
 

GADGET:  A Toolkit for Optimization-Based 
Approaches to Interface and Display Generation 

 
James Fogarty and Scott E. Hudson 
Human Computer Interaction Institute 

Carnegie Mellon University 
Pittsburgh, PA 15213  

{ jfogarty, scott.hudson }@cs.cmu.edu 
 

ABSTRACT 
Recent work is beginning to reveal the potential of 
numerical optimization as an approach to generating 
interfaces and displays. Optimization-based approaches can 
often allow a mix of independent goals and constraints to be 
blended in ways that would be difficult to describe 
algorithmically.  While optimization-based techniques 
appear to offer several potential advantages, further 
research in this area is hampered by the lack of appropriate 
tools.  This paper presents GADGET, an experimental 
toolkit to support optimization for interface and display 
generation.  GADGET provides convenient abstractions of 
many optimization concepts.  GADGET also provides 
mechanisms to help programmers quickly create 
optimizations, including an efficient lazy evaluation 
framework, a powerful and configurable optimization 
structure, and a library of reusable components.  Together 
these facilities provide an appropriate tool to enable 
exploration of a new class of interface and display 
generation techniques. 
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INTRODUCTION 
The exponential improvement of computing speed 
described by Moore’s Law has enabled fundamental 
changes in user interfaces.  Early graphical interface 
displays were monochrome, dynamic effects were very 
limited, and carefully tuned assembly code was employed 
to provide acceptable response times in the user interface.  
Yet these systems taxed computers of the day to their limits.   
In contrast, today’s computers easily display dynamic color 
and spend most of their processor cycles idle.  User 
interfaces now make common use of animation and other 
techniques that were once computationally infeasible.  In 
the future, we can expect to see other new opportunities 
move from being infeasible to being commonplace. 

Recent work, including the Kandinsky system [9] and the 
LineDrive system [2], is beginning to show the potential for 
one such technique – the use of numerical optimization in 
interface and display generation.  Numerical optimization is 
the minimization or maximization of a function subject to 
constraints on its variables [22].  The Kandinsky system 
generates aesthetic information collages, which enhance the 
aesthetics of a space and also convey information.  Because 
aesthetics are difficult to define algorithmically, the 
Kandinsky system uses aesthetic templates to define a 
matching problem, which it then solves with optimization.  
Similarly, the LineDrive system uses optimization to solve 
the variety of problems that arise in the design and 
rendering of perceptually simplified route maps.  By using 
distortion, simplification, and abstraction, the LineDrive 
system generates route maps that resemble hand-drawn 
maps.  These maps aid navigation and prevent the clutter 
created by information that is irrelevant to a route.  The 
many constraints on how this information can be arranged 
would be difficult to manage algorithmically, but the 
problem is nicely described as an optimization. 

While computationally expensive, optimization has several 
advantages as a general approach to interface and display 
generation.  First, optimization seems to fit the way people 
think about elements of an interface or display.  For 
example, it is common to want two elements of an 
information display to be near each other, aligned with each 
other, the same color, or non-overlapping.  Similarly, we do 
not want distortions of a route map to create false 
intersections between roads that do not actually intersect.  
Programmers can identify such good and bad features of an 
interface or display and create an optimization by simply 
combining these independent criteria.  This seems to be 
more intuitive than trying to construct an algorithm that 
simultaneously satisfies a variety of conditions.  Second, 
optimization can work well with existing algorithms.  As we 
will illustrate in our demonstrations, programmers can use 
an algorithm or heuristic to get a reasonable solution and 
then use optimization to explore similar solutions.  
Alternatively, programmers can have algorithms produce a 
variety of solutions, using optimization to improve upon 
and eventually choose between them.  Finally, optimization 
offers a level of flexibility that is a sharp contrast to the 
fragile nature of algorithms.  Adding a new goal or 

  
 

 



 

constraint to an algorithm will commonly require a 
reevaluation of every part of the algorithm, and may break 
it entirely.  In contrast, new goals and constraints can 
normally be added to an optimization and balanced with the 
existing requirements without starting over.   

Optimization can be a difficult approach to pursue in 
current programming environments.  Many programmers 
may be intimidated by or uncomfortable with the math 
required for programming an optimization.  While 
optimization toolkits are available [7], they typically still 
require substantial specialized knowledge because they 
have mostly been designed for physics simulations and 
other traditional optimization problems.  Further work on 
optimization as an approach to interface and display 
generation is hampered by the lack of an approachable 
toolkit designed specifically for these problems.   

