
Supporting Agile Modeling through Experimentation
in an Integrated Urban Simulation Framework

Travis Kriplean†, Alan Borning†, Paul Waddell‡, Christoffer Klang+, and James Fogarty†

† Department of Computer Science & Engineering, University of Washington
‡ Department of City and Regional Planning, University of California Berkeley

+ Department of Computer Science & Communications, KTH, Stockholm

ABSTRACT
Decisions regarding major urban transportation projects
and land use policies are frequently political and contro-
versial, as well as having significant economic, social, and
environmental consequences. UrbanSim is a disaggregate,
behaviorally-realistic modeling environment that planning
agencies can use to simulate the long-term effects of such
decisions. We describe UrbanSim’s evolution over the past
decade from the perspective of supporting its appropriation
by urban modelers, and identify support for experimentation
as a key property that enables the adoption of an agile mod-
eling methodology. Finally, we draw out three lessons for
supporting agile modeling through experimentation: itera-
tive development of models, providing appropriate domain-
specific building blocks, and balancing the development of
integrated tools versus interoperating with existing tools and
the work practices that surround them.

Keywords
Simulation, urban modeling, agile modeling, appropriation,
experimentation, UrbanSim

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems

1. INTRODUCTION
In cities worldwide, there are concerns about such issues

as traffic congestion, resource consumption, and sustainabil-
ity. Each region also has its own concerns about, for exam-
ple, housing affordability, freight mobility, sprawl, or open
space. Elected officials, professional planners, and interested
citizens grapple with these difficult and controversial issues
as they develop and evaluate alternatives, such as building
a new freeway, establishing an urban growth boundary, or
adopting policies such as congestion pricing.

c© 2010 Copyright is held by the authors.
dg.o 2010, May 17-20, 2010, Puebla, Mexico.
ACM [ISBN] 978-1-4503-0070-4/10/05

Urban modelers are tasked with modeling and simulat-
ing the complex interacting effects of land use and trans-
portation alternatives for the purpose of informing public
decision making. However, standard modeling systems are
generally inadequate for modeling the full range of policies
and effects of concern. Moreover, they are nearly exclusively
black boxes that constrain modelers in tailoring models and
scenarios to a region’s circumstances.

The UrbanSim system provides an environment for mod-
elers to project the impacts of land use and transportation
projects over periods of 20 to 30 years [8, 28, 32]. It is
an integrated framework for creating and configuring new
land use, transportation, and environmental models, as well
as facilities for running simulations and exploring results.
Modelers can reach deep into the modeling system to radi-
cally change existing models, incorporate entirely new mod-
els, and to produce novel urban simulations. The framework
has been put into operational use in a range of cities world-
wide.

While each version of UrbanSim has become increasingly
open and flexible, its flexibility has been inaccessible to all
but the most technically proficient modelers. Even then, sig-
nificant interaction with code was necessary. The overhead
of finding and appropriating features into modeling practice
was a barrier to modeling efforts. The complexity of the
application made UrbanSim’s flexibility nearly as problem-
atic as the long tool chains of data, blackbox models, and
other software that characterize urban modeling efforts out-
side UrbanSim.

In this paper, we use the development of a user interface
for UrbanSim as an opportunity to examine, from the per-
spective of appropriation, a decade of work attempting to
improve the state of the art in urban modeling technology
and practice. The GUI provides an integrated modeling en-
vironment designed to render UrbanSim’s flexibility action-
able and appropriable into a modeling process character-
ized by quick and fluid iteration between data preparation,
model creation and specification, scenario construction and
execution, result analysis, and interaction with policy stake-
holders. We call this methodology agile modeling. It is the
targeted transformation in modeling practice that we aim for
when we discuss the appropriation of UrbanSim into a plan-
ning agency. Agile modeling is a methodology informed by
years of interactions with other researchers and practition-
ers, as well as our own team’s modelers. The transformation
is particularly challenging in that each phase of modeling
usually involves different people, professional expertise, and
sets of standard tools.

1



We identify the centrality of supporting experimentation
for the appropriation of an agile modeling methodology.
By “experimentation” we mean the iterative exploration of
the modeling space and refinement of the modeling appli-
cation, based on principled trial and error guided by ex-
pertise, intuition, experience, and communication with oth-
ers. We unpack three lessons for supporting agile model-
ing through experimentation: (1) emphasize getting a full
modeling pipeline set up before worrying about perfecting
any part of it, (2) provide appropriate building blocks in
a domain-specific representation that can be manipulated
by modelers, and (3) balance the integration of functional-
ity with interoperating with various professional tools with
advanced phase-specific functionality.

The data presented here draws on a range of experience in
developing and applying UrbanSim. One source of data is
a lab study of research and practicing urban modelers who
were brought in to evaluate the GUI. The task-based struc-
ture of the study alongside of ample interspersing of semi-
structured interview questions allowed us to gather data
about their current practice, their use of previous versions of
UrbanSim and how the GUI might transform that practice.
We also draw draw on formal and informal interactions with
users during other lab studies, user group meetings, field
deployments, long-term software development work done in
concert with a number of planning agencies, and our multi-
disciplinary research group’s expertise in urban modeling.

The paper is organized as follows. We first give a de-
scription of the political and organizational context of ur-
ban modeling, what the work of modeling typically looks
like, and a description of agile modeling. We then describe
the three most recent versions of UrbanSim, put the phases
in a trajectory, explain how each system was designed for
increasing the appropriability of UrbanSim, and unpack the
limitations that were encountered as a result of the develop-
ment decisions. We then discuss key lessons about support-
ing agile modeling through experimentation.

2. URBAN MODELING
Urban modeling was established in the 1960’s as a

computer-based profession for predicting the possible ef-
fects of urban planning decisions. Now, virtually all large
metropolitan regions in the developed world have a govern-
ment agency that does some sort of modeling to help predict
future trends and help evaluate proposed alternatives. Un-
fortunately, current practice is still dependent on inadequate
modeling systems. These systems inhibit the accuracy of
simulations, particularly in the ability of modelers to create
models that account for regional differences.

We seek to provide an integrated modeling environment
that modelers can use to construct, integrate, and share new
models that account for local contingencies. We adopt the
term tailoring [26] to denote this process.1 Our goal is to
foster a“tailoring culture” [17] that encourages and supports
the rapid application of a modeling system to local condi-
tions and the process of exploring alternatives within that
space.

