

User Interface Toolkit Mechanisms
for Securing Interface Elements

Franziska Roesner, James Fogarty, Tadayoshi Kohno

Computer Science & Engineering
DUB Group, Security and Privacy Research Lab

University of Washington
{franzi, jfogarty, yoshi}@cs.washington.edu

ABSTRACT
User interface toolkit research has traditionally assumed
that developers have full control of an interface. This
assumption is challenged by the mashup nature of many
modern interfaces, in which different portions of a single
interface are implemented by multiple, potentially mutually
distrusting developers (e.g., an Android application
embedding a third-party advertisement). We propose
considering security as a primary goal for user interface
toolkits. We motivate the need for security at this level by
examining today’s mashup scenarios, in which security and
interface flexibility are not simultaneously achieved. We
describe a security-aware user interface toolkit architecture
that secures interface elements while providing developers
with the flexibility and expressivity traditionally desired in
a user interface toolkit. By challenging trust assumptions
inherent in existing approaches, this architecture effectively
addresses important interface-level security concerns.
ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces - Graphical user interfaces.

General terms: Security; Human Factors; Design.

Keywords: Security; user interface toolkits.

INTRODUCTION AND MOTIVATION
User interface toolkits help to reduce barriers to the design
and development of modern graphical interfaces [24, 25].
In aiming to provide maximal flexibility and expressivity,
existing toolkit research generally makes an implicit
assumption that developers have full control of an interface
(e.g., [6, 7, 8, 17, 24]). However, as applications move
towards interfaces composed of elements from different
sources, this assumption can pose significant security risks.
Consider the mashup nature of many modern interfaces,
wherein multiple elements of an interface are implemented

by different developers with varying trust relationships.
Such mashups arise both on the Web and within
applications. In a common scenario, a mobile application
imports a library to display advertisements in a designated
portion of its interface. The application must trust that the
advertising library will not abuse the application’s
permissions without user consent (e.g., to access user
information or to send a premium-rate SMS). Conversely,
the advertising library must trust that the application will
not programmatically click its advertisements in order to
increase its advertising revenue. In both cases, this trust can
be misplaced: Android ad libraries can and have abused the
permissions of embedding applications [10, 13] and
Android apps can programmatically click on embedded
ads. Malicious programmers can also trick users into
clicking a sensitive embedded element by manipulating its
display, an attack known as clickjacking [14]. For example,
a website can trick a user into clicking a Facebook “Like”
button by making the element transparent or uncovering it
just as the user clicks in a predictable location.
Such risks traditionally go unaddressed or are mitigated in
ways that come at the expense of interface flexibility and
usability. For example, a conventional solution for
preventing an ad library from illicitly accessing a user's
location is to insert a system-controlled confirmation dialog
when an application requests location information.
Although this approach increases security, it can
significantly impact the usability of legitimate applications.
Consider also guidelines for security-critical interfaces,
such as the Microsoft Windows User Account Control
(UAC) guidelines specifying that a shield icon be displayed
on buttons that result in actions requiring administrative
privileges. In current tools, such guidelines cannot be
programmatically enforced but must instead be verified
through inspection and review (e.g., an app store process).
Existing mitigations for interface-level security concerns
are implemented at the system level, not in the user
interface toolkit. We argue that this design is a principal
reason that these solutions negatively impact interface
usability and flexibility. For example, because traditional
user interface toolkits do not support securely embedding a
sensitive element into another developer's context, system
developers are forced to resort to secure system prompts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’12, October 7-10, 2012, Cambridge, MA, USA.
Copyright © 2012 ACM 978-1-4503-1580-7/12/10... $15.00.

We therefore propose that such threats be addressed by
rearchitecting the user interface toolkit. A well-designed
security-aware user interface toolkit could enforce visual
security indicators (such as the UAC shield), link a user’s
actions in an interface to an application’s access to
sensitive resources (such as location), and strike at the core
of security threats that leverage interface manipulation
(such as clickjacking). In addition, we believe that securing
sensitive interface elements will enable future innovation in
the design of interfaces for security-sensitive interactions.
In this work, we consider security as a primary goal in the
user interface toolkit. We explore the security assumptions
of existing approaches and develop mechanisms that isolate
mutually distrusting interface elements while retaining the
flexibility that developers enjoy in existing toolkits.
Specifically, this paper contributes:
• Scenarios that motivate a security-aware user interface

toolkit for interfaces with mutually distrusting elements.
• A set of security properties needed for these scenarios.
• A security-aware user interface toolkit architecture that

achieves these system-level security properties while
maintaining necessary flexibility for developers.

• Prototype implementations in the context of mobile
application (Android) and Web (browser) toolkits.

SCENARIOS AND SECURITY PROPERTIES
In this section, we introduce a set of scenarios motivating a
need for security as a primary goal in user interface toolkits
and explore the drawbacks of existing approaches to
achieving security in these scenarios. We then consider our
threat model and extract a set of desired security properties.

Scenarios
Resource Access. Modern systems (e.g., smartphones,
browsers, and desktop operating systems) provide
applications with access to a variety of system resources
(e.g., a camera, user location, a contact list). Systems
protect these resources by granting applications access to
them only if permitted by the user, who agrees either to a
prompt at the time of first access or to a list of permissions
requested at the time of installation (known as a manifest).
However, these approaches can pose security risks: after an
application is granted access to a resource, most systems
allow it to continue accessing the resource whenever and
however it wishes, even if that access is invisible to the
user and/or inappropriate [29]. For example, an app could
take photos or send out location information without a
user’s consent or knowledge.
Existing work on user-driven access control [29] considers
using a person’s interactions with an interface for resource
access control decisions. For example, a person’s click on
an embedded location button implies the intent to grant the
application location access (see Figure 1). By capturing this
intent, the system can ensure that the application accesses
location only at the appropriate time, when access is
expected by the user. However, this solution assumes that
applications cannot trick people into clicking on such

buttons and cannot manipulate a button’s display (e.g., to
hide the location icon). Because existing user interface
toolkits do not support security for embedded elements,
system buttons cannot be embedded in today’s interfaces.
Enforcing Interface Requirements. More generally, the
system may wish to enforce interface restrictions on
elements that can result in restricted operations when users
interact with them. For example, Microsoft Windows UAC
guidelines [21] state that buttons which will result in
actions requiring administrator privileges should be
adorned with a UAC shield icon (see Figure 2). As another
example, browsers may choose to display visual indicators
when users perform insecure actions (e.g., a crossed-out
lock icon displayed when using a non-HTTPS connection).
If a system wants to require such a visual indicator for all
applications making network connections, current tools
cannot help in enforcing the requirement. Instead, such a
requirement can be enforced only with interface guidelines
and application review (e.g., an app store process).
Third-Party Libraries and Transactions. As described in the
introduction, applications that embed third-party elements
(such as advertising libraries) can present or expose
themselves to security risks. Similar concerns arise when
applications embed other third-party elements, such as
payment elements (e.g., for PayPal), social widgets (e.g.,
the Facebook “Like” button), or federated login systems
(e.g., using a Google account to login to another website).
User interface toolkits currently do not support security in
these scenarios. For example, Android applications can
easily manipulate interface elements provided by
third-party libraries. An application seeking to fraudulently

Figure 1: This maps application includes an
advertisement generated by an ad library (top) and a
system-provided location button (circled).

