

Prefab Layers and Prefab Annotations:
Extensible Pixel-Based Interpretation of Graphical Interfaces

 Morgan Dixon, Conrad Nied, and James Fogarty
Computer Science & Engineering

DUB Group, University of Washington
{mdixon,anied,jfogarty}@cs.washington.edu

ABSTRACT
Pixel-based methods have the potential to fundamentally
change how we build graphical interfaces, but remain
difficult to implement. We introduce a new toolkit for
pixel-based enhancements, focused on two areas of support.
Prefab Layers helps developers write interpretation logic
that can be composed, reused, and shared to manage the
multi-faceted nature of pixel-based interpretation. Prefab
Annotations supports robustly annotating interface elements
with metadata needed to enable runtime enhancements.
Together, these help developers overcome subtle but critical
dependencies between code and data. We validate our
toolkit with (1) demonstrative applications and (2) a lab
study that compares how developers build an enhancement
using our toolkit versus state-of-the art methods. Our toolkit
addresses core challenges faced by developers when
building pixel-based enhancements, potentially opening up
pixel-based systems to broader adoption.

Author Keywords
Prefab; layers; annotations; pixel-based reverse engineering.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI).

INTRODUCTION AND MOTIVATION
Pixel-based methods can enable modification of interfaces
without their code, independent of their implementation.
For example, the applications in Figure 1 use pixel-based
methods to enhance the entire desktop. The first is an
implementation of the Bubble Cursor [5,12], which
dynamically resizes to always select the nearest target. The
next is an implementation of sliding widgets [7,18], which
replaces mouse-based interface elements with touchscreen
widgets. The third translates the language of interfaces for
improved localization [8]. Other examples include accessibility
enhancements, testing frameworks, automation tools, and help
systems [6,8,30,31]. These enhancements modify interfaces in
a variety ways, but they are all enabled by methods that use
pixels as a universal representation.

Unfortunately, enhancements like these are difficult to
implement, and so relatively few are available. There are at
least two major reasons for this. First, interpreting an
interface from its raw pixel values is a large and
multi-faceted problem. For example, the translation
enhancement requires mechanisms to identify interface
elements, recover text, and perform higher-level analysis of
that text. Requiring all of this functionality in a single
application quickly leads to monolithic code that is difficult
to develop and maintain. This problem is magnified by the
fact that different enhancements require different
interpretations. For example, in contrast to the translation
enhancement, the Bubble Cursor is agnostic to text values
and only needs to identify clickable targets. When
enhancements do require similar methods that could
potentially be reused, the current lack of structured support
leads developers to re-implement large portions of code.

Second, writing sophisticated code is not enough to
successfully interpret most interfaces. This is because some
information is not obtainable through raw pixel analysis.
For example, Dixon et al. report that clickable “targets” are
often ambiguous and cannot be reverse engineered without
human intervention [5]. This ambiguity is pervasive in
pixel-based methods and causes unavoidable errors.
Developers then patch their code by mixing in their own
outside knowledge about an interface. This results in fragile
and monolithic code that is difficult to broadly deploy.

We address these two problems in a new toolkit for
pixel-based reverse engineering of graphical interfaces.
First, Prefab Layers helps developers write interpretation
logic that can be composed, reused, and shared to manage
the multi-faceted nature of pixel-based methods. Second,
Prefab Annotations supports robust annotation of interface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST '14, October 05 - 08 2014, Honolulu, HI, USA.
Copyright 2014 ACM 978-1-4503-3069-5/14/10…$15.00.
http://dx.doi.org/10.1145/2642918.2647412

Figure 1: We present a toolkit that streamlines the
implementation of pixel-based enhancements. Three examples
supported by our toolkit include the Bubble Cursor [5,12],
sliding widgets [7,18], and interface language translation [8].

elements with metadata that has been inferred, provided by
a developer, or collected from end-users of pixel-based
enhancements. Together, Prefab Layers and Prefab
Annotations help developers focus on the high-level
functionality of their enhancements instead of the low-level
challenges of pixel-based analysis.

Contributions of this work to pixel-based methods include:

• Prefab Layers, which offer a set of techniques to
simplify the development of interpretation code while
encouraging composition and reuse.

• Prefab Annotations, which offer a set of techniques for
managing portable and robust interface metadata.

• Demonstration of reusable interpretations implemented
using our methods. These range from low-level reusable
components to high-level pixel-based enhancements.

• A comparison of how developers use our methods
versus state-of-the-art tools. We show that our methods
speed up development time, enable code reuse, require
less data management, and help developers focus on the
high-level behavior of their enhancement.

RELATED WORK
We focus on pixel-based interpretation of graphical
interfaces, as applied to runtime modification of existing
interfaces. This section overviews prior runtime
modification work, and then looks more specifically at the
current strengths and limitations of pixel-based methods.

Runtime Modification
Runtime modification has broad applications in accelerating
innovation and facilitating adoption. In classic work,
Edwards et al. [10] and Olsen et al. [22] modify existing
interfaces by replacing the toolkit drawing object and
intercepting commands (e.g., draw_string). They use this to
update old interfaces with new functionality, such as search
and bookmark widgets. More recent examples of runtime
modification leverage the open nature of a website’s
Document Object Model (DOM) to access and modify
existing interfaces. Web-based modifications include
creating mash-ups between existing applications [11,14,28],
re-authoring web applications for mobile interfaces [20,21],
and automating repetitious interactions [2,28].