1This is in contrast to customization, which is used to con-
note how the system can be tweaked in order to get it to
work in a particular setting [1, 10], a process usually ac-
complished early in the deployment of an infrastructure or
application.

For new modeling technology to be put into practice, it
needs to be appropriated into multiple contexts of use that
cut across organizational, political, and geographic bound-
aries. These contexts of use pose significant challenges for
appropriation. For example, even though it is well known
that land use decisions are impacted by transportation deci-
sions and vice versa, historical developments have led to the
professional separation of land use and transportation mod-
eling.2 Land use planning and research takes place in de-
partments of architecture and urban planning, while trans-
portation planning takes place in departments of civil engi-
neering. Student education reflects this split. It is also typ-
ically perpetuated in planning organizations, with separate
departments for land use and transportation. Independent
modeling systems and other tools further reify this artificial
separation. Most modeling systems simulate either land use
or transportation, but not their interaction.

Moreover, regional government planning agencies operate
under considerable political pressure. For example, U.S. fed-
eral funding for highways is at risk in regions that violate
air quality conformity requirements; planning agencies are
sometimes charged with predicting the probability of vio-
lating these emission standards. While standard modeling
tools are inflexible and known to be inaccurate, their use
as de facto standards provides a certain professional safety
net in their use. Their limitations are well understood and
many agencies employ them. Adopting new modeling sys-
tems can therefore pose professional and political risk. At
the same time, existing models and the decision-making pro-
cess have come under increasing scrutiny and criticism since
the 1980’s, leading to substantial pressure to revise both [4].
Planning agencies that do not try to make their models more
realistic run the risk of a major lawsuit [14].

Planning agencies are thus left with two unappealing
prospects: use crude models with major known inadequa-
cies, or use relatively new, experimental systems that may
open their agency to professional and political risk. One of
our major research goals with the UrbanSim system is to
make its appropriation technically, professionally, organiza-
tionally, and politically appealing. In the rest of this section,
we describe necessary background about modeling practice.
This background is meant to contextualize the system de-
velopment we describe later. We end by describing the agile
modeling approach that we seek to support.

2.1 Modeling a Region
For those agencies that undertake a full modeling effort,

the process can be roughly divided into four phases. The
exact nature of these phases will vary, but the basic outline
is likely to be similar across agencies. Each phase is a signif-
icant collaborative undertaking. Different staff members in
the agency will have different areas of responsibility as well
as expertise, for example, in using geodatabases and GISs,
econometric software, and in running travel models.

Preparing input data. The first phase is preparing
the input data. Different systems have quite different re-
quirements here and it can resource intensive [30]. For

2Land use modeling entails building predictive models of
where people will live, where jobs will be located, and where
real estate development or redevelopment will occur; trans-
portation modeling entails predicting such things as traffic
volumes, mode share, and delays due to congestion.

2



UrbanSim, a preliminary application might involve a few
person-months, but data for more realistic use might involve
a person-year or more of effort. The data comes from multi-
ple sources, including census, employment, land ownership,
transportation network, and environmental data. This data
will usually need to be converted to the format required by
the modeling system. A larger problem is that there will
often be missing or erroneous data, which needs to be filled
in or corrected. Much of the data is geographic, and the
preparation will involve GIS tools and expertise, usually also
involving facility with SQL database management.

Specifying and estimating component models. The
next phase involves fitting the system to the region being
simulated. The system will typically use a set of predictive
variables (or “model variables”) to determine its behavior.
For example, one component of any land use model will be
simulating where people decide to live. This simulated deci-
sion will be based on factors such as household income and
number of children. Each factor is represented as a model
variable. Their coefficients are estimated to the data for the
given region. A major difference among modeling systems is
whether the set of model variables is fixed or extensible, and
whether the estimation is done using external econometric
software or is integrated with the modeling environment it-
self. These are key properties, since a fixed set of model
variables will generally not capture particular features that
are important in one region but not others. For example, in
the southern U.S., it is important to incorporate soil type
variables in land price models because red clay is harder to
build on than other soil types.

Creating and running scenarios. Once the data is avail-
able for the region and the models have been estimated, the
simulation can be run for the region. Regions will normally
have an agreed-on “baseline” long-range transportation and
land use plan, and this can be simulated for 20–30 simulated
years. As packages of transportation improvements, zoning
changes, and other policy alternatives are proposed, these
can be simulated as well. For example, one such package (or
“scenario”) might involve extending a freeway to an exurban
area and rezoning it for suburban development.

Examining results and preparing reports. Finally, re-
sults from the simulations are reported as indicators and ex-
amined. While the model application is being applied and
debugged, many of these indicators will be diagnostic. Later,
as the modeling moves into operational use, indicators that
are useful for assessing how well alternate scenarios support
or undermine different regional goals will become important.
Still later in the process, the simulation results will be used
in formal reports, presentations, and press releases.

2.2 Agile Modeling
The different phases of modeling an urban region do not

proceed in a linear order. Instead, the process involves it-
eration, backtracking, and refinement. For example, early
examination of the results is essential in helping refine the
model specification. A common sequence is to run the esti-
mation with an initial specification that contains key vari-
ables, then examine the significance level of each variable,
and from this decide which variables to keep and which to
eliminate. This usually requires several iterations and some-

times the creation of new and more suitable variables. Cre-
ating a comprehensive list of good predictor variables is of-
ten a challenging task requiring considerable experimenting
with the model and the data. This process must be done for
the entire ensemble of component models. This process may
reveal problems in the data, requiring going back and fixing
up the data prepared in the first phase. Touching still more
stakeholders, as the results are used in policy assessment, if
a proposed scenario isn’t achieving regional goals, it may be
necessary to try modified plans.

Current tools make this process sufficiently cumbersome
that it is impossible to explore very many policy alterna-
tives, let alone to quickly explore them in response to cit-
izen or policymaker interest. In many ways, tools do not
enable modelers to do the jobs they actually want to do. In-
stead, they become trapped by standardized models, spend-
ing much of their time trying to make the data they have
conform to its requirements. As a participant in our lab
study (described later) states, “Not everyone has the same
data. . . You typically need to whip it to make it like data used
in other cities so that it can be used by the model.”. One par-
ticipant in our lab study called the current standard land use
model (DRAM/EMPAL) “lockstep” and stated that its lack
of flexibility to incorporate new variables rendered it prac-
tically useless for informing public policy.