Figure 2: The User Account Control shield in Microsoft
Windows (circled) signifies that the resulting action
requires administrator privileges.

increase its advertising revenue can, for instance,
programmatically click on the ads that it embeds. We have
implemented a proof-of-concept Android application
demonstrating that three separate ad libraries are vulnerable
to this type of attack. On the other hand, existing research
[10, 13] indicates that some ad libraries inappropriately
exploit the permissions of the embedding application
(e.g., stealing contact information and tracking location).
Current approaches to securing third-party interface
elements embedded in an application restrict the flexibility
of interface designers. Consider the popular Facebook
“Like” button, which can be embedded by websites as an
iframe to allow visitors to “Like” the embedding page and
share it on their Facebook profile. Although the Web’s
same-origin policy [33] prevents the embedding webpage
from programmatically clicking on or manipulating the
button’s iframe, pages can mount clickjacking attacks in
which they trick users into clicking on the button (e.g., by
uncovering the button just before the user clicks in a
predictable location). When Facebook suspects that a
particular button is victim to such an attack, it switches that
button into a secure mode [11]. In this mode, clicking on
the button opens a popup window in which the user must
confirm the action. This is clearly a more cumbersome user
experience not desired by Facebook’s developers.
In these and other scenarios, there may be expected and
mutually beneficial interaction between an embedded
element and an application (e.g., informing the application
when an ad fails to load or when a payment has been
completed). It would thus be too restrictive to completely
isolate interface elements from different sources.

Threat Model
In this work, we are concerned with protecting interface
elements in one part of an application (e.g., the main
application itself) from another part of the application
(e.g., an included ad library), and vice versa. We consider
developers of these different application components to be
potentially mutually distrusting. We further consider any
application developer to be a potential adversary or
accidental adversary of the system. An intentional
adversary might attempt to fool a user or attempt to access
sensitive resources without legitimate permission; an
accidental adversary might fail to adhere to interface
guidelines intended to increase system security (e.g., failing
to display the UAC shield) or might accidentally expose a
user’s data to a third party. We make the standard
assumption that the system itself is trustworthy and
uncompromised (e.g., the operating system or the browser).
In selected cases, where noted, we also rely on a trusted
app store review process, though we design our toolkit
architecture to minimize this reliance. Later sections also
discuss additional limitations of our prototypes on two
current platforms (i.e., Android and a Web browser).

Desired Security Properties
To refer to code belonging to different parts of an
application or the system, we introduce the term trust

group. We extract from the presented scenarios and threat
model the following security properties needed to protect
interface elements within mutually distrusting trust groups.
1. Display Integrity: Code in one trust group should not be

able to alter the content or appearance of an interface
element in another trust group, except via APIs
explicitly exposed by that element.

2. Input Integrity: Code in one trust group should not be
able to programmatically interact with interface elements
in another trust group (e.g., calling a performClick()
function), except when explicitly permitted.

3. Intent Integrity: Code in one trust group should not be
able to mount clickjacking attacks to force or trick users
into interacting with an interface element in another
trust group. Code should also not be able to prevent
intended user interactions with interface elements in
another trust group (i.e., a denial-of-service attack).

4. Data Isolation: Code in one trust group should not be
able to read or extract content displayed by an interface
element in another trust group, except following an
explicit user interaction within the element that permits
this (e.g., pressing “Select” in a file picking menu
would allow the application to access the file system
and open the selected file). Code in one trust group
should not be able to eavesdrop on input intended for a
interface element in another trust group.

5. UI-to-API Links: It should be possible for application or
system APIs to be linked to interface elements. For
example, a takePhoto() API might be accessible only
from a camera button in the system’s trust group.

In designing a security-aware user interface toolkit, we aim
to support these security properties alongside the traditional
goals of minimizing the difficulty of implementing typical
interfaces (i.e., minimizing a toolkit’s threshold [24]) while
still providing maximal expressiveness and flexibility
(i.e., maximizing a toolkit’s ceiling [24]).

ARCHITECTING A TOOLKIT FOR SECURITY
In this section, we introduce a user interface toolkit
architecture that achieves the above properties by
(1) isolating interface elements into trust groups and
(2) maintaining specific invariants with respect to the
interface layout tree. The toolkit does so while retaining
developer flexibility to (3) expose model-level APIs,
(4) compose elements, and (5) display feedback across trust
groups. We describe each of these design points in turn.

Trust Groups and Permissions
Our architecture separates mutually distrusting application
components, both interface code and application code, into
distinct trust groups. For example, system code belongs to
one trust group (referred to as “system-trusted” throughout
this paper), an application belongs to another trust group,
and third-party elements belong to their own trust groups
(e.g., an ad library, a PayPal payment button, or a Google
login field). Figure 3 shows how parts of an application

might map to trust groups, and we explain the details of
this figure throughout this subsection.
Trust Group Assignment. In order to isolate elements from
different sources, our toolkit must associate all code and all
interface elements with a trust group. We leave it up to
applications, libraries, and the system to associate their own
non-interface code with trust groups at any granularity, but
we must consider the appropriate model for assigning
interface elements to trust groups. In particular, our toolkit
architecture must support two types of scenarios. In the
first, an application embeds a sensitive element exposed by
another trust group, such as a system-trusted camera button.
In the second, an application simply uses a generic toolkit
element (such as a standard button) which should become
part of the application’s own trust group.
To support these scenarios, we introduce two types of
interface elements: fixed-trust-group elements and
owner-bound elements. A fixed-trust-group element has a
set trust group that does not depend upon which entity
instantiates or embeds it (e.g., a camera button may belong
to the “system” group). An owner-bound element, such as a
standard button, adopts the trust group of the code that
instantiates it.
Restricting Application, System, and Library APIs. Our
architecture can use trust groups to create the desired link
between interface code and application, system, or library
code (UI-to-API Links) by simply denying API access to
callers with unauthorized trust groups.
However, trust groups may sometimes not be sufficiently
granular for an API’s access control policy. For instance,
the system may wish to restrict the takePicture() API
only to the system-provided camera button, not to all
system interface elements. This policy embodies the
standard security principle of “least privilege”, as arbitrary
system components do not need access to the camera. Thus,
even if other system elements could be manipulated into
invoking the takePicture() API, those calls would fail.