This paper presents GADGET, an experimental toolkit 
designed to support the exploration of optimization as an 
approach to interface and display generation.  In the next 
section, we offer a simple example of an optimization 
created with GADGET.  This is followed by a discussion of 
the major architectural features of GADGET, including a 
standard framework to abstract much of the mathematics 
behind optimization, generic property support integrated 
with an efficient lazy evaluation framework, a powerful and 
configurable optimization structure, and a library of 
reusable components.  Afterward, we show three examples 
of larger systems: iterative improvement of Bubblemap 
layouts, generation of route maps like those created by 
LineDrive, and automated dialog layout.  Finally, we 
discuss some related work and present some short 
conclusions. 

A SIMPLE EXAMPLE:  TEXT ON A POLYGON 
In order to explain how programmers create GADGET 
optimizations, we will now present a thorough explanation 
of a simple optimization.  The problem we present is 
arranging text in the shape of an arbitrary polygon.  Posing 
this problem as an optimization, each character in the text 
should be on an edge of the polygon, characters should be 
displayed in the correct order, and the characters should be 
spread out across the length of the polygon.  The examples 
included later in this paper demonstrate the application of 
these same techniques to larger, more interesting problems. 

A programmer creating an optimization using the GADGET 
toolkit needs to supply three components: an initializer, 
iterations, and evaluations.  An initializer creates an initial 
solution to be optimized.  This might be based on an 
existing or simplified algorithm, or done randomly.  
Iterations are responsible for transforming one potential 
solution into another, typically using methods that are at 
least partially random.  Finally, evaluations are used for 
judging the different notions of goodness in a solution. 

We will first define the evaluations used by our 
optimization.  Derived from a base class provided by the 

toolkit, each evaluation examines some part of the current 
state of the problem.  As we will discuss in a later section, 
GADGET provides a reusable library of evaluations.  For 
the purpose of this introduction, however, we will assume 
that the programmer implements the necessary evaluations. 

The first evaluation ensures that characters are placed on an 
edge of the polygon.  To do so, the evaluation checks each 
character to determine how close it is to the nearest edge of 
the polygon.  It creates an array of double values from these 
distances and returns this array to GADGET.  It also 
indicates to the toolkit that the sum of the squares of the 
values in this array should be minimized.  This component, 
therefore, is very simple and can be created without 
knowledge of complex optimization techniques. 

Our second and third evaluations are equally simple.  Our 
second evaluation ensures that characters are displayed in 
the correct order.  It builds an array of double values by 
checking that each pair of characters is displayed in the 
correct order.  If a pair is in the correct order, the evaluator 
adds a zero to the array of double values.  Otherwise, it 
adds the distance between the pair of characters along the 
polygon to the array of double values.  It returns this array 

 

 
Figure 1 – Simple Arrangements of Text on a Polygon 



 

of doubles to GADGET and indicates that the toolkit 
should minimize the sum of the squares of the values in the 
array.  Our third evaluation spreads characters across the 
length of the polygon.  It creates an array of doubles by 
adding an entry to the array for the distance along the 
polygon between each pair of characters.  Unlike our first 
two evaluators, this array is not minimized.  The evaluation 
returns the array to GADGET with an indication that the 
toolkit should maximize the value of the smallest entry in 
the array.  This will push the characters apart. 

With these evaluations complete, the programmer next 
provides a set of weights to indicate the relative importance 
of each evaluation.  By giving the evaluations weights of 
1000, 100, and 10, respectively, each evaluation is an order 
of magnitude more important than the next. 

After defining how GADGET should evaluate a possible 
solution, we need to provide iterations that indicate how 
GADGET should generate different possible solutions.  
Iterations can vary in complexity according to the 
optimization.  For optimizations in which it is possible to 
identify that certain actions should be taken when certain 
conditions are met, an iteration might look to see if a 
condition is satisfied and then make an appropriate change.  
For optimizations in which it is less clear what steps will 
lead to a better solution, iterations can make random 
changes, relying on the evaluations to select appropriate 
changes.  For this example, we will use a very simple 
iteration that selects a random character and nudges it a 
random distance in a random direction.  Combined with our 
evaluations, this iteration yields the results in Figure 1. 

At this point, it is worth noting that the solution we have 
presented does not require an optimization-based approach, 
as a very simple algorithm can achieve this result (and does 
so much faster).  Picking an arbitrary starting point on the 
polygon, characters can simply be spaced at intervals equal 
to the total length of the polygon divided by the number of 
characters.  However, this algorithm and our presented 
solution share a common problem illustrated by the overlap 
of characters in the corner of the triangle.  To address this 
problem, Figure 2 shows the result of modifying our 
optimization by adding an evaluation that minimizes the 
overlap of the bounding rectangles of each character.  
Given a smaller weight than the other three evaluations, this 
additional criteria shifts characters around corners to avoid 
the overlap found in Figure 1.  Adding this additional 
requirement to the algorithmic approach would be very 
difficult, but adding it to our optimization is very simple. 