There is widespread desire for the process to be much
faster and responsive to policy questions [33]. In analogy
with agile software development processes [3, 9], we call this
desired process “agile modeling.” There are significant par-
allels between agile modeling and software development, in-
cluding the importance of gracefully accommodating change,
always having a running system, and automated testing.
However, a major difference is the centrality of experimen-
tation in agile modeling (as developed in the remainder of
the paper). The importance of experimentation arises in
the need for ongoing refinement of models, increasing the
scope of analysis the models are capable of, and adaptation
to evolving political conditions.

We define agile modeling as a process:

• that can respond quickly to changing requirements

• that enables fluid experimentation

• that supports the iterative development of a model
from a crude but functioning prototype through a more
polished, operational version

• that supports continuous assessment of simulation re-
sults

3. URBANSIM: SYSTEM AND EVOLU-
TION

UrbanSim is an open source modeling framework imple-
mented as a set of interacting component models that sim-
ulate different actors or processes within the urban environ-
ment at a disaggregate, behaviorally-realistic level. It has
been developed by an interdisciplinary group over the past
decade, involving researchers from urban design and plan-
ning, computer science, public affairs, and statistics.

In this section, we give a high level description of
UrbanSim’s evolution through three distinct phases. The
section serves three purposes. First, it unpacks how design
decisions have been impacted by the goal of supporting the
appropriation of an agile modeling practice, and what the

3



results of the choices were. Second, it sets the stage for our
later analysis of the centrality of experimentation for adopt-
ing an agile modeling methodology. Third, it highlights the
data sources from which we make our claims.

3.1 UrbanSim 1-3: Java + Eclipse IDE (c.
1995-2004)

The first full implementation of UrbanSim was a proto-
type application to Eugene/Springfield, Oregon in 1996 [27].
In this version, model variables were hard-coded, so that
any change to the model specification required program-
ming changes. UrbanSim 3 was a full re-implementation
of the system in Java, intended to improve robustness and
performance [21, 29]. Features included the coupling with
a range of other packages and applications, notably the
MySQL database for storing configuration information, in-
put data, results, and other information. Software develop-
ment followed agile programming methodologies, including
extensive unit tests, source code versioning, and a home-
brew continuous build system [11].

UrbanSim 3 represented a considerable advance in the
state of the art in integrated urban modeling and a small
but enthusiastic user community grew around it. Prototype
applications were developed for a number of regions, includ-
ing Salt Lake City, the Puget Sound region, and Houston.
Nevertheless, there was significant interest in being able to
better tailor the model specifications to a region. For exam-
ple, users preferred moving from using grid cells to describe
locations and real estate, to using parcels and buildings,
which are more directly observable and behaviorally realis-
tic units of analysis. Further, the process of tailoring to a
new region involved substantial experimentation and effort.
The process was hampered by the complexity of the task
of, for example, adding or changing a model variable, which
required changes to the Java codebase. Despite efforts to
make the code modular, readable, and well-commented, the
modelers understandably were reluctant to touch the code.
Any change required involving software developers.

To mitigate this, we implemented a GUI for UrbanSim as
an Eclipse IDE plug-in. The GUI provided basic function-
ality for running a simulation and accessing the data. How-
ever, the complexity of the surrounding Eclipse functionality
was foreign and disconcerting to many modelers—they could
never incorporate it strongly into their practice. While the
extensive use of unit tests was valuable, and worked well at
the level of checking the functionality of individual compo-
nents, the division between the modelers and the developers
hindered testing overall system functionality and an agile
process for tailoring to a region. The relationship between
modelers and developers was more akin to a contractual re-
lationship than a tight collaboration.

3.2 UrbanSim 4: Python + Opus (c. 2004-
2008)

The current version, UrbanSim 4, is implemented using a
new framework called Opus (Open Platform for Urban Sim-
ulation) [31]. Opus is written in Python, has a much more
open and flexible architecture, and makes extensive use of
configuration objects. A data architecture manages caches
of simulation data, optimized for the retrieval and manip-
ulation patterns used in the choice and regression models
that are the backbone of UrbanSim. It also manages lazy
loading of data (to keep memory use bounded) and on-

demand computation of new or changed model variables.
These model variables can be defined in a domain-specific
programming language that we designed and implemented,
supporting more effective tailoring to a new region. In ad-
dition, UrbanSim 4 includes integrated tools for estimating
models, producing indicators, and interoperating with SQL
databases and GIS (Geographic Information System) soft-
ware. The resulting system is highly flexible and config-
urable.

In early UrbanSim work and in other existing tools, esti-
mating models required using a proprietary, external econo-
metric package. Model estimation is in the inner loop of
modeling practice, and modelers have universally reported
that the process of transferring data and estimation results
when using external econometric software is laborious and
error-prone [31]. Estimating the parameters for a model
might require weeks of effort. Implementing estimation rou-
tines within the Opus framework accelerated this process
substantially. But accessing these estimation routines re-
quired interacting with them via commands to the Python
interpreter, and writing Python scripts to manage configu-
rations. While the system had become highly modular and
configurable, the complexity of the configuration objects as
Python dictionaries, scattered among hundreds of modules,
still restricted the number of modelers for whom this func-
tionality was accessible. A few researchers who were pro-
ficient in Python, principally modelers on our own team,
could quickly configure new variants of models, but this
process was impenetrable for most users. To others, the dis-
tributed, configurable, and modularized scripts constituted
a “script hell”, as one of our lab study participants put it.

3.3 UrbanSim 4: Python + GUI (c. 2008-
2010)

As noted above, modelers outside the UrbanSim research
group were generally unable to take full advantage of the
flexibility of Opus and UrbanSim 4. The goal of the Opus
Graphical Interface is to make this rich functionality accessi-
ble to a broader range of modelers to engender a qualitative
shift to an agile modeling practice.