To allow such fine-grained access control policies, we
associate each interface element with a set of permissions
in addition to its trust group. Taken together, these allow
the system or an application to restrict certain APIs
(e.g., takePicture()) to code originating from interface
elements of an appropriate trust group and with sufficient
permissions (e.g., an element with trust group “system” and
a permission list containing the “camera” permission).
In this paper, we designate an interface element with trust
group A and permissions B and C as Element{A, [B, C]}.
Figure 3 shows an example of how elements map to trust
groups and permissions, which in turn map to accessible
APIs in application, system, or library code. In the common
case (such as the AdWidget in Figure 3), an element’s
permissions list will be empty, giving it access to only
those APIs that do not require any additional permissions.
Restricting Interface APIs. Interface elements may need to
protect certain methods and expose others. For example, an
ad element would not wish to allow performClick() to
be called by another trust group, but it may wish to expose
a method to set advertisement keywords. Similarly, an
application should be able to attach a callback to a system
camera element to receive a photo after it is taken.
Interface elements are thus responsible for defining an
access policy for their methods. By default, only code
within the same trust group and the system’s trust group
can access all of an element’s methods. We note that an
alternate default would allow all access, relying on
developers to selectively restrict sensitive methods. We opt
for the stricter default, lowering the threshold to
implementing secure interfaces under the assumption that
most interfaces do not require crossing security boundaries.
Restrictions on relevant methods provide the following
protections, which are subsets of our security properties:
• Code cannot manipulate the display of elements in other

trust groups (Display Integrity). For example, the
methods setBackground() or setTransparency()
can be inaccessible to code from another trust group.

Figure 3: An example of how an element’s trust group and permissions map to accessible APIs. An element with trust
group A and permissions B and C is designated ElementName{A, [B, C]}. This screenshot is from the Android
implementation of our architecture.

•

•

•

A
c
s
th
e
c
p
v

I
U
a
a
s
to
(
•

•

L
to
f
la
n

• Code canno
groups (Da
getText()

• Code canno
other trust g

• Code canno
groups (Inte

Another aspect
clickjacking att
sensitive interfa
he user is ab

element can u
current visibili
policy, such a
visible for som

nterface Layo
Using trust gro
achieves a num
applications ar
stemming from
oolkits organi

(where an elem
• Insecure lay

restrict me
manipulate
(i.e., violat
application
(such as a U
of an inter
force a user
button could
surrounding
toolkits, par
their childre
element of
over the dra

• Insecure inp
application
trickle down
embed a th
user’s passw
propagate d
Other attack
input to a d
legitimate c
button) or p
fundamenta
contains n
introducing
events befor

Layout Tree In
oolkit departs

following invar
ayout tree mu

nodes may hav

ot extract data
ata Isolation).
 can be inacce

ot programma
groups (Input In
ot enable or d
ent Integrity).
t of Intent Inte
tacks, in which

face element fr
out to click i

use system-pro
ity to implem
s becoming en
e time (as in C

out Tree
oups and perm

mber of desired
re still suscep

m the way in w
ize interface

ment is the paren
yout: Although
ethod calls o
an element’s d
te Display I
wishing to hid

UAC shield) co
rface. Similarly
r into clicking
d simply make

g buttons. In
rent nodes can
en. As a result,

another trust
awing and layo
put: In a tradit
could eavesdro
n the tree. For
hird-party log
word by eavesd
down the tree (
ks could modif
different interfa
click event to m
prevent an eve
al challenge i
nodes from d

the potential
re they reach th
variants. To m

s from traditi
riants: (1) the

ust be a system
e children of a

a from element
. For exampl
essible.
atically click
ntegrity).

disable element

egrity is the ab
h a malicious
rom another tru
in a predictab
ovided inform

ment a clickjac
nabled only a

Chrome [3] and

mission lists,
d security prope
ptible to secur
which traditiona

elements into
nt of any elem

h trust groups
n elements,

display using la
Integrity). Fo
de a required in
ould simply co
y, an applicat

g on a system-
e this button m
n traditional

control the siz
 an application
group has co

ut of the embe
tional layout tr
op on or modif
example, an a

in element an
dropping on ke
(thus violating
fy the picking
ace element (e
move its locatio
ent’s propagatio
is that a sing
different trust
for untrusted
heir intended r

mitigate these w
onal toolkits
root node of

m node, and (
a different trust

ts in other tru
le, the metho

on elements

ts in other tru

bility to preve
parent reveals
ust group just a
ble location. A
mation about i

cking-protectio
after being ful
d Firefox [23]).

our architectu
erties. Howeve
rity weaknesse
al user interfac

o a layout tre
ents it embeds
and permission
code can sti

ayout techniqu
r instance, a
nterface eleme
over that portio
tion wishing
-trusted locatio

much larger tha
user interfac

ze and layout o
n that embeds a
omplete contr

edded element.
ree, a maliciou
fy events as the
application cou
nd then steal
ey events as the

Data Isolation
code to redire

e.g., modifying
on onto a secu
on entirely. Th
gle layout tre
t groups, thu
nodes to acce
ecipient.
weaknesses, ou
to enforce th
an application
(2) only syste
t group. Becau

ust
od

in

ust

nt
a

as
An
its
on
ly

ure
er,
es
ce
ee
).
ns
ill
es
an
nt
on
to
on
an
ce
of
an
rol

us
ey

uld
a

ey
n).
ect
 a

ure
he
ee
us
ss

ur
he

n’s
m
se

we can
layout
conflic
layout
accura
visibil
above)
the sy
down t
Conflic
that on
trust g
elemen
in Figu
map e
The fi
applica
invaria
desired
being t
We so
proxy
resultin
node b
locatio
applica
hierarc
in lat
implem
applica
the lay
A fin
conflic
elemen
elemen
(e.g., a
small t
other
could
ad libr
In the
locatio