Although websites expose a DOM, traditional approaches
to modifying desktop applications are based in accessibility
APIs [28] or injecting into an interface toolkit [9,10,22].
Accessibility APIs expose interface state, but unfortunately
are frequently incomplete because application developers
fail to implement the API. For example, Hurst et al. found
25% of elements are completely missing [15]. Injection
techniques insert custom logic into an interface via the
toolkit or other runtime system. However, injection must be
carefully crafted for each interface and underlying toolkit.
This limits the utility of injection for general-purpose

enhancements, as people typically use a variety of
applications implemented with several toolkits.

In contrast, pixel-based methods do not require cooperation
from the developers of an interface and circumvent
fragmentation of interfaces and toolkits. Leveraging these
advantages, researchers have explored a variety of
pixel-based approaches to recover and modify the structure
of an interface. St. Amant’s Segman uses hand-crafted code
to identify specific types of interface elements [27]. Sikuli
uses template matching and voting on local features for
image-based identification of interface elements [30].
Savva uses more sophisticated computer vision techniques
for automated visualization retargeting [26]. Finally, PAX
presents a hybrid approach, supplementing the accessibility
API with pixel-based processing [3].

Flexibility and Robustness of Pixel-Based Methods
Prior pixel-based methods enable a variety of modifications
to existing interfaces, including contextual and video-based
tutorials [1,25,31], interface testing frameworks [4], new
window managers [29], note-taking overlays [23], and
systems for exploring document workflow histories [13].
Although these begin to demonstrate the potential of
pixel-based methods, most of this initial success is based on
a low-level understanding of existing interfaces (e.g., the
locations of salient regions in an image, the position of a
single element that matches a specific template). There are
few enhancements based on higher-level interpretations, as
current tools are not flexible or robust enough to support
multiple levels of interpretation.

Althought it is difficult to recover high-level information
from pixels, the Bubble Cursor and sliding widgets
enhancements in Figure 1 require relatively sophisticated
interpretation. Their success is due to their combination of
interpretation code and human annotation of identified
elements. Specifically, their systems heuristically infer
semantic information about interface elements and then use
human-provided corrections to override erroneous
inferences. The goal of our toolkit is to support these and
other complex enhancements. Our validation demonstrates
that developers can build the same methods used by the
state-of-the-art Bubble Cursor implementation, and we also
show how our methods allow developers to easily extend
the cursor to support more advanced behaviors. We
describe the details of other enhancements enabled by our
toolkit, and we also describe how annotations and code can
be shared among multiple enhancements.

We build on Prefab’s methods for reverse engineering
interface structure [6,8]. Prefab identifies interface elements
from pixels and organizes them into a hierarchy. The root
corresponds to the processed image, and identified elements
are added as children to elements in which they are spatially
contained. This spatial hierarchy is not the same as an
interface’s logical hierarchy, but represents visible
containment (e.g., buttons, group boxes, tab panes).

Importantly, this tree only provides identified elements and
does not include metadata about elements (e.g., whether
they are targets, their widget type). The following sections
describe how developers use our methods to build
high-level interpretations on Prefab’s low-level hierarchy.

OVERVIEW AND SCENARIO WALKTHROUGH
We now introduce our toolkit with a brief overview. To
clarify how developers use our toolkit, this section also
presents a scenario that walks through the development of
the interface language translation enhancement in Figure 1.

Toolkit Overview
As in prior work [5,6,7,8], our methods are designed to be
combined with input and output redirection. Figure 2
illustrates: (1) a source window bitmap is captured, (2) the
source image is interpreted, (3) a modified interface is
presented in a target window, (4) input in the target window
is mapped back to the source, which then (5) generates new
output that is captured to update the target. Runtime
modification is realized by rapidly and repeatedly executing
this cycle. Implementing this cycle is hard because of the
lack of support for interpreting the source image in step (2).

To address this challenge, our toolkit decomposes
interpretation into a series of tree transformations, as shown
at the top of Figure 2. Interfaces are hierarchies and can be
reverse engineered by iteratively working from raw pixels
to a detailed interpretation. Developers implement custom
interpretations for their enhancement using a combination
of layers, layer chains, interface metadata (specifically
tags and annotations), and annotation libraries.

A layer is a script that performs a specific set of tree
transformations using the current structure and properties of
the interface hierarchy, the pixel values of the captured
screenshot, and any interface metadata.

A layer chain is a group of layers that execute in sequence.
An interface is interpreted by passing the raw image into
the first layer as a single root node, then passing the output
of each layer into the next. Developers reuse and compose
existing functionality by concatenating layer chains.
Alternatively, they modify or enhance a chain by adding or
replacing layers. As mentioned, Prefab recovers a spatial
hierarchy from pixels, and so we include this functionality
as the default set of layers at the beginning of a chain.
Developers typically append their own custom layers to
infer higher-level semantics on top of Prefab’s hierarchy.