The first strategy we followed in increasing accessibility is
to move the configuration objects from Python dictionaries
into external project files stored as XML. These project
files contain the configuration information needed to ap-
ply UrbanSim to a particular region, as well as model vari-
able definitions, tool scripts, and other information. Project
files support inheritance, so one project can add or over-
ride whatever additional information is needed beyond the
default. Inheritance supports coordination between our re-
search group and the various planning agencies for making
high-level changes to the modeling system, and we hypothe-
size that the easily sharable XML format will facilitate easier
collaboration between different participants in the model-
ing effort. We believe that XML with inheritance will thus
act as a boundary object that can tie together aspects of
the modeling process that have previously been caught up
in complex tool chains that are burdensome for supporting
collaboration.

The second strategy is the development of a GUI that is
driven by the XML project files. This allows different sets of
functionality to be provided for students in a class, GIS an-
alysts working on data preparation, modeling experts who
will be specifying and configuring models, or policy analysts

4



Figure 1: The Opus/UrbanSim Graphical User Interface

who will be primarily running scenarios and examining re-
sults. After starting the GUI, the first action is opening a
project file. The user is then presented with a window with
two major panes (Figure 1). There are five tabs on the left
pane: General, Data, Models, Scenarios, and Results. The
General tab has information such as the name of its par-
ent configuration (from which it inherits). The remaining
tabs mirror the four phases of modeling. The Data tab has
two subtabs: one providing a set of tools for interoperat-
ing with SQL and geodatabases, and another for examining
UrbanSim data stored in local caches. The Models tab pro-
vides access to the functionality for creating, specifying, and
estimating new or existing models, including selecting vari-
ables and defining new ones. The Scenarios tab supports
running different scenarios, including diagnostic tools to al-
low the simulation to be monitored as it runs. Finally, the
Results tab provides tools for interactive exploration of the
results of simulations and for producing batches of indicators
to be computed and visualized on demand. It also includes
tools to export indicator results to SQL databases and map-
ping software. The GUI also provides a Variable Library
where new model variables and indicators can be defined
using the expression language. This design was informed
by extensive discussions with modelers and through testing
with early prototypes. The division into the four tabs came
primarily from work with the Phoenix area metropolitan
planning organization, although it also mirrors other stan-
dard practice.

Field deployments. Probably the most convincing evi-
dence of the worth and utility of the system is information
regarding field adoption. UrbanSim has been applied op-
erationally in Detroit, Houston, the Puget Sound region in
Washington State, and Salt Lake City. The research team
has also worked with other agencies in applying UrbanSim
in the urban areas around Eugene, Honolulu, Phoenix, and
San Francisco. There have also been research and pilot ap-

plications in such diverse regions as Amsterdam, Burlington,
Durham, El Paso, Melbourne, Tel Aviv, and Zurich. Four
Users Workshops have been held in the U.S. and Europe.
Modelers outside the UrbanSim research group have also be-
gun writing papers describing how they applied UrbanSim
to Paris, Brussels, and Lausanne[20, 25].

Lab study. To augment the information obtained from
field adoption, we undertook a qualitative lab study to help
assess UrbanSim 4, including the GUI and its integrated
domain-specific language. The tasks UrbanSim supports
cannot be fully investigated in a lab study. Instead, our goal
was to provide experts with a context for discussing their
practices, limitations of their existing systems, and how the
GUI could enhance their work, as well as identifying usabil-
ity issues. Our study included ten participants. Of these,
six were practitioners working for regional planning organi-
zations and four were university-level researchers (faculty or
Ph.D. students). Geographically, eight worked or studied in
the U.S. and two in Europe. All had prior experience using
the command-line version of UrbanSim, ranging from use
in a class to being involved in multi-year applications to a
particular metropolitan region.

We gave each participant a set of agile modeling tasks that
exercise each of the four main components of the GUI, and
asked the participants to talk aloud as they worked through
the tasks. A semi-structured interview format was used to
intersperse specific questions that probed their understand-
ing of what the system was doing with general questions
about modeling practice and their current use of UrbanSim
or other systems. Each sessions lasted approximately two
hours. Most of the sessions were conducted remotely by
speakerphone and screensharing software. Local partici-
pants came to our lab. No one had any problems finished
any of the tasks.

The task order mirrored the four principal tabs of the
GUI. The first set of tasks concerned the tools for inspect-

5



ing and querying the system’s database of inputs and re-
sults, and were designed to probe the issue of providing
tools within the GUI itself versus interoperating with ex-
ternal tools. The next set of tasks concerned constructing,
specifying, and estimating models. We first had the partic-
ipants construct a new regression model for land price from
scratch, estimate it, and check the coefficients and T-values
for the results. The next portion asked the participants to
investigate the effects of proximity to a highway on land
price, which eventually entailed them using the variable li-
brary to define a new model variable. Then they substituted
it in to the model specification and re-estimated the model.
This is a snapshot of a very typical modeling activity, which
provided a concrete example around which to ask a set of
questions regarding model construction and estimation.

The third set of tasks concerned modifying a scenario con-
figuration and running the simulation. The last set of tasks
focused on producing tables and maps of indicators from the
results of the simulation, including a task that entailed cre-
ating a new indicator. This task required a more complex
expression, involving averaging the population densities in
each gridcell contained in the zones. Doing this using exter-
nal tools would require using multiple systems and involve a
fair number of steps. They were also asked to use the GUI to
create, configure, and execute a script that generates indica-
tors for each of many runs. These two modes of interaction,
interactive browsing and report generation, mirror two typ-
ical modes of interaction with UrbanSim results.

4. LESSONS FOR SUPPORTING AGILE
MODELING

In this section, we give three lessons for designing in sup-
port of agile modeling. We pay particular attention to en-
abling fluid and ready-to-hand experimentation across all
phases of the modeling effort in order to engender a tight
loop between configuration, execution, and evaluation of the
result.