Figu
show
nod
nod

n trust the syst
t attributes the
ct resolution),
t weakness. W
ate informatio
ity (enabling
). Furthermore
stem’s trust gr
the tree, thus e
cts in Visual S
nly system no
group, applica
nts from differ

gure 1, where
element contain
irst invariant i
ation in a syste
ant is more d
d visual effect
the parent of th
olve this prob

node into th
ng transformat
becomes a par
on button, ov
ation. This
chy for layout
ter sections
mented auto
ations, which

yout tree that m
nal issue to
cting or other
nt traditionally
nt, but this app
an application
that important
hand, a malic
draw outside t

rary that takes o
e case of a s
on button), we

ure 4: The inte
wn in Figure
e, enforcing th
es may have c

tem itself to p
ey request (su
these invarian

We can also tru
on about an

the clickjacki
e, only nodes in
roup will see i
eliminating the
Space. Althoug
odes may hav
ations may w
rent trust group
an interface co
ning a system
s easy to satis
em-trusted fram

difficult to sati
t, as it prevent
he location but
blem by intro
he layout tree
tion of the tree
rent of both th
verlaying them
transformation
and for event p
how this t

omatically a
can continue

matches the inte
resolve is la

rwise cannot b
y controls spa
proach may vi
may tell an e
context is hid

cious child tha
the acceptable
over the entire
system-trusted
rely on our as

ended layout t
1 is transform
he invariant th
children of a dif

rovide elemen
ubject to any
nts mitigate th

ust the system
element’s po

ing protection
n the same tru
input events p
eavesdropping

gh our invaria
ve children fro
wish to visua
ps. Consider th
onsists of an a

m-trusted locati
sfy by placing
me. However,
isfy while ach
ts the map ele
tton.
ducing a syst
e. Figure 4
e. In particular
he map eleme
m as intende
n preserves
propagation. W
transformation
and transpar
to manipulate
ended visual la
ayout requests
be satisfied. T
ace available
iolate security
element to pain
dden from a us
at controls its
bounds (e.g., a

e screen).
d child elemen
ssumption that

tree for the ap
med to include
hat only system
fferent trust gro

nts with the
necessary

he insecure
to provide
sition and

n described
st group or

propagating
g threat.
ants dictate
om another
ally embed
he example
application
ion button.

g the entire
the second

hieving the
ement from

tem-trusted
shows the

r, the proxy
ent and the
ed by the

the trust
We describe
n can be
rently to

a view of
ayout.
s that are
The parent
to a child

y properties
nt itself so
er). On the

s own size
a malicious

nt (e.g., a
the system

pplication

a proxy
m-trusted
oup.

is trustworthy. Our architecture enforces the minimum
requested size for system-trusted elements, even if the size
allocated by the parent is smaller than this minimum.
In the general case, we cannot make assumptions about
whether the embedding or the embedded node is more
trustworthy. We resolve the conflict as follows: if the child
element requests a larger size than permitted by the parent
element, we draw the child element with the smaller size,
visually indicate to the user that the child could not be fully
displayed, and allow the user to manually maximize it. This
solution can be seen as a sort of generalization of the
behavior of typical browser popup-blockers.
Although isolating elements into trust groups and
maintaining the described tree invariants supports our
desired security properties, naïvely implementing these
mechanisms introduces undesired restrictions on interface
flexibility. To restore this necessary flexibility, the next
sections extend this basic architecture to allow developers
to expose model-level APIs, compose elements, and
display feedback across trust groups.

Model-Level Event Listeners
In traditional user interface toolkits, interface elements
allow applications to attach listeners for various events
(e.g., click, key, touch). For sensitive elements, however,
these generic listeners may present security risks. For
example, an application can use an onKeyListener to
eavesdrop as a user enters a password into a third-party
federated login element. To prevent such attacks, elements
in our architecture default to restricting such listener hooks
to callers of the same trust group (or the system trust group).
However, recall that elements may wish to expose certain
events across trust groups (e.g., to inform an application
when an ad has loaded, to provide a captured photo, to
update detected GPS coordinates). Unlike generic event
listeners, these events have model-level semantics (i.e.,
they are meaningful at the application level, not at the
interface element level). We thus apply model-level event
listeners, which can be used by a sensitive element to
expose higher-level data or events to the trust group that
embeds it. For example, a payment library might now allow
applications to attach arbitrary listeners to a payment
dialog, but could explicitly expose events for successful
payment. Existing user interface toolkits use model-level
events to provide meaningful notifications related to

manipulation of an element (e.g., ItemListeners on
menu items and ChangeListeners on sliders), but
security-sensitive interface elements are likely to expose
even higher-level events than current examples.
In our architecture, both generic and model-level event
listeners execute in the trust group of the defining code, not
that of the element to which they are attached. Otherwise,
an attacker could inject arbitrary code into another trust
group (e.g., by attaching an onClickListener to an
element in the trust group of the attacker’s choice).

Composition Across Trust Groups
We have thus far considered only the visual composition of
elements belonging to different trust groups. However,
interface designers require greater flexibility to logically
compose elements. For example, consider the Windows
UAC scenario in which an arbitrary developer-defined
button that includes a UAC shield must be able to access
privileged system APIs. To access these APIs, the button
must be in the system’s trust group. However, its visual
layout must be largely defined by the app developer.
Conceptually, the developer would like to embed the
system-trusted UAC shield element in a custom element
and inherit the former’s trust group and permissions.
We support composition of elements from multiple trust
groups by introducing a system-defined ComposedElement.
Any trust group may choose to expose composable
sub-elements for inclusion in a ComposedElement (e.g., the
system may expose a UAC shield icon with the
“administrator” permission or a GPS icon with the
“location” permission). Another developer can then mash
up these sub-elements with custom elements in a
ComposedElement. For instance, Figure 5 shows a
composed button for taking a location-tagged photo.
Our toolkit must ensure that allowing compositions does
not violate the security properties achieved in previous
sections. In particular, a ComposedElement must not allow
code to manipulate or observe elements in another trust
group or to inappropriately access restricted APIs.
In order to retain the benefits of the layout tree invariants
previously described, we assign ComposedElements to the
“system” trust group. ComposedElements are thereby
allowed to contain sub-elements of other trust groups. Our
invariants continue to hold within the ComposedElement.
This ensures, for example, that an application cannot use a
composition to eavesdrop on a third-party login field.
Recall the goal of a composition is for the resulting element
to inherit the permissions of its constituent elements.
However, we do not wish to allow applications to inject
arbitrary code into a ComposedElement, as this code will
run in the system’s trust group. To achieve these goals
simultaneously, the ComposedElement allows the trust
group that embeds it to attach event listeners. Unlike other
event listeners (which run in the attacher’s trust group),
listeners of a ComposedElement run in a temporary trust
group derived from the ComposedElement’s sub-elements;

Figure 5: In this example, the application has
composed the system-trusted camera and location
icons with its own label to create a custom button that
has both camera and location permissions.

its set of permissions is the union of their permissions. For
example, the ComposedElement in Figure 5 includes
location and camera sub-elements, resulting in an
onComposedClickListener with trust group and
permissions defined as {System-Application-Composed,
[Location, Camera]}. The attached listener can thus access
the necessary system APIs (but not other system APIs).
Without an additional timeout mechanism, such
ComposedElement listeners cannot be prevented from
running and taking advantage of these permissions
indefinitely. Thus, if a trust group wishes to prevent this
risk for certain permissions, it should not expose them via
composable sub-elements. For example, if the system
wishes to grant camera access only via photos returned
directly from a system-trusted camera button, it should not
(and does not need to) expose a composable camera icon.