GADGET ARCHITECTURE 
The GADGET architecture has several features designed to 
support the exploration of optimization-based approaches to 
interface and display generation.  A standard framework 
abstracts the concepts and constructs behind evaluations.  
Our base class, the GadgetObject, provides generic property 
support integrated with an efficient lazy evaluation 
framework.  Our default optimization structure provides a 

variety of useful features, and our configurable optimization 
structure allows changes in the optimization structure to 
meet specific needs.  Finally, GADGET supports a reusable 
library of iterations and evaluations. 

Evaluation Standardization Framework 
As illustrated in our previous example, GADGET allows 
programmers to focus on creating evaluations to measure 
criteria that are important to a problem.  GADGET then 
combines these evaluations and uses them to choose 
between possible solutions to a problem.  This process of 
combining evaluations and choosing between possible 
solutions has five stages.  First, the framework presents 
each evaluation with the current possible solution, which 
we will call the prior solution.  Each evaluation returns an 
array of double values representing its interpretation of the 
prior solution.  We will call this collection of arrays of 
double values the prior result.  Second, the framework uses 
an iteration object to modify the prior solution, creating a 
new possible solution that we will call the post solution.  
Third, the framework presents the post solution to each of 
the evaluations, and the individual evaluations return 
interpretations that are then combined to create a post 
result.  Fourth, the framework uses a method described in 
the next paragraph to compare the prior result and the post 
result.  Finally, the result of this comparison indicates 
whether the framework should accept the post solution or 
revert to the prior solution. 

Up until this point, we have not imposed any particular 
structure on the arrays of double values that individual 
evaluations create to represent interpretations of possible 
solutions.  Providing this flexibility to the programmer 
allows evaluations to use any appropriate representation.  
However, determining which solution is better requires a 
standard form for comparing results.  We achieve this 
standard form by requiring each evaluation to be capable of 
comparing two arrays of double values that it has created 
and providing a double value in the range -1 to 1, where a 
-1 indicates the evaluation has a strong preference for the 
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prior solution, a 0 indicates the evaluation is indifferent, 
and a 1 indicates the evaluation has a strong preference for 
the post solution.  To choose between a prior and post 
result, these values between -1 and 1 are multiplied by the 
weight associated with each evaluation and these multiplied 
values are summed.  If this sum is greater than 0, the 
framework prefers the post solution. 

While evaluations can use any method to create a value 
between -1 and 1 from the post and prior arrays of double 
values, they will most often use one of the methods we have 
built into the framework.  These methods are “Minimize 
Sum of Squares”, “Maximize Sum of Squares”, “Maximize 
Minimum Value”, “Maximize Maximum Value”, 
“Minimize Minimum Value”, and “Minimize Maximum 
Value”.  Each of these methods uses a formula resembling 
that in Figure 3 to create a value based on both the sign and 
magnitude of a difference.   

Generic Properties and Lazy Evaluation Framework 
GADGET classes inherit from a base GadgetObject class that 
provides support for generic properties.  Objects can create 
named properties to store a value on any object.  Other 
objects can then use the stored value.  As we will discuss in 
our section on a reusable library of iterations and 
evaluations, this support for storing and referencing 
property values helps programmers create general solutions.  
For example, the overlap minimization evaluation that we 
used in our earlier example is created from a list of objects 
and the property name for a bounding rectangle that is 
stored on each object.  The evaluation uses the property to 
get the rectangles from the objects and compute their 
overlap.  Therefore, the evaluation can be used to minimize 
the overlap of any set of rectangles, not just the rectangles 
associated with the characters in our earlier example. 

Generic property support in GADGET is tightly integrated 
with an efficient framework for lazy evaluation.  Based on 
the lazy evaluation algorithm presented in [13], the 
framework uses local flags and local dependency pointers 
to avoid unnecessary computations.  This lazy evaluation 
framework is integrated with our generic properties by the 
GadgetComputedProperty class.  Computed properties are 
declared just like any other property, by creating a named 
property and using it to store the computation on an object.  
Instead of storing a value, the property stores a 
computation.  The first time the value of this property is 
requested, the computation is executed to compute the 
value.  Each subsequent time the value is requested, the 
computation is executed only if the value might have 
changed since it was last computed. 

Although the lazy evaluation framework requires careful 
bookkeeping to ensure that cached values are always 
correct and computations are not unnecessarily executed, 
the GADGET framework is responsible for all of this 
bookkeeping.  Programmers define a computation by 
overriding two functions of a base computation class.  The 
first function, computeValue, simply performs the desired 

computation and returns the computed value.  The second 
function, declareDependentOn, is called by the framework 
immediately before the first call to computeValue.  In this 
function, the programmer declares what objects this 
computation is dependent on.  The framework then handles 
caching a computed value and monitoring the 
computation’s dependencies. 