4.1 Emphasize iterative modeling
One clear recommendation is to construct an imperfect

but full working pipeline as soon as possible, a foundation
on which progressive refinement of data, models, and sce-
narios can then take place. This is a lesson learned some-
what painfully by our own group when applying UrbanSim
to the Puget Sound region in Washington State. UrbanSim
models are data-hungry, and preparing the data for produc-
ing realistic simulations is a very large task. Modelers on
our team and at the agency spent about two years on very
careful data preparation and cleaning, but found that the
subsequent iterative process of diagnosing models and re-
fining them led to decisions to significantly restructure the
data and the models. Others have discovered this lesson as
well, for example as described in an UrbanSim experience
paper by Patterson and Bierlaire [25], and also confirmed
in our empirical study. Instead, we recommend that the
modeling effort be approached iteratively and experimen-
tally. Start with some albeit imperfect form of the data,
so that one can begin doing simulations and experiments,
and then iteratively refine the input data interleaved with
work on subsequent steps. Recent changes to the UrbanSim
modeling environment provide additional support for such
iterative modeling, particularly in the XML-driven GUI.

Facilitate exploration and learning with project templates.
The possible datasets, models, model variables, and scenar-
ios that might be created and configured in the UrbanSim
environment are immense. UrbanSim 4 provides a particu-
larly flexible framework, but as we learned, this flexibility
can be daunting to explore.

To facilitate experimentation on a full working pipeline at
an early stage, we distribute a sample project configuration
that contains full datasets, configured models and variables,
and sample scenarios for a fully-fledged model application
for Eugene (and more recently for Seattle as well). Sev-
eral participants of the lab study, and other users we have
talked with, indicated that this led to a particular strat-
egy for applying UrbanSim to a new region: start with the
sample Eugene project, and one-by-one replace the Eugene-
based datasets with ones for the region at hand. In other
words, gradually morph Eugene into Paris (or whatever the
city might be). This reflects Trigg and Bødker’s [26] obser-
vation that “tailors start with concrete realizations, using
generalization from experience to work backwards toward
(re)design and analysis.” This strategy has some merits, in
terms of starting with something that works. But it also has
some clear downsides, as noted by participants in our study.
First, parts of the data that are not completely understood,
or that cannot be updated because of lack of data, will re-
main as Eugene. Also, models that are relevant for Eugene
may not be relevant for Paris and vice versa. The tendency
to use this strategy is parallel to what Balka and Wagner
[1] found in the appropriation (or lack of appropriation) of
a wireless call infrastructure, which remained configured to
mirror the previous system when it was meant to only be a
starting place.

Lab study participant P8 indicated that he would like to
see two types of sample projects: a bare-bones project and
a full example. A bare-bones project is meant to “facilitate
learning” about how a model system “hangs together”, while
a full example shows what is possible in a complete project
(e.g., Eugene). P8 insisted on both because of a tension:
the full example can show a real application that pushes
the limits of the modeling system; but it can be difficult
to determine what in the configuration is essential versus
what provides additional accuracy in the case of Eugene (but
not necessarily some other city). On the other hand, if we
provide just a bare-bones project, without examples that
demonstrate the range of capabilities, P8 fears that modelers
will not flesh out the model.

Even with a GUI and example projects at hand, the model
configuration space is daunting to explore. A number of our
participants expressed their desire to share their configura-
tions with other regions, and to be able to explore how other
regions have configured their model systems. They envi-
sioned the development of a shared, centralized variable li-
brary where modelers from multiple regions could download,
upload, comment on, and document variables. Participants
also frequently expressed an interest in sharing their model
configurations, for example, by releasing data flow diagrams.
Experimentation within a region might be greatly facilitated
by leveraging the work done in other regions, and the estab-
lishment of a professional network around UrbanSim would
have increasing returns on appropriation in other regions.3

3A professional network might help mitigate the risk of
adopting tailorable modeling systems like UrbanSim. The
central site could be designed to allow modelers to post their

6



This desire to share configurations to facilitate collaborative
exploration of the possible uses of a system reflect early work
by Mackay [16] who drew attention to its importance.

Enable continuous reflection about the modeling effort.
Convenient tools for continuously assessing and testing the
modeling results are needed, ideally integrated with the
GUI. We originally provided these as external tools, then in
some cases with scripts that could be run from the command
line. Some of these, such as automatic diagnostic map cre-
ation during simulation runs, are now available in the GUI.

This is an area that our lab study showed could use more
attention, which we have subsequently acted upon. For ex-
ample, P3 stated that he wants to have the ability to auto-
matically generate a data flow diagram that maps the input
data to the model variables to the models, as well as how
models are configured to interact. He pointed out that stan-
dard modeling systems usually provide such a diagram in
their manual and they are very helpful in understanding and
diagnosing problems. However, because of UrbanSim’s flexi-
bility, regions’ data flow diagrams will vary, and, if modelers
are tailoring, the model flow will likely change throughout
the application process. Thus, the manual approach would
not be enough. The data flow diagram would then help
support modelers as they experiment with different model
configurations. It could also serve as a boundary object for
communicating with everyone involved in the modeling ef-
fort, including on the policy side for whom modelers need
to justify their modeling decisions. Since the study, we have
implemented this functionality.

4.2 Provide appropriate domain-specific
building blocks

A fundamental requirement is that the controls for the
simulation be conveniently available to the modelers. How-
ever, we have found that a further level of control is crucial
for agile modeling: the underlying building blocks need to
be made accessible so that modelers can configure existing
component models and construct new ones in more flexible
ways. Beyond being accessible, they need to be made action-
able and reconfigurable in a fluid manner, using representa-
tions with which the modelers are familiar. By providing
these building blocks, domain experts are empowered to ex-
periment and iterate more effectively. For modelers, these
include datasets, model variables, models, and indicators.

A core section of the GUI was devoted to the creation
of an interface for modelers to interact with data, drawing
on the tools they are familiar with, such as ArcGIS, and
SQL databases, and providing support to move data be-
tween those environments and OPUS. In addition, a plug-in
architecture was generated to allow both core developers and
other modelers to add tools and groups of tools to prepare
input data and address data problems. For example, we are
currently adding interfaces to tools that employ machine
learning algorithms to support data imputation for missing
data and outliers.

The UrbanSim 3 GUI provided the basic simulation con-
trols, and its SQL database represented variable coefficients
for the models in an easily editable way. However, the ma-
jority of changes to the basic building blocks of a modeling

current model configuration and get it vetted by modelers
from other regions. As a whole, it could serve as a sort of
distributed safety net. This, however, is a hypothesis to be
investigated in future work.

application, such as adding new model variables and incor-
porating them into a model, required programming in Java.
In the command-line version of UrbanSim 4, the model com-
ponents (such as superclasses for discrete choice models or
regression models) are provided in a more modular fash-
ion, and the use of Python allowed technically savvy mod-
elers to construct new models themselves by programming
in Python. Moreover, the design and implementation of the
Tekoa domain-specific language for defining model variables
made this aspect of tailoring much easier and faster, encour-
aging experimentation [7].