Flexibility of Feedback
Isolating interface elements from different trust groups as
described thus far will restrict developer flexibility in
displaying feedback that requires access to elements and
data across trust groups. We examine drag-and-drop and
lenses as canonical examples of such flexible feedback, and
we describe how our toolkit architecture preserves
developer flexibility for these types of scenarios.
During a drag-and-drop operation, dragging an object over
a potential drop target often yields feedback indicating
whether it can accept the drop and possibly what effect the
drop will have. This feedback may require access to the
contents of the drag object (not just its type). For example,
a text editor may wish to show what dropped text will look
like in the current font before the user completes the drop.
However, the drop target may be in a different trust group
than the drag object. Until a user drops the object, it is not
clear that the potential drop target is the intended recipient,
so it should not receive full access to the drag object.
Providing such access would allow a malicious non-target
application to steal potentially sensitive information. A
challenge for our toolkit architecture is therefore to allow
the potential drop target to display feedback that relies
upon the content of the drag object.
Similarly, lenses [2] are overlaid on an interface to display
flexible feedback about the underlying elements. For
example, a lens over a set of map tiles might magnify the
underlying map features or highlight certain cities.
However, the elements from which a lens requires
information in order to paint itself may not all belong to the
lens’s trust group. System-trusted lenses can have full
access, but supporting arbitrary lenses requires allowing the
lens element to show feedback based on elements in other
trust groups. As with drag and drop, we wish to support
feedback in the lens without granting the lens’s trust group
full access to the underlying interface elements.
Supporting Flexible Feedback. When an element wishes to
display this type of cross-trust-group feedback, the system
launches a new sandbox that can run and isolate arbitrary

code, preventing it from communicating over the network
or with other applications (note that our toolkit design is
independent of the implementation of this sandbox).
Isolated in this way, the system executes feedback
generation code provided by the element in question. This
code generates feedback by accessing and manipulating a
copy of the layout tree and any other restricted data needed
to generate appropriate feedback (e.g., the drag object).
However, the feedback code cannot break Data Isolation
because it cannot communicate outside of the sandbox.
It also cannot violate Display Integrity, as it manipulates
only a copy of the restricted data
The feedback code produces a temporary version of the
relevant portion of the layout tree. The system displays this
feedback in a system-trusted overlay element, thus never
granting the original element access to the sensitive data.
Note that it is possible for malicious feedback code to show
inaccurate feedback (e.g., a lens that displays cities not on
the underlying map). Thus, while users may interact with
the feedback element (e.g., clicking on the map inside the
lens), this feedback is not automatically propagated to the
underlying elements. If desired, these elements can expose
methods allowing for feedback event propagation.

ANDROID IMPLEMENTATION
We prototyped our user interface toolkit architecture with
an implementation for Android. Android currently shows
only one application interface at a time, with all elements in
that interface run in the same process. This can include
elements defined by Android’s toolkit, by the application
itself, by an embedded library, and in a limited way by
another application (via RemoteView). The embedding
application is thus trusted with and trusts any element it
embeds, an assumption that we challenge with this work.
We implemented our approach in Android 4.0.3 (Ice Cream
Sandwich) by modifying its user interface toolkit (Java
packages android.view and android.widget).

API Restrictions
The base class of all Android interface elements is the
View class, which is extended by Android’s built-in
elements and can be arbitrarily extended by developers. We
modified all methods in this class to take an additional
parameter that specifies the trust group of the caller. This
additional parameter is a reference to the calling object
(we describe below how we ensure the validity of this
parameter and how we extract the correct trust group and
permissions list from it). The View class and its subclasses
can thus use this information to restrict or expose methods
based on the appropriate policy. By default, we allow calls
only from callers of the same trust group as the View itself,
as well as from system-trusted objects.
For backwards compatibility with existing Android
applications, we did not replace all View methods but
instead duplicated them and added the additional trust
group parameter. An app store review process could ensure
new applications use only the new methods (via static

a
m
s

T
O
in
im
im
f
J
a
a
in
T
o
p
A
o
V
c
th
w
c
m
g
th
b
tr
c
v
(
a

L
W
e
s
a
g
a
a
o
la
in
p
w
s
T
o
r
n
(
r
f
th
e

analysis or a
method calls).
simply remove

Trust Group D
One of the stre
ndependent of
mplemented.
mplementation

faking its trust
Java packages
applications to
appropriate gra
nto separate tr

To prevent an a
of a library-de
package [26]. P
Android’s Java
order to securel
Verifying the t
calling object. A
heir interfaces

which are in tu
contains globa
modified the C
getTrustGrou
he former retu

based on the J
rust group mus

can again use
verify that ca
(i.e., pass this
assured that the

Layout Tree In
We further mo
enforce the lay
section. We ac
applications. In
group the And
application’s in
application atte
of a non-syste
ayout tree to
nsert a set of

parent of the V
which their la
shows an overv
To make this tr
our implementa
references for m
node (see Figur
(which has bee
reference in th
for methods re
he application

elements as if t

trusted comp
A non-backwa
the deprecated

Declaration and
engths of our t
f how the isol
The main req

n is that it prev
t group. Our A
to define trust

o split themsel
anularity, and
rust groups (u
application from
efined package
Package sealin
a classloader;
ly support trust
trust group of
Android applic
s from within
urn extensions
al information
Context clas
up() and ge
urns the trust
Java package n
st thus be calle
static analysis

allers pass th
s). Methods in
e stated trust gr

nvariants
odified Andro

yout tree invari
hieve this in a

n particular, w
droid-defined
nterface is atta
empts to insert
em parent, our
insert the nec
three proxies,
ViewGroup ty
ayout paramet
view of this tran
ransformation
ation preserves
moved nodes.
re 6) containin
en moved), and
he moved child
equesting paren

can continue
he layout tree r

iler that repla
ards compatibl
d methods entir

d Enforcemen
toolkit architec
lation between
quirement for
vents a code c
Android imple
groups. This a

lves into trust
it naturally se

usually include
m faking its tru
e, the library

ng is not curren
this would ne
t groups based
a caller requir
cations expose
 Android Act
of the Conte

n about the a
ss to include
tPermission
group of the e
name. Method
ed from within
s at app store
hemselves to
n the View clas
roup of the call

oid’s user inte
iants described
a manner that i

we assign to the
root element

ached to its wi
a system elem

r modification
essary proxy.
, so that all el
ype that they
ters are speci
nsformation.
transparent to

s the expected
We introduce

ng a reference
d we store the
d. We return t
nt or child inf
to add, remov
reflects the vis

aces deprecate
e solution cou
rely.