As an example of the combined power of generic properties 
and the lazy evaluation framework, consider the evaluation 
from our earlier example that minimized the distance from 
each character to the nearest edge on the polygon.  This 
evaluation is constructed from a list of objects, a named 
property for a location stored on each object, and the 
polygon that these locations should be resolved against.  A 
naïve implementation of this evaluation would simply go 
through each object, extract the location of that object, 
compute the distance from the object location to each edge 
on the polygon, select the minimum distance, and build an 
array of minimum distances.  Note, however, that our 
iteration only moves one character between evaluations.  
Therefore, the computation to determine what edge each 
point is closest to is wasted for all but one of the characters.  
Using the generic property and lazy evaluation framework, 
this same evaluation can be programmed much more 
efficiently.  The evaluation declares a computed property 
that is the distance from a point to a polygon.  It then 
instantiates this computed property on each object in the 
list.  Each of these individual computations is dependent 
only on the location of the polygon and the location of that 
character.  Therefore, each computation will be executed 
only if that character has moved or the polygon has changed 
since the computation was last executed.  The cached value 
will be used for all of the other characters.  When arranging 
twenty characters on a polygon, this change can represent 
as much as a twenty-fold improvement in the execution 
time of an evaluation.  Because optimization can be a 
computationally expensive process, the ability to easily 
make these sorts of improvements without specifically 
burdening the programmer is important to this toolkit. 

Powerful Default Optimization Structure 
By default, GADGET uses a simulated annealing approach 
to optimization [17].  Simulated annealing is a general 
approach that is characterized by a temperature variable.  
This temperature variable is initially high, indicating a 
“hot” system, and decreases over time, representing the 
system gradually “cooling” into an optimal state.  This 

 priorSum = sumOfSquares(priorResult) 

 postSum = sumOfSquares(postResult) 

 

 if(postSum = priorSum) then result = 0 

 else result = sign(priorSum – postSum) * 

               (1 – ( min(postSum, priorSum) / 

                      max(postSum, priorSum) )) 

Figure 3 – Standardization Formula for the  
Minimize Sum of Squares Method 



 

temperature variable is used to probabilistically accept 
changes that do not appear to represent an improvement.  
By randomly accepting these changes, an optimization is 
less likely to become trapped in local maxima. 

This temperature variable can also be used by evaluations 
and iterations to guide their decisions in an optimization.  
Iterations, for example, can make large changes to a 
solution when the temperature is high and smaller changes 
when the temperature is low.  Similarly, evaluations can use 
the temperature variable as an indicator of whether to use 
estimation techniques instead of computing a full 
evaluation.  For example, an evaluation that performs an 
expensive computation on objects in a list might use the 
temperature variable to randomly sample only a percentage 
of the objects in the list.  Such estimates allow an 
optimization to approximate a desired solution while the 
temperature is high and settle into a more precise solution 
as the temperature cools. 

Our default optimization structure also includes several 
other features that are helpful for creating optimizations.  
Because the weights associated with evaluations represent 
the maximum value that a particular evaluation can 
contribute to the decision on whether to accept the iteration, 
GADGET automatically avoids executing evaluations that 
cannot affect the outcome of the decision.  We also provide 
event notifications intended to allow the programmer to 
visualize an optimization that is in progress.  Finally, the 
default optimization structure uses knowledge about 
whether changes are accepted or rejected to maintain a 
cached version of the prior evaluation result, thus 
preventing unnecessary execution of evaluations. 

Configurable Optimization Structure 
In order to support the future development of GADGET 
and to allow optimizations to make changes according to 
their specific needs, GADGET uses a configurable 
optimization structure.  An optimization structure is 
represented as a finite-state machine.  Each state in the 
machine represents an action in the optimization, such as 
sending an event notification, executing an evaluation, or 
decaying the temperature variable.  Each state has some 
number of exit conditions, and the optimization structure 
associates each exit condition with a transition to another 
state.  This design allows changes to be made to an 
optimization structure by adding new states and changing 
the transitions associated with exit conditions.  It also 
allows actions to be reused in entirely new optimization 
structures. 

Because most optimizations will only need to use a standard 
optimization structure, GADGET uses Builder objects to 
abstract the configuration process.  For example, our 
default optimization structure is created by a single function 
call to a Builder object that creates a simulated annealing 
optimization based on a handful of parameters, including a 
list of the evaluations to execute, a list of the iterations to 
use, and the rate at which the temperature should decay.  