But while the command-line version of UrbanSim 4 low-
ered the barriers to tailoring, the need to interact extensively
with the source code limited the actual tailoring modelers
were able to accomplish. Even for those with programming
experience, the overhead of figuring out what to change was
often prohibitive. Three participants had previously cre-
ated a variable (one had a more technically-inclined student
implement it for him) and four had incorporated a variable
into a model. Even one of our most technically sophisticated
users remembered spending several hours figuring out what
to change, computing a variable, and verifying whether it
was correct. For one team, instead of having the capacity to
experiment with and set model coefficients, they borrowed
their coefficients from a large nearby city to be able to begin
experimenting with the system. This lack of agility in exper-
imentation can lead to poor models and simulation results
with consequences for their use in public policy deliberation.

The Opus/UrbanSim 4 GUI provides access to these
building blocks for non-programmers, including tools for
adding new variables to the expression library and for creat-
ing new models using graphical model templates. Feedback
from user studies and user community, has been very pos-
itive about these developments. P2 remarked that “[The
GUI] influences me to go more deeply into UrbanSim.”
Nearly everyone said they felt variable creation through the
expression language and the Variable Library significantly
lowered the barrier on creating a new variable. P1 thought
that their team could probably create their own model inter-
nally with the GUI relatively easily without hiring new staff
with programming experience. P8 said it would allow a shift
in the type of work that he would be able to do. “Flexibility
has typically been hindered by the need for programming ex-
pertise and by simple time constraints. Now I don’t have to
spend as much time creating a variable rather than analyz-
ing.” As he worked through the process of building a new
model from scratch in the GUI and specifying it, P3 noted
that the extent and ease with which the GUI allows config-
uring a model system to a region’s needs is unprecedented.
“Even though people know that [UrbanSim] is supposed to be
open and flexible, people don’t really know whether that flex-
ibility can be explored...the GUI is allowing this flexibility to
be more accessible and more apparent”. A flexible system
does not immediately mean that it can become part of an
agile process. The building blocks need to be expressed in
the proper domain-specific representations.

The technique of providing appropriate domain-specific
building blocks has been used in other domains. As two
early examples, ThingLab [5] was a constraint-based simu-
lation laboratory. It was a “kit-building kit,” in which the
underlying constraint/object system could be used to con-
struct graphical building blocks (e.g., resistors and batteries,
or constrained geometric shapes) that could then in turn be

7



used as building blocks for the given domain (e.g., electri-
cal circuits or demonstrations of geometric theorems). Oval
[18] supported “radical tailorability” in the CSCW domain
by providing objects, views, agents, and links as building
blocks; from these, a set of well-known CSCW applications
were re-created.

4.3 Balance integration and interoperability
of tools

Central to modelers’ ability to experiment effectively with
the modeling environment is how ready-to-hand the rele-
vant functionalities are, and the relative ease of collaborating
with other members of the modeling team. Unfortunately,
current practice typically involves analyzing, reformatting,
and transferring data through a chain of disparate tools and
people. These chains can be problematic because they (1)
often take a long time (actively formatting data and pas-
sively waiting for data transfer), (2) interrupt task flow with
frequent context switches to different interfaces for data ma-
nipulation, transfer and analysis, and (3) are prone to error.
Consider P3’s experience moving back and forth between the
proprietary modeling software he was using when iteratively
updating the specification of a logit model. “I need to take
coefficients from LIMDEP and then transfer them by hand
to MEPLAN, very frustrating given the different syntax and
input specifications. There is an enormous chance for er-
ror — it’s kind of a minefield. And if I need to change the
specification, I need to go back to LIMDEP and do it again!
Other common tool chains include transfer between (1) a
SQL database for examination in a database browser to find
errors in input data and to analyze results, (2) statistical
analysis tools such as SAS, R, or SPSS to specify and esti-
mate models, and (3) GIS mapping tools such as ArcMap
or QGIS for spatial data analysis.

These tool chains can place a high overhead on experimen-
tation. It may therefore be desirable to internally replicate
the functionality either by reimplementing features the tool
provides or, if possible, using a well-supported library that
provides the functionality directly (or seamlessly interfaces
with the external tool). The primary reason to consider this
option is if the tool is critical to the “inner loops” of the
modeling process, especially if the existing chain is onerous.
A good example is estimation software. In UrbanSim 3, we
used external econometric tools, such as LIMDEP. This
was painful: first the modeler had to re-encode the variables
in LIMDEP’s rigid format, then coefficients were estimated,
then transferred back to UrbanSim, then the models were
run. As P7 pointed out, statistical analysis of the results
is also necessary to check the residuals and independence
of model variables for regression models, which meant im-
porting and exporting to the R statistical environment as
well. The results may indicate the need to modify existing
variables or add new ones, and repeat the process. The con-
sequence was that estimating a model might take months,
strongly discouraging experimentation. With UrbanSim 4
and the GUI, we created integrated estimation tools that
allow adding a variable and re-estimating in a matter of
minutes, all within the UrbanSim framework and the GUI.

But there are often professional and organizational con-
straints on integrating functionalities of these external tools
into the modeling environment. Each of the four phases of
modeling practice (described earlier) reflect pockets of pro-
fessional expertise as well as groups of mature applications in

which these experts are trained and do their work. An exam-
ple is GIS software. Particularly in the U.S., Environmental
Sciences Research Institute (ESRI) has a virtual monopoly
on such software in both university curricula and in plan-
ning agencies. Many modelers will be skilled in its use, and
it will be central to their practices regarding spatial data
preparation and producing publication-quality maps. This
leads to a common chain for viewing a map that interview
participants described: (1) exporting simulation results to a
SQL database, (2) executing queries to aggregate the data
to the proper geographic level, (3) running a join query on
the spatial table, and (4) loading the data into the GIS pro-
gram. Depending on the size of the dataset, this process
could take substantial time, effort and expertise.