Interface metadata stores information about a specific
node in a hierarchy (e.g., whether a node is a target, a
corrected translation for a given node). A critical distinction
is the intended persistence of the metadata representation.
A tag is interface metadata stored on a node in the
hierarchy created by a particular layer chain’s interpretation
of a source image. An annotation is interface metadata
described in terms of the source image, which can be
persistently stored and used with different layer chains.

An annotation library is a set of related annotations, and a
developer will typically create a library for each type of
annotation used by an enhancement. Before a layer chain
executes, each layer can import annotations to be used at
runtime. The details of how these are robustly stored and
imported are challenging and discussed in a later section.

Enhancements are therefore implemented by creating and
composing combinations of layers and annotation libraries.
An enhancement might use several instances of a layer, but
point each at a different annotation library. Alternatively, an
enhancement might contain several layers that work
together and share a single annotation library.

Our toolkit is implemented in C#, with annotation libraries
implemented as CouchDB databases. We selected
CouchDB in part because its replication support allows easy
sharing and synchronization of annotation libraries. As a
convenience, we also provide an interpreter that uses Iron
Python to allow layers to be defined in short Python scripts.
For clarity, this paper presents its example layers in Python.

Scenario: Runtime Interface Translation
To better understand how developers use our toolkit, let us
follow Emily as she implements the interface translation
enhancement from Figure 1. Emily has found many
applications do not support her native language, or their
translations are erroneous and incomplete. Instead of being
stuck hoping application developers will add or fix their
translations, she decides to develop an enhancement to
recover text from the pixels of an interface, translate that
text, and re-render interfaces incorporating the translations.
Figure 3 illustrates her implementation. Emily primarily
composes and parameterizes existing layers, writing only a
small amount of custom behavior (as shown here in red).

Emily starts by creating an input and output redirection
loop as shown in Figure 2, within which a layer chain
executes upon receiving a screenshot. She then imports a
layer providing Prefab's base recovery capabilities. This
outputs a tree representing the elements of an interface, as
recovered from its pixels. Emily finds the base layer does
not recover text (an optimization based on the fact that text
recovery is expensive and many enhancements do not
require textual content). Emily will obviously need the
interface text, so she adds a standard text recovery layer.

Figure 2: We present a new toolkit that structures pixel-based
interpretation as a series of tree transformations.

#	 main.py	
import	 prefab_layers	
chain	 =	 prefab_layers.new_chain()	
chain.import_layer(‘prefab_identification’)	
chain.import_layer(‘text_recovery’)	

Emily is unable to find a layer implementing translation, so
she authors a custom layer. Within her layer, she walks the
tree recovered by previous layers. For each node containing
recovered text, she runs the text through a web translation
service and tags the node with the resulting translation.

With her core layers built, Emily now focuses on the
behavior of her enhancement. For each node tagged with a
translation, she uses Prefab’s pixel-level methods to overlay
a mask that removes the element’s original text. She then
renders the translated text within the same bounds.

With her enhancement now working, Emily finds many of
the translations are erroneous and decides to add interactive
correction. She builds an interface that allows a person who
observes an erroneous translation to view the original text
and provide a correction. She wants these corrections to be
persistent, so she stores them as an annotation library. She
then imports a layer that uses the annotations at runtime to
tag elements with their corresponding corrections.

Emily also notices she is translating text that should not be
modified, such as system paths in file widgets. Emily adds
an annotation library for a “do not translate” flag, updates
her interface to allow toggling this flag for any element,
adds a layer to tags nodes according to this annotation, and
updates her machine translation layer to respect the flag.

Emily is satisfied her enhancement gives control over
whether to translate each element, but wants to minimize
the need to tag elements. She therefore uses a layer that
trains a classifier using collected annotations as training
data. Emily does not need to implement this functionality,
she just imports an existing layer and parameterizes it to use
her annotation library for training. It then learns a classifier
based on the annotations and at runtime tags any nodes that
the classifier determines should not be translated.

With her enhancement implemented, Emily uses it in a
variety of applications. She can also share her enhancement

and its annotation libraries with other people. Eventually,
she might decide to parameterize her layers to allow people
to choose a target language. This would require adjustments
to how she invokes machine translation and would probably
introduce different annotation libraries to store corrections
in different languages. Importantly, her layers and
annotations continue to work together, so she is not
burdened with migrating data or code as she iterates.

PREFAB LAYERS
In defining pixel-based interpretation as a series of tree
transformations, the primary challenge is ensuring layers
have the power and flexibility to construct arbitrary
interpretations while also preserving simplicity in each
layer (i.e., obtaining a high ceiling and low threshold [19]).
The naïve approach of simply allowing layers to arbitrarily
mutate a hierarchy falls short for at least two reasons. First,
it could be expected to easily regress to monolithic layers,
undermining our goals for reuse and composition. Second,
we have found it difficult to reason about the entire
structure of a 2D interface, especially when in-progress
mutations mean the current hierarchy represents neither the
input nor the output of a layer. It is difficult to even traverse
a hierarchy while also mutating it, and we found more
complex transformations near impossible to reason about.