nt
cture is that it
n trust groups
r a trust grou
component fro
ementation use
approach allow
t groups of th
parates librarie
ed as .jar files
ust group as th
should seal i

ntly enforced b
ed to change

d on packages.
res access to th
e and manipula
tivity classe
ext class, whic
application. W
non-overridab
ns() method
enclosing obje
ds that require
 a Context; w
review time
such method

s can thereby b
ler is correct.

erface toolkit
d in the previou
is transparent
e “system” tru
by which eac
ndow. When a

ment as the chi
ns rearrange th

In practice, w
lements retain
expect (and fo

ified). Figure

the applicatio
parent and chi
a dummy chi
to the real chi

e original pare
these reference
formation. Thu
e, and referenc

sual tree.

ed
uld

is
is

up
m
es

ws
he
es
s).

hat
its
by
in

he
ate
es,
ch

We
ble
ds;
ect

a
we
to
ds
be

to
us
to

ust
ch
an
ld
he
we

a
for

6

n,
ld
ld
ld
nt
es

us,
ce

Flexib
We m
drag-a
the too
to disp
object
the F
Feedb
for the
The ap
genera
Feedb
Feedb
applica
genera
Feedb
and th
system
display
cross-t
One li
althou
applica
isolate
applica
commu
applica
Andro
Intents

Sampl
We cre
our pr
(shown
advert
applica
shows
on a m

Figu
Whe
prox
Layo
pare
Fram
othe
track

ble Feedback
modified Andr
and-drop. We a
olkit, a Feedb
play feedback b
from another t
eedbackView
backView can
e original elem
pplication prov
ate a bitmap
backView then
backService
ation with no
ates and retu
backView disp
he application i
m-trusted Feed
y drag feedbac
trust-group dra
imitation of o

ugh the Feed
ation with no

ed. In particula
ations via

munication me
ation permissi

oid community
s could also lik

le Application
eated several s
rototype imple
n in Figures
tisement, a sy
ation’s own co
 an ad, and an

map when a use

ure 6: Andro
en the Locatio
xy nodes are
out{App} and L
ents of the ex
meLayout) is u
er two proxies
king intended p

roid to suppor
added a new s
ackView. Wh
based on the c
trust group, it
w and overlay

thus intercept
ment.

vides the Feed
 based on
n provides this

implemented
permissions.

urns the ap
plays the resu
itself cannot a
dbackView. T
ck to a user w
ag data.
our prototype
dbackService
o permissions
ar, it may still

Intents, A
echanism. An
ions using man
y, the permiss
kely be limited

n
sample Androi
ementation. W
s 1 and 3),
ystem-trusted l
ontent. Part of
nother part disp
er clicks on the

oid layout tra
onButton is ad
e needed so
LocationButton
xpected type.

used to control
. The dotted
parent/child rel

rt flexible fee
system-trusted
hen an applicat
ontents of a pa
creates a new
ys it upon i
t all drag event

dbackView a f
drag object

s function to a
d as another
The Feedbac
propriate bitm
ulting feedbac

access the cont
The application
without gaining

implementatio
e runs as an
s, it is not c
communicate

Android’s in
ndroid curren
nifests. If desi
sion to send
in this way.

d applications
We summarize

which mash
location butto

f the applicatio
plays the curre
e location butto

nsformation e
dded to the tr
o that both
n{System} end

 The third p
l the positionin
lines indicate
ationships.

edback for
element to

tion wishes
assing drag
instance of
itself. The
ts intended

function to
data. The
sandboxed

r Android
ckService
map. The
ck bitmap,
tents of the
n can thus
g access to

on is that,
n Android
completely
with other
ter-process

ntly limits
ired by the
or receive

to validate
e one here
hes up an
on, and an
on interface
ent location
on.

example.
ree, two

Linear-
up with

proxy (a
ng of the

pointers

The system-trusted location button is a new element that
we added to the Android toolkit. It has a fixed “system”
trust group and the “location” permission, and it restricts all
methods to system-trusted callers, with one exception. It
allows any trust group to set a new model-level event
listener for location data via setOnLocationListener().
Applications can thus embed this button and attach a
listener for location data. That data is returned to the
application when the user clicks the button. The button also
protects itself from clickjacking attacks by responding to
input events only while it is completely visible to the user.
The advertisement comes from an ad library embedded by
the application. We created a secure ad library by wrapping
the existing AdMob library for Android [12]. Our library
wraps AdMob’s AdView in a SecureAdView, which sets
the SecureAdView’s fixed trust group to be the ad
library’s trust group, thereby restricting all methods to
callers in that trust group (or the system group). As a result,
our proof-of-concept clickfraud attack for the original
AdMob library, in which the embedding application
programmatically clicks on the ad, is no longer possible.

WEB IMPLEMENTATION
To further evaluate our approach, we created a prototype
implementation for the Firefox Web browser, implemented
using iframes and a Firefox add-on.
The Web has long required support for complex
embeddings among content from different sources. Web
browsers isolate pages and iframes from different origins
(based on the same-origin policy [33]). A website
containing an iframe has complete control of that iframe’s
size and the surrounding layout. This control allows the
embedding page to, for instance, cover important context
and trick the user into clicking on something. Browsers
support one-off mechanisms for handling such attacks
(e.g., websites can prevent their pages from being framed
by another site [30]), but our layout tree invariants ensure
that even nested iframes from different origins can securely
control their own display properties.

Trust Groups
In our browser implementation, trust groups are defined by
standard Web origins (i.e., scheme, domain, and port),
which cannot be faked. Interface elements from different
trust groups are thus contained within iframes. For
example, a webpage in one trust group may embed an
advertisement within an iframe from another trust group.
As before, an element can have a fixed trust group
(defined by its URL) or an owner-bound trust group
(defined by the URL of its embedder). These elements use
the HTML5 postMessage API [15] to expose model-level
APIs via cross-origin messages. For example, an
advertisement in an iframe from the advertiser’s domain
might expose a method to set advertising keywords.