To address this tension, we suggest that a modeling envi-
ronment should integrate functionality critical to the tight
modeling loop, and provide tools to interoperate with ex-
ternal tools for advanced processing and analysis. This
approach balances the need for experimentation for agile
modeling, while allowing the necessary embedding in orga-
nizational and occupational practice for increased appropri-
ation. The strategy is an application of the 80/20 rule – by
reimplementing 20% of the functionality of an external tool,
80% of its value can be realized in a lightweight fashion,
increasing agility. For example, we expect most UrbanSim
users to continue using ESRI software for data preparation
and producing final polished results for presentation to the
agency’s executive board. Therefore we have implemented
tools for importing and exporting data directly to ESRI’s
ArcMap software. At the same time, quickly inspecting
simulation results as maps is important for diagnosis and
iterative model refinement. So we also provide integrated
mapping software in the GUI using mapnik, which produces
less polished maps, but that can be generated in a matter
of seconds.

Participants in the lab study encouraged us to continue
this interoperability strategy. Interestingly, while we an-
ticipated that modelers would want to export to their fa-
vorite (or organizationally-provisioned) applications, we also
learned that some external applications act as boundary ob-
jects for collaboration amongst interdisciplinary teams (e.g.
P9 used SAS and P2’s group used the GIS database). With-
out attending to these collaborative dependencies, appropri-
ation of the modeling system could be seriously jeopardized.

5. DISCUSSION
To our knowledge, researchers have not previously ex-

plored the central role of experimentation in the appro-
priation of technology in domains such as urban model-
ing.4 We suspect that this results from the classes of tech-
nologies that researchers have examined from the stand-
point of appropriation: document management (e.g., vir-
tual workspaces [2]), communication infrastructures (e.g., a
wireless call centers [1]), and communications applications
(e.g., Lotus Notes [22], calender systems [23]). These stud-
ies have generally spoken to the success of the deployment
and integration of technologies that provision a closed set of

4While the importance of experimentation in urban model-
ing has not been adequately addressed in the research liter-
ature to date, the need for experimentation is recognized in
other classes of simulation systems, for example, flow mod-
eling systems such as STELLA [15], which have a much sim-
pler underlying structure.

8



features and are intended to disappear into the background
after they have been deployed and configured. Systemic ex-
perimentation is unlikely to be salient in these contexts.

In contrast, UrbanSim is a member of a class of systems
that provide a framework for creating and applying predic-
tive models, often incorporating models of human behav-
ior (e.g., water demand models, climate models, financial
forecasting). In the literature on appropriation, studies of
spreadsheets [19] and CAD tools [13] are closest to these
systems because tailoring the systems is an active part of
work practice. Those studies tend focus on the “local devel-
opers” who are integral to appropriation, and do not discuss
whether a form of experimentation is salient in those con-
texts.

As a result of the system evolution described previously,
UrbanSim is moving toward better supporting agile mod-
eling practices. Participants in the lab study were excited
about speeding up the turnaround between execution and
evaluation and eliminating switching between applications.
For example, P1 stated that the GUI “will make us more
productive, for trying out different specifications and incor-
porating new variables.” P3 noted that “This is actually
plug-and-play. Different cities might have completely differ-
ent UrbanSims . . . This modeling approach is a pretty large
leap forward. It is revolutionary.” We believe that increased
agility will allow modelers to concentrate more on modeling
rather than data formatting, contracting with developers,
and being constrained by black-box models. In turn, we
hope to engender a qualitative change in the degree of re-
gional tailoring that modelers are able to accomplish under
their rigid time and resource constraints. But to uncover
further evidence about how UrbanSim may or may not be
fostering the appropriation of agile modeling practices, in-
depth ethnographic studies of planning agencies will be nec-
essary.

Beyond urban modeling, there is evidence of the need to
support agile modeling elsewhere. For example, Patel et
al. [24] have been studying how to support software engineers
in applying statistical machine learning (ML) algorithms
which are typically accessible only to ML experts. Like ur-
ban modeling, applying statistical ML include a number of
phases: data gathering, feature creation and extraction, al-
gorithm selection and parametrization, and testing against
training data. In their investigations, they have found simi-
lar lessons regarding the centrality of experimentation. For
example, they found that it is critical to get a full pipeline
early. They also found that current tool support for applying
ML reflects that of urban modeling: long tool chains that
create “information gaps” and inhibit iterative exploration
of the pipeline through experimentation. To help address
this, Patel et al. call for integrated development environ-
ments that track “experimentation history.” Participants in
our study echoed similar desires. For example, P4 pointed
out that we need to provide better support for storing and
comparing the results of multiple model estimations in or-
der to help modelers choose a specification. Support for
agile modeling and experimentation in integrated modeling
environments appears to be a fruitful direction for future
research.

6. CONCLUSION
As we move into an era with increasingly urgent soci-

etal challenges around sustainability, economic health, and

the environment, coupled with massive data availability
and computer processing power, using simulations to inform
decision-making will become more and more important. In
this arena, our contributions are threefold:

• Presented UrbanSim, its interface, and a sociotechnical
description of its evolution over the past ten years.

• Advocated agile modeling as a methodology that can
better support the appropriation of a modeling system,
facilitating its adoption by new cities in the context of
existing political and organizational processes.

• Highlighted the role of experimentation as a key ac-
tivity for agile modeling. A flexible system does not
necessarily entail agility. Agility in the modeling do-
main requires quick experimentation across a range of
phases that span organizational, professional and po-
litical boundaries.

This work, focused on supporting the modeling phases of
the larger decision making process, is part of a larger effort to
bolster our collective ability to make difficult but important
decisions on urban planning issues by supplying more sci-
entifically sound data to ground public deliberation [6, 12].
In the future, we aim to provide tighter integration between
the modeling and political aspects of decision making.

7. ACKNOWLEDGEMENTS
Many thanks to Jesse Ayers, Koos Kleven, Aaron Raci-

cot, Hana Ševč́ıková, Liming Wang, and all the other mem-
bers of the UrbanSim research group for their help with the
design and implementation of the system and its interface;
to the participants in our lab study; and to the UrbanSim
user community for their feedback and encouragement. This
work has been funded in part by NSF grants IIS-0534094
and IIS-0705898, and in part by the Maricopa Association
of Governments in Arizona.