Prefab Layers therefore gives each layer an immutable view
on its input. We provide a set of tree transformation
operations, and layers can request any number of operations
be applied to nodes in the hierarchy. All operations are then
applied in batch after the layer terminates (i.e., the
hierarchy is mutated between layers in a layer chain). This
guarantees layers always observe trees that are in a stable
state, making it easier to reason about a hierarchy. It also
limits the scale of transformation that can be accomplished
in a single layer, encouraging developers to think of

Figure 3: Our toolkit simplifies runtime interface translation.
It uses layers that recover interface text, decide what text
should be translated, and then present translations obtained
using both machine translation and human correction.

#	 translate_text.py	
from	 microsoft_translator	 import	 Translator	
translator	 =	 Translator(‘client	 id’,	 ‘client	 secret’)	
	
def	 interpret(interpret_data):	
	 	 	 	 ‘‘‘	 This	 method	 is	 called	 by	 the	 Prefab	 Layers	
	 	 	 	 	 	 	 	 toolkit	 when	 it	 needs	 this	 layer	 	
	 	 	 	 	 	 	 	 to	 perform	 its	 transformations	 ’’’	
	 	 	 	 root	 =	 interpret_data.tree	
	 	 	 	 recursively_translate	 (root,	 interpret_data)	
	
def	 recursively_translate(currnode,	 interpret_data):	
	 	 	 	 ‘‘‘	 This	 method	 recursively	 visits	 each	 node	
	 	 	 	 	 	 	 	 and	 translates	 its	 text	 value	 to	 French	 ’’’	
	 	 	 	 if	 currnode.get_tag(‘is_text’):	
	 	 	 	 	 	 	 text	 =	 currnode.get_tag(‘text_value’)	
	 	 	 	 	 	 	 french	 =	 translator.translate(text,	 ‘fr’)	
	 	 	 	 	 	 	 interpret_data.add_tag(text,‘translation’,french)	
	 	 	 	 	
	 	 	 	 for	 child	 in	 currnode.get_children():	
	 	 	 	 	 	 	 recursively_translate(child,	 interpret_data)	

#	 main.py	
params	 =	 {	 ‘library’	 :	 ‘translation_corrections’	 }	
prefab_layers.import_layer(‘apply_annotations’,	 params)	

interpretation in discrete steps. In the terminology of Myers
et al. [19], we create a path of least resistance toward reuse
and composition by leading developers to create layers that
each implement a single piece of well-defined functionality.

Our specific operations are tagging a node, setting an
ancestor for a node, and deleting a node. We chose these
operations for simplicity and completeness. Each operates
on a single element or a pair of elements, and they can be
combined to create any hierarchy.

Tagging. Layers can add interface metadata
at runtime by tagging nodes. Subsequent
layers can read that metadata to inform their own execution.

Setting an Ancestor. Layers can require a
hierarchy be modified to ensure a given
node is an ancestor of another given node. This can be set
for two existing nodes (i.e. set one as the parent of the
other), for an existing ancestor node (i.e., inserting a new
child), or for an existing child (i.e., inserting a new parent).

Deleting. Layers can delete nodes from a
hierarchy. Any children of a deleted node
are attached to the deleted node’s parent.

After a layer requests a set of operations, we efficiently
apply all operations to its input hierarchy. Tag operations
are trivial, but are executed in batch as part of encouraging
layers that perform a single step of interpretation. For each
delete operation, we remove the node and attach its children
to the deleted node’s parent. We apply ancestry requests by
adding an edge from each ancestor to its descendent and
pruning any redundant edges. Finally, we raise an exception
if these requests do not produce a valid tree (e.g., if
operations create cycles or multiple paths between nodes).

PREFAB ANNOTATIONS
The goal of Prefab Annotations is to store metadata about
specific interface elements, such that the metadata can be
accessed and shared by arbitrary layers. Storing metadata is
trivial, but robustly storing the interface element itself is
challenging. This is because different layer chains represent
the element differently (i.e., the tree structure recovered
from a screenshot depends on the specific layer chain used).
For example, the sliding widgets enhancement requires a
tree with related buttons grouped (so they can be replaced
with a single slider, as in Figure 1). In contrast, language
translation can leave these buttons separate, but needs to
group related text. As a result, annotations cannot be stored
in an encoding that depends on the structure of one specific
layer chain. Otherwise it would be difficult to share
libraries of annotations among enhancements. Even within
a single enhancement, a developer would not be able to
iteratively build and test a layer chain because its tree
representations would change throughout development.

Prefab Annotations address this challenge by storing
annotations using a pixel-level representation. Specifically,
an annotation library contains a set of image annotations,

each stored as an image of an interface, a region within that
image to be annotated, and associated metadata. When a
layer imports an annotation library at runtime, the
pixel-level representations are converted to trees consistent
with the current layer chain. Therefore, the sliding widget
enhancement views an annotated element as a node in a tree
where related buttons are grouped together. Similarly, the
translation enhancement views that same annotated element
in a different tree where text is grouped together.

Figure 4 illustrates this process. First, images in the library
are interpreted by the preceding layers in the current chain.
This creates hierarchies consistent with the current runtime.
We then use region information in each annotation to
identify the corresponding hierarchy node. We pass these
matched pairs of image annotations and aligned tree nodes
to the layer (together with a list of image annotations that
do not match any nodes). Using these matched pairs, the
layer computes and stores any information it will need at
runtime (e.g., path descriptors, a learned classifier).