Programmers that create custom optimization structures 
could extend this Builder to create an optimization structure 
that resembles our default structure, such as a simulated 
annealing structure that added support for logging all of the 
possible solutions that were considered.  Programmers 
could also create entirely new Builder objects for structures 
much different from our default structure, such as an 
optimization based on a genetic algorithm.  Builder objects 
then allow programmers to easily use the custom 
optimization structures. 

Reusable Library of Iterations and Evaluations 
GADGET supports a library of reusable evaluations and 
iterations intended to help programmers quickly create 
optimizations.  Although our library is still relatively small, 
we have developed several promising approaches to 
creating an effective library. 

One approach we are pursuing is a standard approach to 
reusable libraries.  As discussed in our section on generic 
properties, the overlap minimization evaluation used in our 
text layout example can be easily implemented to minimize 
the overlap of any set of rectangles.  Similarly, the iteration 
used to randomly nudge characters can be easily 
implemented to randomly nudge any objects with a property 
that defines their locations.  The use of named properties on 
objects makes this type of reuse easy to include.  This 
approach to a reusable library also results in reusable 
components that clearly implement a particular evaluation 
or iteration.  Programmers who are new to GADGET can 
then create optimizations by combining these clearly named 
evaluations and iterations, treating them as black boxes. 

Although the above approach works well for many 
components, coverage can be problematic.  Given this 
problem, we are pursuing an approach that makes extensive 
use of computed properties.  To understand how this 
approach is structured, consider the evaluation that ensures 
characters are displayed in the correct order in our text 
layout example.  It penalizes each pair of characters that 
appears on the polygon in an order that is different from the 
order they appear in the string.  If this evaluation is 
programmed to use a list of characters, a named property 
for the location of each character, and the polygon that the 
characters are being arranged on, the evaluation will have 
relatively little reuse potential.  The reuse potential of the 
evaluation is improved substantially if it is instead 
programmed to use a list of objects, a named property for 
the desired order of each object, and a named property for 
the current order of each object.  In this case, the desired 
order is the index of that character in the string being 
arranged.  The current order is a computed property that 
determines how far that character is located along the edge 
of the polygon.  The evaluation uses the desired order and 
current order properties to penalize each pair of objects that 
is not in the desired order.  Structured this way, the 
evaluation can be used to maintain an arbitrary desired 
order for any list of objects.  For example, our partial 



 

implementation of the LineDrive system, presented in a 
later section, uses this evaluation to prevent short roads 
from appearing longer than long roads.  In that case, the 
desired order is the undistorted length of each road and the 
current order is the length of each road after distortion. 

The two approaches just presented help create reusable 
individual GADGET components.  A third approach, 
intended for use with both of these approaches, allows 
groups of components to prevent unnecessary duplication 
of a computation.   If several components require an 
expensive intermediate computation, any one of them can 
create a computed property, store it on a shared object, and 
expose the property name.  The other components can then 
reuse this computed property.  The framework will 
automatically ensure that the value is up to date prior to 
every use, but will never be recomputed unnecessarily. For 
example, several evaluations might share a computation to 
compute the convex hull of a list of objects, with one using 
the convex hull computation to efficiently find the two most 
distant objects and a second evaluation using the convex 
hull computation to compute the total area covered by the 
objects.  An iteration could also reuse this convex hull 
computation to move objects on the hull towards the middle 
of the hull.  The ability to transparently share these sorts of 
computations among components seems to be important for 
helping to create efficient optimizations. 

EXAMPLE:  BUBBLEMAPS 
In this section, we will shift from discussing GADGET as a 
general toolkit to illustrating how GADGET can solve a 
particular problem.  The problem we discuss arises in the 
context of the Bubblemap layout algorithm created for 
PhotoMesa, a zoomable image browser that groups images 
according to a shared attribute [4].  The problem addressed 
by Bubblemap is the arrangement of semantically clustered 
rectangles into approximately rectangular regions without 
wasting space.  In other words, the rectangles must fit into 
the smallest possible total area, but related clusters should 
be arranged in that area so that they approximate 
rectangular shapes. The method used by Bubblemap is a 
greedy pixel-based bucket fill algorithm.  As can be seen in 
Figure 4, the algorithm yields fairly good results.  Related 
rectangles, represented here by color, are kept together and 
the edges between clusters generally form clean boundaries. 

Although Bubblemap produces solutions that are usually 
acceptable, it sometimes suffers from the fact that it is a 
greedy algorithm.  As can be seen in the bottom of Figure 4, 
the last cluster of rectangles to be put into the solution must 
settle for whatever space is left.  The border of this space is 
sometimes jagged and detracts from the overall quality of 
the solution.  To address this sort of problem, we have 
created an approach that combines Bubblemap with an 
optimization.  After using Bubblemap to create a reasonable 
solution, we explore other nearby possible solutions to see 
if they are better.  This combination of algorithms and 
optimization seems to be a promising overall approach. 