8. REFERENCES
[1] E. Balka and I. Wagner. Making things work:

dimensions of configurability as appropriation work. In
Proc. of CSCW, 2006.

[2] J. P. Bansler and E. Havn. Sensemaking in
technology-use mediation: Adapting groupware
technology in organizations. Comput. Supported Coop.
Work, 15(1):55–91, 2006.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Reading, Mass., 2000.

[4] E. Beimborn, R. Kennedy, and W. Schaefer. Inside the
blackbox: Making transportation models work for
livable communities. Citizens for a Better
Environment and Environmental Defense Fund, 1996.
Available from Environmental Defense Fund,
Washington D.C.

[5] A. Borning. The programming language aspects of
ThingLab, a constraint-oriented simulation laboratory.
ACM Transactions on Programming Languages and
Systems, 3(4):353–387, Oct. 1981.

[6] A. Borning, B. Friedman, J. Davis, and P. Lin.
Informing public deliberation: Value sensitive design
of indicators for a large-scale urban simulation. In
Proc. 9th European Conference on Computer-
Supported Cooperative Work, Paris, Sept. 2005.

9



[7] A. Borning, H. Ševč́ıková, and P. Waddell. A
domain-specific language for urban simulation
variables. In Proceedings of the 9th Annual
International Conference on Digital Government
Research, Montréal, Canada, May 2008.

[8] A. Borning, P. Waddell, and R. Förster. UrbanSim:
Using simulation to inform public deliberation and
decision-making. In H. Chen et al., editors, Digital
Government: E-Government Research, Case Studies,
and Implementation, pages 439–464. Springer Verlag,
2008.

[9] A. Cockburn. Agile Software Development. Agile
Software Development Series. Addison-Wesley, 2002.

[10] P. Dourish. The appropriation of interactive
technologies: Some lessons from placeless documents.
Computer Supported Cooperative Work, 12(4):465–490,
2003.

[11] B. Freeman-Benson and A. Borning. YP and urban
simulation: Applying an agile programming
methodology in a politically tempestuous domain. In
Proceedings of the 2003 Agile Development
Conference, Salt Lake City, Utah, June 2003.

[12] B. Friedman, A. Borning, J. Davis, B. Gill, P. Kahn,
T. Kriplean, and P. Lin. Laying the foundations for
public participation and value advocacy: Interaction
design for a large scale urban simulation. In Proc. of
Conference on Digital Government Research, 2008.

[13] M. Gantt and B. A. Nardi. Gardeners and gurus:
patterns of cooperation among CAD users. In Proc. of
CHI, 1992.

[14] M. Garret and M. Wachs, editors. Transportation
Planning on Trial: The Clean Air Act and Travel
Forecasting. Sage Publications, Thousand Oaks, CA,
1996.

[15] iSee Systems. http://www.iseesystems.com/
softwares/Education/StellaSoftware.aspx.

[16] W. E. Mackay. Patterns of sharing customizable
software. In Proc. of CSCW, 1990.

[17] A. MacLean, K. Carter, L. Lövstrand, and T. Moran.
User-tailorable systems: pressing the issues with
buttons. In Proc. of CHI, 1990.

[18] T. W. Malone, K.-Y. Lai, and C. Fry. Experiments
with Oval: a radically tailorable tool for cooperative
work. In Proc. of CSCW, 1992.

[19] B. A. Nardi and J. R. Miller. An ethnographic study
of distributed problem solving in spreadsheet
development. In Proc. of CSCW, 1990.

[20] D. Nguyen-Luong. An integrated land use-transport
model for the Paris region (SIMAURIF): Ten lessons
learned after four years of development. Technical
report, Institut d’Aménagement et d’Urbanisme de la
Région d’Ile-de-France, Paris, Apr. 2008.

[21] M. Noth, A. Borning, and P. Waddell. An extensible,
modular architecture for simulating urban
development, transportation, and environmental
impacts. Technical Report 2000-12-01, Dept. of
Computer Science, University of Washington, 2000.

[22] W. J. Orlikowski. Learning from notes: organizational
issues in groupware implementation. In Proc. of
CSCW, 1992.

[23] L. Palen. Social, individual and technological issues for
groupware calendar systems. In Proc. of CHI, 1999.

[24] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison.
Investigating statistical machine learning as a tool for
software development. In Proc. of CHI, 2008.

[25] Z. Patterson and M. Bierlaire. Development of
prototype UrbanSim models. Technical Report
TRANSP-OR 080814, Transport and Mobility
Laboratory, School of Architecture, Civil and
Environmental Engineering, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland, Aug.
2008.

[26] R. H. Trigg and S. Bødker. From implementation to
design: tailoring and the emergence of systematization
in CSCW. In Proc. of CSCW, 1994.

[27] P. Waddell. The Oregon prototype metropolitan land
use model. In 1998 ASCE Conference on
Transportation, Land Use and Air Quality: Making
the Connection, Portland, Oregon, May 1998.

[28] P. Waddell. UrbanSim: Modeling urban development
for land use, transportation, and environmental
planning. Journal of the American Planning
Association, 68(3):297–314, 2002.

[29] P. Waddell, A. Borning, M. Noth, N. Freier, M. Becke,
and G. Ulfarsson. Microsimulation of urban
development and location choices: Design and
implementation of UrbanSim. Networks and Spatial
Economics, 3(1):43–67, 2003.

[30] P. Waddell, C. Peak, and P. Caballero. UrbanSim:
Database development for the puget sound region.
Technical report, Center for Urban Simulation and
Policy Analysis, University of Washington, 2004.

[31] P. Waddell, H. Ševč́ıková, D. Socha, E. Miller, and
K. Nagel. Opus: An open platform for urban
simulation. Presented at the Computers in Urban
Planning Conference, London, 2005.

[32] P. Waddell, G. Ulfarsson, J. Franklin, and J. Lobb.
Incorporating land use in metropolitan transportation
planning. Transportation Research Part A: Policy and
Practice, 41:382–410, 2007.

[33] M. Wegener. Current and future land use models. In
Travel Model Improvement Program Land Use Model
Conference, Dallas, Texas, 1995.

10