Layout Tree Invariants
For simplicity, our current implementation controls the root
of all webpages using a browser-within-a-browser (i.e., a
trusted webpage that acts as a nested browser, with all
navigation done within the nested browser). This
simplification allows us to control the root frame of every
page (thus satisfying our first layout tree invariant) with
minimal changes to the browser itself (see Figure 7).
Our add-on then enforces the second layout tree invariant
by modifying pages as they load. In particular, any iframe
nested within an iframe of a different origin is removed by
the add-on and nested instead within a system-trusted
proxy. To preserve the visual effects of the intended
nesting, the add-on must move and clip iframes
appropriately as their original parent frames are scrolled.
As in the Android implementation, we must retain parent
and child pointers expected by the original nodes so that
they can continue to communicate with each other via
postMessage. We thus replace the moved iframe with a
dummy iframe. This dummy, defined by the system but in
its embedder’s trust group (i.e., owner-bound), relays any
postMessages it receives to the moved iframe. This allows
the original parent to continue to hold a reference to its
visual child, making these modifications transparent to the
webpage. Figure 7 shows the sequence of messages sent in
the relaying process. Similarly, the browser maintains a
mapping of moved iframes to their original parents. If an
iframe that has been moved attempts to send a postMessage
to its visual parent, the system-trusted actual parent relays
this message to the original parent.

DISCUSSION AND RELATED WORK
Considering security as a primary goal in a user interface
toolkit presents a unique opportunity to address
interface-level security vulnerabilities without sacrificing
developer flexibility or expressivity. This approach is a
departure from classic security solutions, which operate at a
system level or require application review, as well as from
conventional user interface toolkits, which have not
focused on securing the interaction between multiple
mutually-distrusting elements. With the mechanisms that
we propose, a security-aware toolkit can ensure that
sensitive elements are correctly displayed, that a user’s

Figure 7: After removing the iframe containing Ad.html
from the Index.html page and replacing it with the
Dummy, the browser must relay any intended
postMessages from Index.html to Ad.html.

intended interactions are accurately captured, and that
private data is not leaked through interface elements. The
remainder of this section examines some related work.

User Interfaces
User interface toolkit research generally focuses on
reducing the effort needed to develop new interfaces.
Because the assumptions embedded in a framework can
limit interface designers and hinder the development or
adoption of new techniques, research often focuses on
achieving maximal expressivity and flexibility for interface
developers [6, 7, 8, 17, 24]. For example, prior work has
proposed tools to aid in the creation of mashup interfaces
on the Web [16, 19, 36]. However, these toolkits are not
aimed at addressing security concerns and their implicit
trust assumptions can pose challenges to security.
Work by Arthur and Olsen [1] examined protecting user
data by separating interface elements based on trust. They
provide a methodology that splits an interface across a
trusted private device and an untrusted public device
(e.g., a connected screen or keyboard) by surfacing a user’s
trust choices to applications. Although focused on security,
the model is more restricted; we consider a broad set of
threats and complex trust relationships within an interface.
Other researchers have focused on designing and
evaluating interfaces for security-critical interactions,
including phishing protection [9], user account control [22],
Web SSL certificate warnings [32], and social network
privacy policies [20]. Our work focuses on securing
interface-level threats, and we believe that advances here
can be leveraged to help enable research in how to best
design security-related interfaces.

Security
This work naturally draws upon existing security concepts,
such as permissions and capabilities used in operating
systems [18]. However, the issue of securing interfaces has
not been explored in the security community from the user
interface toolkit perspective. Instead, prior security work
has focused on isolating applications and content from
different sources using system-level techniques (e.g.,
[4, 28, 34]). These approaches do not consider or are not
able to address all of the interface-level threats that we
consider (e.g., the authors of [34] do not address a parent
element’s ability to manipulate the layout of its children).
Our work in this paper draws on user-driven access control
[29], which uses system-controlled interface elements
called access control gadgets (ACGs) to extract a user’s
intent to grant system-level permissions to an application
(e.g., to access the camera). ACGs, which support only
limited composition and customization, represent the most
restrictive type of interface elements that we consider in
this work. By considering security at the level of the user
interface toolkit rather than the system, our proposed
architecture subsumes ACGs and supports security
properties for a broader and more flexible range of
interface elements and scenarios.

It is possible to implement trust groups in ways other than
those used in our prototypes. For example, Quire [5] fully
separates mutually distrusting code components into
different Android applications. To approximate the
embedding of interface elements from one app within
another (not supported by Android), Quire overlays an
application with a transparent background (e.g., the main
app) over a second application (e.g., the ad), requiring the
top layer to delegate user input events to the bottom layer.
To prevent clickfraud, Quire authenticates messages
legitimately generated by user input events. In this paper,
we explore how a user interface toolkit can leverage trust
groups of any implementation to support a wide range of
security properties and scenarios.
Although a security-aware user interface toolkit can
mitigate a large number of concerns, there remain threats
that benefit from alternate mitigation techniques. For
example, even with a security-aware toolkit, adversaries
can still create fake interface elements to mimic legitimate
elements. Fake embedded elements taking user input may
be used in phishing attacks (e.g., to steal a password).
Sensitive elements can apply existing anti-phishing
techniques (e.g., Sitekeys). Although not infallible [31],
these techniques can make such attacks more difficult.
Additionally, our toolkit can assure that a click on a
sensitive element was legitimately intended by the user
(e.g., an ad click), but it cannot prevent forged requests to
backend servers (e.g., direct requests to the advertising
server that mimic the requests made when a user clicks an
ad). The Web currently protects against this type of attack
(via techniques to prevent cross-site request forgery), but
Android does not. Other researchers focus on addressing
this type of problem with code attestation [27] or by
bringing the Web model to mobile operating systems [35].

CONCLUSION
We have presented a user interface toolkit architecture that
maintains developer flexibility while achieving a set of
security properties: display integrity, input integrity, intent
integrity, data isolation, and UI-to-API links. The
mechanisms we propose enable scenarios in which
interface elements from different trust groups are
embedded in a single interface. In today’s interfaces, these
scenarios are either insecure (e.g., allowing an application
to trick a user into clicking on another trust group’s button)
or inflexible (e.g., forcing security-related interfaces to be
displayed as invasive system prompts).
By isolating code and interface elements into trust groups
and by enforcing certain layout tree invariants, our toolkit
architecture secures sensitive elements and APIs while still
providing developers the necessary flexibility for element
composition and for communication and feedback across
trust groups. Important questions for future work include
the ease with which developers can adopt these
mechanisms, as well as support for testing and debugging
secure interfaces. In both cases, we note that a security-
aware toolkit seems to provide advantages over current ad-

hoc approaches. Our prototype implementations
demonstrate that this toolkit architecture is feasible and that
important security properties can be enforced with maximal
transparency and flexibility for developers.