Figure 5 shows the result of applying an optimization to the 
result created by Bubblemap that is shown in Figure 4.  The 
optimization we applied uses a handful of evaluations.  The 
most heavily-weighted evaluation ensures that all the 
rectangles of a particular cluster are connected.  We then 
use evaluations that minimize the area of the bounding 
rectangle around each cluster and minimize the area of the 
convex hull around each cluster.  Finally, an evaluation 
minimizes the number of times the clustered value changes 
in each row and column of layout. 

The iteration used in this optimization demonstrates one 
approach to creating iterations for difficult problems.  We 
use a swapping approach, selecting pairs of rectangles and 
swapping their values.  While there may be a way to find 
pairs of rectangles that should be swapped, we have not 
found any simple criteria for selecting pairs of rectangles 
with a high success rate.  While randomly selecting any two 
to swap could work, substantial efficiency is gained by 
instead using random selection from a list of rectangles that 
meet certain criteria.  In this case, we only consider 
swapping rectangles that border two rectangles of a 
different color (counting edges of the layout as rectangles 
of a different color).  This limits swapping to the corners of 

 
Figure 4 – A Bubblemap Layout of Six Groups 

  

Figure 5 – The Same Layout After Optimization 



 

clusters, which limits swapping to pairs that are more likely 
to result in improvements when swapped.  Further, the 
computation to determine which rectangles should be 
considered for swapping is very inexpensive, based on a 
Boolean computed property on each rectangle and a list that 
stores only the rectangles for which this property is true.  In 
the general case, problems for which random selection is 
used as the iteration method can benefit from simple filters 
that increase the efficiency of the random selections. 

EXAMPLE:  LINEDRIVE 
The LineDrive system is used to generate route maps at 
http://www.mapblast.com [2].  These maps simplify and 
distort the information in a typical road map to more clearly 
convey the information critical to navigating the route.  
Figure 6 shows two views of a route from Carnegie Mellon 
University to a nearby major shopping center [19].  This 
route is particularly interesting because it includes a loop at 
Monongahela Avenue that can easily confuse a first-time 
driver of this route.  This loop is imperceptible in a typical 
road map because only a very short section of Monongahela 
Avenue is included in the route.  In the map generated by 
our partial implementation of the LineDrive system, the size 
of this route segment has been distorted to ensure that it is 
visible.  The resulting map makes it clear to a first first-time 
driver of this route that they will not be able to go directly 
from South Braddock Avenue to US-22. 

As a deployed real-world example of an optimization-based 
approach to interface and display generation, it is important 
that the techniques used by the LineDrive system are 
supported by GADGET.  We can also use the LineDrive 
system to provide ideas about effectively designing 

optimization-based approaches to interface and display 
generation.  In this section, we present a partial 
implementation of the LineDrive system and comment on 
how some approaches taken by the LineDrive system might 
generalize to other optimizations. 

One interesting facet of the LineDrive system is the 
decision to split the optimization into multiple distinct 
stages, each of which optimizes a different set of 
conditions.  The LineDrive system uses three such 
optimization stages:  an optimization stage that distorts road 
length and direction to ensure all roads in a route are visible 
without creating false or missing intersections, an 
optimization stage that places labels on each road in the 
route, and an optimization stage that includes contextual 
features (such as cross-streets or landmarks).  These 
optimization stages are complimented by algorithmic stages 
to simplify geographic data into road segments before the 
first optimization stage and to add decorative graphics to 
the route map after the last optimization stage.  By dividing 
the many different parts of the optimization into stages, the 
LineDrive system significantly reduces the size of the 
problem that is solved by the optimization.   

As a general approach, the division of a large optimization 
into smaller optimizations seems to have helpful properties.  
Because each optimization searches a much smaller space, 
each optimization can be executed much more quickly.  
Smaller optimizations might also make it clearer what 
evaluations and iterations will quickly lead to a solution.  
These helpful properties, however, need to be balanced 
against the possibility that an early optimization might 
create a problem that a later optimization cannot remove.  

 

 
Figure 6 – Undistorted and distorted versions of a route map.   

Note that the loop at Monongahela Avenue is imperceptible without distortion. 



 

For example, with the road location fixed prior to the label 
placement optimization, it might be impossible to place 
labels without creating overlaps.  If the label placement 
optimization were able to modify road placement, it could 
handle this problem.  Given this possibility, the decision of 
whether it is appropriate to conduct an optimization in 
stages is problem dependent. 