For clarity, Figure 5 presents the entire script for a simple
layer that uses annotations. This layer tags elements at
runtime that were previously annotated with metadata. The
layer indexes each annotation using a unique reference that
can be matched against nodes at runtime. Specifically, it
computes an XPath-like path descriptor based on properties
of the annotated node and its ancestors. Importantly, this
layer does not attempt to generalize the annotation. At
runtime it visits each node in the input tree and checks if the
node’s path matches any of descriptors it has stored. If there
is a matching descriptor, it tags that node with the
corresponding metadata. These path descriptors always
represent a valid path that can be retrieved at runtime
because they are computed from hierarchies consistent with
the current layer chain. For example, the sliding widgets
layer can import this layer and use it with an annotation
library of “replace this widget” Boolean flags. The
language translation enhancement can similarly import this
layer with a library of translation corrections.

This simple tagging layer is one of several exact-match
layers in our toolkit, each performing one of the tree
operations in our toolkit. An exact-match deletion layer
similarly deletes any node that matches a path descriptor.
These layers are designed to be simple building blocks for
more advanced layer chains, and the next section introduces
several additional strategies that go beyond exact-matching
of path descriptors to more sophisticated generalizations.

Figure 4: When a layer imports an annotation library, we
provide a tree representation for each annotated element.
Image annotations are interpreted by preceding layers, aligned
to nodes in the resulting hierarchies, and then handed to the
layer, where it computes information it will need at runtime.

VALIDATION THROUGH EXAMPLE LAYER CHAINS
Our toolkit is designed to support diverse pixel-based
methods. In this half of our validation, we demonstrate and
give insight into our toolkit by implementing and discussing
several example layer chains. In the terminology
established by Olsen [24], these examples demonstrate an
inductive combination of functionality. Specifically, we
select examples to illustrate how interpretation code can be
composed, reused, and shared, and also how annotations
can be used and shared among enhancements. We start with
examples of low-level reusable interpretations and then
move to high-level composition in full enhancements.

Reusable Low-Level Layer Chains
This section expands upon the previous section’s reusable
exact-match layer. Specifically, we present two more
example layer chains: (1) a reusable chain that learns to
automatically generalize Boolean annotations, and (2) a text
recovery chain that applies multiple techniques to recover
text from an interface. Like the exact-match layer, these are
reusable building blocks that can be parameterized with an
annotation library to obtain a desired capability. Decoupling
the code layers from the data annotations thus creates
building blocks for developers to create complex behaviors.

Learning-Based Annotation
Exact-match annotations are sufficient and even preferable
for many applications, but others benefit from expediting
annotation through generalization. We support such
inference with a layer chain that learns to tag nodes based
on positive and negative example annotations. For example,
Figure 2’s demonstration uses this chain to generalize its
“do not translate” annotation. We implement learning as
two layers sharing a library of Boolean annotations. The
first is an exact-match layer, tagging nodes that are
explicitly annotated as either positive or negative. The

second applies a classifier to generalize tags onto nodes that
are not explicitly tagged. Annotations are thus treated as
ground truth and always override the classifier. Sharing the
annotation library means a single annotation both tags a
specific element and contributes to training the classifier.

Our learning layer uses a decision tree, with features
computed from an element’s spatial properties, its location
in a hierarchy, and tags applied by preceding layers. It
imports annotations by using them as training examples to
create a classifier. During interpretation, it applies the
classifier to nodes not tagged by the exact-match layer. Our
current classification algorithm was designed and evaluated
in the context of the applications described in this paper, so
its performance is optimized for our explorations. However,
our goal in implementing this example is to illustrate how
any learning algorithm could be deployed in our toolkit.
Developers could swap in layers that implement custom
classification algorithms tailored for their application, or
could use general-purpose classifiers they customize by
populating an annotation library of training data.

Text Recovery
The exact-match and learning-based chains are relatively
simple, with their power coming from how they can be
composed. But it is also possible to implement complex
layer chains providing sophisticated reusable functionality.
One example is our current chain to recover textual content.
Prior work has found the extremely low resolution of
interface text makes it difficult to implement text recovery
with off-the-shelf character recognition, instead turning to
human transcription [8]. Other work explores incorporating
text from the accessibility API [3]. Failures are inevitable in
both approaches, so we leverage the flexibility of our
toolkit to combine recovery from the accessibility API with
human transcription. Figure 6 presents an overview of the
layer chain, which consists of four main components:
text classification, grouping related text, human
transcription, and accessibility recovery.

The first layer tags each interface element with a Boolean
indication of whether the node represents text. The chain is
a parameterization of the learning-based annotation chain,
trained with positive and negative examples of text
elements. Prefab’s background differencing discovers many
types of elements (e.g., text, icons, widgets), but does not
indicate the types of those discovered elements. This layer
therefore identifies which should be processed as text.

