000). Past, Present, and Future  of User Interface 
Software Tools.  ACM Transactions on  Computer-
Human Interaction  7, 3–28.  
http://doi.org/10.1145/344949.344959 

46. 	Dan R. Olsen, Jr., Scott E. Hudson, Thom Verratti, 
Jeremy M. Heiner, and  Matt Phelps. (1999). Implementing  
Interface Attachments Based  on Surface Representations. 
Proceedings of the ACM Conference on Human  
Factors in Computing Systems (CHI  1999), 191–198.  
http://doi.acm.org/10.1145/302979.303038 

47. 	Elaine Pearson, Chrstopher Bailey, and Steve Green. 
(2011). A Tool to  Support the Web  Accessibility 
Evaluation Process for Novices. Proceedings of the 
Conference on Innovation and Technology  in 
Computer Science Education (ITiCSE 2011), 28–32.  
http://dx.doi.org/10.1145/1999747.1999758 

48. 	André Rodrigues. (2015). Breaking  Barriers with  
Assistive Macros. Proceedings of the ACM Conference 
on Computers and Accessibility (ASSETS 2015), 351–352. 
http://dx.doi.org/10.1145/2700648.2811322 

49. 	André Rodrigues and  Tiago Guerreiro. (2014). SWAT: 
Mobile System-Wide Assistive Technologies. 
Proceedings of the International BCS Human Computer 
Interaction Conference (British  HCI 2016), 341–346. 
https://dl.acm.org/citation.cfm?id=2742991 

50. Franziska Roesner, James Fogarty, and Tadayoshi 
Kohno. (2012). User Interface Toolkit Mechanisms for  
Securing Interface Elements. Proceedings of the ACM  
Symposium on User Interface Software  and  
Technology (UIST 2012), 239–250.  
http://doi.acm.org/10.1145/2380116.2380147 

51. 		Daisuke Sato,  Hironobu  Takagi, Masatomo Kobayashi,  
Shinya Kawanaka, Chieko Asakawa, and Asakawa  
Chieko. (2010). Exploratory Analysis of Collaborative 
Web Accessibility Improvement. ACM Transactions 
on Accessible Computing (TACCESS), 3(2), 5:1-5:30.   
http://doi.acm.org/10.1145/1857920.1857922 

http://doi.acm.org/10.1145/1857920.1857922
http://doi.acm.org/10.1145/2380116.2380147
https://dl.acm.org/citation.cfm?id=2742991
http://dx.doi.org/10.1145/2700648.2811322
http://dx.doi.org/10.1145/1999747.1999758
http://doi.acm.org/10.1145/302979.303038
http://doi.org/10.1145/344949.344959
http://doi.org/10.1007/978-3-319-05095-9_7
http://doi.org/10211.3/133384
http://www.elsevier.com/books/ensuring-digital
http://doi.org/10.1145/2513383.2517033
http://dx.doi.org/10.1145/2380116.2380122
http://dx.doi.org/10.1145/2723869
http://dx.doi.org/10.1145/1054972.1055047
http://doi.org/10.1145/1414471.1414500
http://dx.doi.org/10.1145/2047196.2047232
http://doi.org/10.1145/1639642.1639663


 

 

52. 		Wolfgang Stuerzlinger, Olivier Chapuis, Dusty  
Phillips, and Nicolas Roussel. (2006). User Interface 
Façades: Towards  Fully Adaptable User Interfaces. 
Proceedings of the ACM Symposium on User Interface 
Software and Technology (UIST 2006), 309–318.  
http://doi.acm.org/10.1145/1166253.1166301 

53. 	Hironobu Takagi and Chieko  Asakawa. (2000). 
Transcoding Proxy for Nonvisual Web Access. 
Proceedings of the ACM Conference on Assistive 
Technologies (ASSETS 2000), 164–171.  
http://doi.org/10.1145/354324.354371 

54. 		Hironobu  Takagi, Shinya Kawanaka,  Masatomo  
Kobayashi, Takashi Itoh, and Chieko Asakawa. (2008).  
Social Accessibility: Achieving Accessibility Through  
Collaborative Metadata Authoring. Proceedings of the 
ACM Conference on Computers and Accessibility 
(ASSETS 2008), 193–200.  
http://doi.acm.org/10.1145/1414471.1414507 