ACKNOWLEDGEMENTS
We thank Saleema Amershi, Alan Borning, Morgan Dixon,
Alex Moshchuk, Kayur Patel, and the anonymous
reviewers for valuable feedback on earlier versions of this
work. We thank Werner Dietl and Mike Ernst for their
insights about Java static analysis. This work was
supported in part by the NSF under Graduate Research
Fellowship award DGE-0718124 as well as awards
CNS-0846065 and IIS-1053868.

REFERENCES
1. R. B. Arthur and D. R. Olsen. Privacy-aware shared UI toolkit

for nomadic environments. In Software Practice and Experience,
2011.

2. E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose.
Toolglass and Magic Lenses: The See-Through Interface. In
ACM Conference on Computer Graphics (SIGGRAPH), 1993.

3. Chromium. Security Issues, Issue 52868. https://code.
google.com/p/chromium/issues/list?q=label:Security

4. R. Cox, J. Hansen, S. D. Gribble, and H. M. Levy. A Safety-
Oriented Platform for Web Applications. In IEEE Symposium on
Security & Privacy, 2006.

5. M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. Wallach.
Quire: Lightweight Provenance for Smart Phone Operating
Systems. In USENIX Security Symposium, 2011.

6. M. Dixon and J. Fogarty. Prefab: Implementing Advanced
Behaviors Using Pixel-based Reverse Engineering of Interface
Structure. In ACM Conference on Human Factors in Computing
Systems (CHI), 2010.

7. J. R. Eagan, M. Beaudouin-Lafon, and W. E. Mackay. Cracking
the Cocoa Nut: User Interface Programming at Runtime. In ACM
Symposium on User Interface Software and Technology (UIST),
2011.

8. W. K. Edwards, S. Hudson, J. Marinacci, R. Rodenstein, T.
Rodriguez, and I. Smith. Systematic Output Modification in a
2D User Interface Toolkit. In ACM Symposium on User
Interface Software and Technology (UIST), 1997.

9. S. Egelman, L. F. Cranor, and J. Hong. You’ve Been Warned:
An Empirical Study of the Effectiveness of Web Browser
Phishing Warnings. In ACM Conference on Human Factors in
Computing Systems (CHI), 2008.

10. W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

11. Facebook. Like button requires confirm step.
http:// developers.facebook.com/bugs/169544703153617

12. Google. AdMob.
http://developers.google.com/mobile-ads-sdk/

13. M. Grace, W. Zhou, X. Jiang, and A. Sadeghi. Unsafe Exposure
Analysis of Mobile In-App Advertisements. In ACM Conference
on Security and Privacy in Wireless and Mobile Networks
(WiSec), 2012.

14. R. Hansen and J. Grossman. Clickjacking.
http://www.sectheory.com/clickjacking.htm

15. I. Hickson (ed). HTML5 Web Messaging. W3C Working Draft,
2012. http://www.w3.org/TR/ webmessaging/

16. B. Hartmann, L. Wu, K. Collins, S. R. Klemmer. Programming
by a Sample: Rapidly Creating Web Applications with d.mix. In
ACM Symposium on User Interface Software and Technology
(UIST), 2007.

17. S. Hudson, J. Mankoff, and I. Smith. Extensible Input Handling
in the subArctic Toolkit. In ACM Conference on Human Factors
in Computing Systems (CHI), 2005.

18. H. M. Levy. Capability-Based Computer Systems. Digital Press,
1984.

19. J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-User
Programming of Mashups with Vegemite. In ACM Conference on
Intelligent User Interfaces (IUI), 2009.

20. H. R. Lipford, J. Watson, M. Whitney, K. Froiland, and R. W.
Reeder. Visual vs. Compact: A Comparison of Privacy Policy
Interfaces. In ACM Conference on Human Factors in Computing
Systems (CHI), 2010.

21. Microsoft. User Account Control. http://msdn.
microsoft.com/en-us/library/windows/desktop/ aa511445.aspx

22. S. Motiee, K. Hawkey, and K. Beznosov. Do Windows Users
Follow the Principle of Least Privilege? Investigating User
Account Control Practices. In ACM Symposium on Usable Privacy
and Security (SOUPS), 2010.

23. Mozilla Foundation. Known Vulnerabilities, Advisory 2008-
08.http://www.mozilla.org/security/known-vulnerabilities/

24. B. Myers, S. Hudson, and R. Pausch. Past, Present, and Future of User
Interface Software Tools. In ACM Transactions on Computer-Human
Inteaaction (TOCHI), 2000.

25. D. R. Olsen, Jr. Evaluating User Interface Systems Research. In
ACM Symposium on User Interface Software and Technology
(UIST), 2007.

26. Oracle. Sealing Packages within a JAR File.
http://docs.oracle.com/javase/tutorial/deployment/jar/
sealman.html

27. B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in
Commodity Computers. In IEEE Symposium on Security &
Privacy, 2010.

28. C. Reis and S. D. Gribble. Isolating Web Programs in Modern
Browser Architectures. In ACM Eurosys, 2009.

29. F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-Driven Access Control: Rethinking Permission
Granting in Modern Operating Systems. In IEEE Symposium
Security & Privacy, 2012.

30. G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting
frame busting: a study of clickjacking vulnerabilities at popular
sites. In IEEE Web 2.0 Security and Privacy (W2SP), 2010.

31. S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The
Emperor’s New Security Indicators. In IEEE Symposium on
Security & Privacy, 2007.

32. J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F.
Cranor. Crying Wolf: An Empirical Study of SSL Warning
Effectiveness. In USENIX Security Symposium, 2009.

33. W3C. Same Origin Policy.
http://www.w3.org/ Security /wiki/Same_Origin_Policy

34. H. J. Wang, C. Grier, A. Moshchuk, S. King, P. Choudhury, and
H. Venter. The Multi-Principal OS Construction of the Gazelle
Web Browser. In USENIX Security Symposium, 2009.

35. H. J. Wang, A. Moshchuk, and A. Bush. Convergence of
Desktop and Web Applications on a Multi-Service OS. In
USENIX Hot Topics in Security, 2009.

36. J. Wong and J. Hong. Making Mashups with Marmite: Towards
End-User Programming for the Web. In ACM Conference on
Human Factors in Computing Systems (CHI), 2007.