The second and third layers are used to group related text.
Low-level methods often naturally group text within a
parent. For example, a button with a two-word label will
group the two text elements. But text rendered without a
visible container may need explicit grouping (e.g., a
checkbox may have a multi-word label with no visible
enclosure). We implement grouping in two layers. A first
learns to tag each element with a Boolean flag indicating
whether it should be grouped with the next sibling in
reading order. A second then performs the actual grouping.

def	 import_annotations(annotation_data):	
	 	 	 	 ‘‘‘	 This	 method	 indexes	 annotations	 using	
	 	 	 	 	 	 	 	 path	 descriptors,	 so	 it	 can	 tag	 these	
	 	 	 	 	 	 	 	 annotated	 elements	 at	 runtime.’’’	
	 	 	 	 runtime_storage	 =	 annotation_data.runtime_storage	
	 	 	 	 annotated_nodes	 =	 annotation_data.annotated_nodes	
	 	 	 	 for	 annotation	 in	 annotated_nodes:	
	 	 	 	 	 	 	 	 path	 =	 get_path(annotation.node,	 annotaion.root)	
	 	 	 	 	 	 	 	 runtime_storage[path]	 =	 annotation.metadata	
	
def	 interpret(interpret_data):	
	 	 	 	 ‘‘‘	 This	 method	 tags	 nodes	 with	 annotation	 metadata	
	 	 	 	 	 	 	 	 by	 matching	 path	 descriptors	 against	 each	 node	 ’’’	
	 	 	 	 currnode	 =	 interpret_data.node	
	 	 	 	 path	 =	 get_path(currnode,	 interpret_data.tree)	
	 	 	 	 if	 path	 in	 interpret_data.runtime_storage:	
	 	 	 	 	 	 	 	 metadata	 =	 interpret_data.runtime_storage[path]	
	 	 	 	 	 	 	 	 for	 key	 in	 metadata:	
	 	 	 	 	 	 	 	 	 	 interpret_data.add_tag(currnode,	 key,	 metadata[key])	
	 	 	 	 #recurse	 on	 children	
	 	 	 	 for	 child	 in	 currnode.get_children():	
	 	 	 	 	 	 	 	 interpret(interpret_data,	 child)	
	

Figure 5: Layers import annotations for use at runtime.
Here an exact-match creates a path descriptor from each
annotation and uses those descriptors to tag nodes at runtime.

The final two layers tag elements with text values. The first
obtains these from human transcriptions. It works similar to
an exact-match layer, but generalizes the annotations
differently. It uses a hash of the pixel-level appearance of
annotated text to apply that same annotation whenever it
finds the same pixels (e.g., it matches multiple buttons with
the same "OK" label). The second layer obtains text values
from the accessibility API hierarchy corresponding to the
captured interface. It finds the set of corresponding nodes in
the pixel-based hierarchy by testing for spatial containment,
and tags the parent node with the textual labels.

Full Layer Chains for Enhancements
Our final examples demonstrate how our toolkit can be
used to compose full layer chains used by enhancements.
Specifically, we examine interface translation, target-aware
pointing, and sliding widgets. Our toolkit both: (1) lowers
the threshold to developing enhancements, and (2) raises
the ceiling to enable new pixel-based enhancements.

Language Translation
We previously presented pixel-based language translation
[8], but the implementation in that initial work is fragile.
Lacking explicit support for modular and reusable code,
most of that work focuses on text recovery methods and
ignores important aspects of translation. For example, that
work ignores interactive correction (e.g., incorrect machine
translations, elements that should not be translated at all).
Figure 2 and our introductory scenario present a new and
more extensible implementation addressing these issues.
Our new solution builds directly on reusable low-level layer
chains, so there is minimal new work required (as
illustrated by Figure 3’s red highlights of that new work).

Target-Aware Pointing
Our prior Bubble Cursor implementation is an example of
the state-of-the-art in pixel-based enhancements [5,12].
It enables target-aware pointing across the entire desktop,
identifying targets using Prefab and human annotations.
Specifically, it: (1) uses Prefab to identify a hierarchy of
elements, (2) uses path descriptors to store annotations
about whether to target an element (e.g., target a button, do
not target an icon), and (3) expedites annotation with two
heuristics, one that targets leaf nodes and one that
generalizes annotations across identical subtrees.

Our new toolkit dramatically streamlines this enhancement.
Figure 7 shows our new implementation, where we first
instantiate a base Prefab layer and then an exact-match
layer for target annotations. We then add two custom
layers, one for each of the target heuristics. Importantly, the
subtree matching layer shares the same annotation library as
the exact-match layer, but generalizes those annotations.
Alternatively, we could replace these lightweight layers
with our learning-based chain from the previous subsection.

We also expand upon our prior work by differentiating
major and minor targets. In our prior work we identified
that some targets are infrequently used and act as distractors
to more important targets. We suggested it would be
valuable to distinguish major versus minor targets, but our
prior monolithic implementation did not allow exploration
of this idea. Figure 7 shows that our new toolkit makes it
trivial to add a layer and annotation library to support
exploration of this distinction. Existing target annotations
can continue to be used, and a new annotation is added to
indicate which of those are minor targets. This example
shows our new abstractions raising the ceiling relative to
what we could accomplish with the prior state-of-the-art.

Sliding Widgets
The two previous layer chains highlight re-implementations
of prior systems, but we have also used our toolkit to
implement an entirely new enhancement. As shown in
Figure 1, sliding widgets are touchscreen widgets activated
by sliding a moveable element [7,18]. In the course of
developing our toolkit, we implemented an enhancement
that replaces mouse-based widgets with sliding widgets. A
detailed presentation is presented in our recent work [7].