55. 		Hironobu  Takagi, Shinya Kawanaka,  Masatomo  
Kobayashi,  Daisuke Sato, and Chieko Asakawa. 
(2009). Collaborative Web  Accessibility Improvement: 
Challenges and Possibilities. Proceedings of the ACM  
Conference on Computers and Accessibility 
(ASSETS 2009), 195–202.  
http://doi.acm.org/10.1145/1639642.163967 

56.  Desney S. Tan, Brian Meyers, and Mary Czerwinski.  
(2004). WinCuts: Manipulating  Arbitrary Window  
Regions for More Effective Use of Screen Space. 
Extended Abstracts of  the ACM Conference on  Human 
Factors in  Computing Systems (CHI 2004), 1525–1528.  
http://doi.acm.org/10.1145/985921.986106 

57. 		Jacob O. Wobbrock, James Fogarty, Shih-Yen (Sean) 
Liu, Shunichi  Kimuro, and Susumu Harada.  (2009).  
The Angle Mouse: Target-Agnostic  Dynamic Gain  
Adjustment Based on Angular  Deviation.  Proceedings 
of the ACM Conference on Human Factors in  
Computing Systems (CHI 2009), 1401–1410.  
http://doi.acm.org/10.1145/1518701.1518912 

58. 	Jacob  O. Wobbrock,  Shaun  K. Kane, Krzysztof Z.  
Gajos, Susumu Harada, and Jon E.  Froehlich. (2011).  
Ability-Based Design: Concept, Principles and 
Examples. ACM Transactions on Accessible  
Computing (TACCESS), 3(3), 1–27.  
http://doi.org/10.1145/1952383.1952384 

59. 		Aileen Worden, Nef  Walker, Krishna Bharat, and  Scott  
E. Hudson. (1997). Making Computers Easier for  
Older Adults to Use: Area Cursors and  Sticky Icons. 
Proceedings of the ACM Conference on Human  
Factors in Computing Systems (CHI  1997), 266–271.  
http://doi.acm.org/10.1145/258549.258724 

60. 	World Health Organization. (2011). World Report on  
Disability.  
http://www.who.int/disabilities/world_report/2011/report/en/ 

61. 	Tom  Yeh, Tsung-Hsiang  Chang, and Robert  C. Miller. 
(2009). Sikuli: Using  GUI Screenshots for Search and  
Automation. Proceedings of the ACM Symposium on  
User Interface Software and Technology (UIST 2009), 
183–192.  
http://doi.acm.org/10.1145/1622176.1622213 

62. 		Jason Chen Zhao, Richard C.  Davis, Pin Sym Foong, 
and Shengdong Zhao. (2015). CoFaçade: A Customizable 
Assistive Approach for Elders  and Their Helpers.  
Proceedings of the ACM Conference on Human Factors 
in Computing Systems (CHI  2015), 1583–1592.  
http://doi.org/10.1145/2702123.2702588 

63.		 Yu Zhong, Astrid Weber, Casey Burkhardt, Phil Weaver, 
and Jeffrey P. Bigham. (2015). Enhancing Android  
Accessibility for Users with Hand  Tremor by Reducing  
Fine Pointing and  Steady  Tapping. Proceedings of the 
Web for All Conference on (W4A 2015), 29:1-29:10.  
http://dx.doi.org/10.1145/2745555.2747277 

 

http://dx.doi.org/10.1145/2745555.2747277
http://doi.org/10.1145/2702123.2702588
http://doi.acm.org/10.1145/1622176.1622213
http://www.who.int/disabilities/world_report/2011/report/en
http://doi.acm.org/10.1145/258549.258724
http://doi.org/10.1145/1952383.1952384
http://doi.acm.org/10.1145/1518701.1518912
http://doi.acm.org/10.1145/985921.986106
http://doi.acm.org/10.1145/1639642.163967
http://doi.acm.org/10.1145/1414471.1414507
http://doi.org/10.1145/354324.354371
http://doi.acm.org/10.1145/1166253.1166301


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