It is also worth noting that the LineDrive system uses very 
specific evaluation criteria designed to detect and prevent 
very specific problems.  For example, false intersections are 
prevented with an evaluation that minimizes the distance 
from a false intersection to either end of the route.  This 
pulls the false intersection until it eventually passes the 
endpoint, thus removing the false intersection.  Another 
evaluation pulls together the roads from a missing 
intersection.  Because these evaluations can conflict, a third 
evaluation identifies missing intersections contained in the 
loop created by a false intersection.  This third evaluation 
very rarely applies, but it helps the optimization recover 
from situations where the first two evaluations conflict. 

As a general approach, creating evaluations that identify 
and resolve very specific problems in an optimization 
seems to be beneficial.  If a broad and general evaluation is 
effective for all but a very specific case, creating an 
evaluation for that specific situation seems preferable to 
trying to find a different broad evaluation that is effective in 
every case.  As discussed earlier, this is one of the benefits 
of optimization as an approach to display and interface 
generation.  Instead of trying to construct a single algorithm 
or evaluation to handle every condition, independent goals 
and constraints can be mixed to achieve the desired affect. 

We have created a partial implementation of the LineDrive 
system to evaluate the compatibility of GADGET with the 
techniques used by the LineDrive system.  Our 
implementation includes a full implementation of the road 
layout stage, which distorts road length and direction to 
ensure all roads are visible without creating false or missing 
intersections, and a partial implementation of the labeling 
optimization stage.  In our implementation, we have 
focused on the portions of the problem that relate to 
optimization, rather than the portions related to geographic 
databases, rendering, and related graphics details.  These 
optimizations were straightforward in the GADGET 
architecture.  Figure 6 shows an undistorted route map and 
a distorted map generated by our implementation.   

EXAMPLE:  AUTOMATED DIALOG LAYOUT 
Automated dialog layout is a problem that has been 
investigated by a variety of systems [5, 16, 21].  One 
approach to this problem is the right/bottom strategy, which 
places each component either to the right of or below the 
previous component, according to a set of rules.  An 
important difficulty with this strategy is the development of 
an effective set of rules.  Other rule-based approaches can 
have similar problems. 

Figure 7 shows an automatically generated dialog layout 
that was created using a combination of optimization and 
the right/bottom strategy.  The desired order, text, and size 
of these components are taken from a previous discussion 
of automated layout [5].  Our layout was created using an 
optimization to determine whether to place each component 
to the right of or below the previous component.  All of the 
components are initially placed into one long column.  An 
iteration toggles a Boolean property on each component to 
indicate whether that component should be placed to the 
right of the previous component, and the layout that results 
from applying the right/bottom strategy with these Boolean 
properties is judged by a set of evaluations.   

The evaluations used in this optimization are relatively 
simple.  One evaluation tries to keep labels associated with 
a component (as indicated by a flag in the input 
specification) on the same row as that component.  Another 
evaluation minimizes the size of the dialog and the size of 
each group box.  A third evaluation minimizes the amount 
of unused space in the dialog and in each group box.  The 
final evaluation penalizes layouts in which a vertically large 
component appears to the right of a much smaller 
component, a situation which has previously been identified 
as visually unpleasant [5].  While additional evaluations 
could improve the robustness of this approach, these four 
evaluations are sufficient for creating the layout shown in 
Figure 7.  The rules used in our right/bottom strategy 
implementation are also very simple.  Components are 
placed a uniform distance from each other, and similar 
components in two or more adjacent rows are left-justified.  
Additional rules could right-justify the OK and Cancel 
buttons and handle similar highly specific layout issues. 

 
Figure 7 – An automatically generated dialog layout.



 

This hybrid strategy of using an algorithm inside an 
optimization demonstrates an interesting point.  The 
algorithmic portion efficiently handles the well understood 
portions of the problem, such as spacing and aligning 
components.  The optimization handles the less well 
understood portion of the problem, deciding on an overall 
arrangement of the components.  The resulting system is 
both efficient, generating the layout in Figure 7 in just over 
one second, and flexible, appropriately arranging the groups 
of radio buttons even though it has no specific knowledge 
of radio buttons.  This seems like a promising strategy for 
structuring optimization-based approaches. 

DISCUSSION AND RELATED WORK 
The pursuit of optimization as a general approach to 
interface and display generation relates to previous work on 
constraints [3, 11, 12, 18, 25] and constraints in user 
interface toolkits [10, 26].  Some systems, such as 
Cassowary [3], explicitly use numerical optimization to 
maintain constraints.  It is also common to associate 
weights with constraints, indicating that conflicts between 
constraints should be resolved in a manner that is consistent 
with the more heavily weighted constraint.   