The sliding widgets enhancement would have been tedious
or impractical to develop without our toolkit. Developing a
new enhancement like this requires iteratively refining code
and exploring different approaches. But that code also
requires annotations, and prior approaches to storing such
annotations are brittle to code changes and would need to
constantly be migrated. Our toolkit also provides a clear
conceptual model for reasoning about and describing our
sliding widgets enhancement. Using figures similar to the
layer chain illustrations throughout this paper, that paper is
able to succinctly overview the code and data used in the
enhancement [7]. Our current contribution is therefore not

Figure 6: Layer chains can implement sophisticated reusable
interpretation logic. Our text recovery chain combines human
transcription with text recovered from the accessibility API.

Figure 7: We streamline and expand our Bubble Cursor
enhancement [5], resolving important limitations of our
previous implementation.

only code, but also a set of abstractions that allow effective
description of pixel-based interpretation.

VALIDATION WITH DEVELOPERS IN THE LAB
The previous section explored examples implemented using
our toolkit. We also conducted a lab study that compared
how developers used our toolkit versus a baseline toolset.

The baseline tools were designed to reflect state-of-the-art
methods presented in our prior implementation of the
Bubble Cursor [5]. Specifically, there were two main
differences between our toolkit and prior methods. First, the
baseline interpretation logic is implemented as a single
method, where developers manually organize any code
invoked in that method. Second, the baseline stores
annotations using path descriptors, as used in our prior
work and in a wide variety of DOM-based enhancements.

To the best of our knowledge, Prefab’s prior methods
provide the most extensive support for combining code and
data in real-time modifications. Yeh et al.’s Sikuli offers
robust scripting tools [30], but less support for annotating
arbitrary interface elements. In addition, their pixel-based
methods require a reported 200msec to identify all
occurrences of a single target. Our toolkit is designed to
support enhancements that need to more quickly identify
and annotate all occurrences of many elements, so Prefab’s
prior methods are a more meaningful comparison.

We recruited six experienced developers to participate in
our study. They were all male, with ages ranging from 24 to
28 years. Although all currently develop software, their
backgrounds included applied natural science, computer
vision, software engineering, and programming languages.
All were familiar with Python and at least one other
programming language. None of the participants had
experience with pixel-based reverse engineering.

Study Protocol
Study sessions took approximately three hours. Participants
were asked to implement interpretation logic for two
enhancements: Hello World and Bubble Cursor. Both were
implemented twice, once with our toolkit and once with the
baseline. Participants were allotted 90 minutes for each
task. To control for learning effects or fatigue, we
counterbalanced the order in which we presented each
condition. The Hello World enhancement was designed to
familiarize participants with the condition. It replaces

identified text with the string “hello world”, using the
masking technique described in our scenario walkthrough.
In both enhancements, participants were asked to reverse
engineer screenshots captured from an Apple iTunes dialog
and a Microsoft Word settings dialog.

The experiment was conducted using a standard desktop
computer running Windows 7. Developers authored code
using an off-the-shelf text editor. We also equipped
participants with a debugging tool that worked similarly to
a webpage DOM inspector. Using the tool, participants
could load screenshots, compile and execute their code,
navigate and inspect the hierarchy output by their code, add
or delete annotations, and browse through their annotations.

Both conditions consisted of seven tasks, as in Figure 8.
The first three were to identify text for the Hello World
enhancement. Participants implemented a simplified
version of text recovery, where (1) leaves are heuristically
classified as text, (2) erroneous tags are corrected with
annotations, and (3) related text is grouped. For the
grouping task, we wanted to examine how developers make
use of existing code, so we gave participants access to
grouping logic originally developed for an enhancement
that classified widget types. In our toolkit, the functionality
could be imported as a layer chain. In the baseline, it could
be obtained using Python’s standard mechanism for
importing modules. Developers were also free to copy and
paste any code from the existing enhancement.

The next four tasks were to classify targets for the Bubble
Cursor. In these tasks, participants were able to reuse any
functionality from their Hello World enhancement. Two
tasks directly correspond to our original implementation:
(4) leaf nodes are tagged as targets, and (5) erroneous tags
are corrected with annotations. The next then improved
upon that implementation by (6) identifying and grouping
related text so that it can be targeted. We have noticed that
groups of text are often clickable targets, such as URLs and
the text adjacent to checkboxes, but our original
implementation only targeted individual glyphs of text.
Finally, in the seventh task (7) minor targets are tagged
based on annotation. These tasks were designed to follow
the natural progression of an implementation, simulating
how a developer might build an enhancement in the wild.

Successes
When using our toolkit, participants took an average of 43
minutes to complete all tasks. No participants completed
the baseline. Figure 9 presents a breakdown of completion
times for each task. Most importantly, our toolkit enabled
participants to implement core logic for a state-of-the-art
enhancement and address unexplored shortcomings of that
enhancement all within a relatively short study session.