Many constraint-based approaches can be difficult to use 
when it is not clear how to express the desired constraint in 
the appropriate limited form, such as a linear equation or 
inequality.  Recent work has demonstrated a technique for 
using sets of linear constraints to approximate nonlinear 
constraints [14], but the general problem still exists.  
Instead of requiring programmers to represent their 
evaluations as equations, GADGET allows programmers to 
use arbitrary code in an evaluation and provides a 
standardization framework that allows these arbitrary 
criteria to be combined.  This flexibility is important to 
providing general support for the types of problems for 
which GADGET has been designed.  There is clearly a 
tradeoff between this flexibility and efficiency, though we 
believe that the techniques illustrated in our examples, such 
as using algorithms to approximate a good solution and 
dividing large optimizations into multiple stages, provide 
some insight into how to manage this tradeoff.  As a part of 
future work, we intend to explore additional methods to 
provide toolkit support for strategies to manage efficiency. 

GADGET also relates to previous work on metric-based 
design [20, 23, 24], automated usability analysis [15], and 
automated dialog layout generation [5, 16, 21].  In order to 
emphasize the flexibility of GADGET, this paper includes 
examples outside of traditional dialog layout problems.  
Some metrics previously presented in the context of dialog 
layout, such as symmetry and balance, are likely to be 
useful as general aesthetic qualities in a large variety of 
problems.  By supporting a library of reusable evaluations, 
GADGET can make it easy for programmers and designers 
to include these types of generally useful evaluations in 
their systems.  Other metrics specific to dialog layout, such 
as Layout Appropriateness [24], suggest approaches to 

including task knowledge in evaluations.  Layout 
Appropriateness evaluates the positions of components 
according to how often a user will move from one 
component to another, attempting to minimize the distance 
a mouse must be moved during common sequences.  The 
flexible nature of GADGET evaluations supports the use of 
this type of task knowledge in a dialog layout problem.  
Stated more generally, GADGET supports not only 
evaluations based on the arrangement of visual elements, 
but also evaluations based on automated usability analysis, 
knowledge of human perception, and the amount of 
information conveyed by parts of an information display. 

Optimization has also been used extensively as an approach 
to problems in graph visualization and VLSI layout [6, 8].  
Many problems in these areas are NP-Complete, making 
optimization-based approximation techniques important.  
This work, appropriately, is often conducted at a level of 
mathematical complexity that is well beyond the comfort 
level of a typical programmer.  GADGET works to make 
the benefits of optimization that have been demonstrated in 
these fields more approachable to typical programmers.  
We expect that making optimization easier to use will result 
in it being used for additional problems. 

In our experiences with GADGET, we have found that our 
abstractions and reusable components make it easier to 
develop optimizations.  A new evaluation can be quickly 
combined with an existing set to determine if the additional 
evaluation yields a better result.  The lazy evaluation 
framework also seems to be very effective, allowing 
optimizations to consider many different small changes 
without the computational overhead of re-evaluating large 
parts of the problem that are unaffected by the changes.   

The primary difficulties that we have encountered in using 
GADGET are those that we might expect in any approach 
to optimization.  As the number of variables that can be 
manipulated in an optimization grows, it becomes difficult 
to ensure that an appropriate solution can be quickly found.  
This is partially because the there are many more points in 
the space to be considered, but is also due to the increasing 
difficulty of understanding the optimization space and 
deducing what new evaluations might improve results.   

In discussing our examples and the functionality provided 
by GADGET, we have shown techniques for managing 
these problems.  We are particularly interested in hybrid 
approaches that use a combination of an algorithm and an 
optimization to solve a problem.  We are also interested in 
additional toolkit-level support for these hybrid approaches 
and other strategies to help people understand and improve 
upon non-trivial optimizations.   

CONCLUSIONS 
Optimization-based approaches to interface and display 
generation seem to be a promising area of research, but 
important advances still need to be made.  Carefully 
constructed optimizations can run quickly enough for use 



 

with current systems, as illustrated by the LineDrive system, 
but other optimizations remain too computationally 
expensive for current systems.  While part of the solution to 
this problem will come from the exponential improvement 
of computing speed described by Moore’s Law, it is also 
important to develop strategies for managing efficiency and 
approachable abstractions of more efficient optimizations.   

We have presented GADGET, a toolkit designed to support 
optimization-based approaches to interface and display 
generation.  This toolkit provides several features designed 
to support the easy creation of efficient optimizations.  
These include a standard framework to abstract much of the 
mechanics behind evaluations, generic property support 
integrated with an efficient lazy evaluation framework, a 
powerful and configurable optimization structure, and a 
library of reusable iterations and evaluations.  We have 
presented strategies for developing reusable and efficient 
components and have demonstrated the use of GADGET in 
three interesting optimization problems.  As an appropriate 
tool for this new class of interface and display generation 
techniques, GADGET provides important support for the 
further exploration of these techniques. 
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