To better understand of the difference in completion times,
we conducted a semi-structured interview at the end of the
study and examined the code authored by participants. We
identified important differences between the conditions

Study	 Outline	 for	 Each	 Condition	
Hello	 World	
	 	 1)	 Tag	 leaves	 as	 text	
	 	 2)	 Correct	 text	 labels	 using	 annotations	
	 	 3)	 Group	 related	 text	 	
Bubble	 Cursor	
	 	 4)	 Tag	 leaves	 as	 targets	
	 	 5)	 Correct	 targets	 using	 annotations	
	 	 6)	 Identify,	 group,	 and	 target	 text	
	 	 7)	 Tag	 major	 and	 minor	 targets	

Figure 8: Participants were given 7 tasks in each condition.
The first three implement a Hello World enhancement.
The next four implement and expand upon the Bubble Cursor.

pertaining to code reuse and organization, data
management, and the relationship between code and data.

Code Reuse and Organization
Participants wrote less code and reused a higher percentage
of their code when using our toolkit. Specifically, they
wrote an average of 36 lines using our toolkit versus 75 in
the baseline. This difference was mostly due to our
decomposition of code into layer chains. With our toolkit,
participants would often reuse a layer several times in their
chain, each parameterized with a different annotation
library. In contrast, most of the code in the baseline was a
result of participants copying from another enhancement,
then editing that code to fit their enhancement. Participants
reflected on these differences during the interview:
P4 stated that “the modular approach is good for code
reusability”, and P3 said our toolkit “is the great Unix way -
piping inputs and outputs, reusing small methods”.

Participants also noted that our toolkit yielded more clear
and understandable solutions. For example, when asked to
compare the two conditions, P4 mentioned that “the pipeline
was easier to reason about” with our toolkit, and P6 stated that
“my organization was bad, mainly because I was copy-pasting
stuff around” in the baseline condition.

Participants also viewed our framework as more extensible.
We asked them to explain which tools they would use for
developing enhancements that are more sophisticated than
the Bubble Cursor. P2 responded, “I definitely would use
[Prefab Layers and Prefab Annotations] because it would be easy
to package up layers and give them to someone, and when I add
new layers they don’t break my code.” P1 stated, “it would be
easy to extend my code with some machine learning, because of
the two-step process for importing and then using annotations.”

These successes demonstrate the value of decomposing
code into layers. Participants were not required to write
large amounts of code, but our toolkit still created a path of
least resistance towards clear, extensible, and reusable code.

Understanding Annotations
Participants found our toolkit made it easy to understand
the contents of their annotation libraries. In comparison, it
was challenging to understand the path descriptors used in
the baseline condition. This is partially because our toolkit
provides the entire hierarchy containing an annotated
element. Thus when debugging their code, participants
were able to print the annotation node to the console,
inspect its properties, and view its location in the image. In
contrast, the path descriptors were cryptic because they
only revealed the minimal details of an element’s path
needed to provide a unique reference. P6 mentioned this
problem in the interview, stating, “I liked the tree view a lot,
as a way of navigating and examining elements”. This suggests
Prefab Annotations are a better expressive match [24].

Relationship between Code and Data
Participants using our toolkit worked through each task as
Emily did in our scenario walkthrough. In contrast,

participants faced a critical roadblock in the baseline
condition. This was to address subtle dependencies between
annotations and code. This was exemplified in P2’s session
when implementing Hello World. The next paragraph steps
through this as a comparison to our scenario walkthrough.

P2 successfully implemented functionality for task (1) that
tagged leaf nodes as text. P2 then wrote code to correct
erroneous tags using annotations and added a few
corrections using the debugging tool. With the annotations
working, P2 imported functionality for grouping text and
added a few more corrections. However, these annotations
did not cause any change in the output hierarchy. Confused,
P2 spent several minutes inspecting code while adding and
removing annotations. P2 then discovered the problem: they
were storing path descriptors computed from the final
hierarchy, which was different from the hierarchy in which
corrections were applied before grouping. P2 thus
rearranged their code such that the text corrections were
applied after the grouping. However, this did not work
either because the grouping code relied on those corrections
to robustly determine which elements were text. At this
point, P2 realized they would need to restructure the path
descriptors to be consistent with the tree as it exists before
grouping. P2 spent the remainder of their time developing
this migration. Prefab Annotations removes the need for
developers to migrate annotations between representations.

Challenges for Future Work and Conclusion
We also discovered challenges our participants faced when
using our toolkit. Unanimously, participants found our
toolkit to have a steeper learning curve than the baseline.
Most of this difficulty was regarding the method for
importing annotations. Specifically, participants initially
did not see the benefit of writing explicit code to generalize
annotations. This suggests that it might be useful for layers
to generalize annotations by default, then allow developers
to override the default with their own logic. Importantly,
developers understood the point of defining their own
generalizations, and reported that this added flexibility to
implement more sophisticated enhancements.

Participants also noted that modularity introduced by layers
would sometimes make it difficult to know when a piece of
code would execute. Similarly, they wanted each layer to
document its dependencies on any other layers, as they felt
it was easy to lose track of how a single layer worked in the

Figure 9: This graph presents each participant’s completion
times for each task. None of the participants were able to
complete the baseline condition.

context of a larger chain. Ultimately, we see this overhead
as a pervasive problem in modular programs and view this
as a rich area for future work.

Participants in both conditions found it difficult to
understand the computed path descriptors because they
were based on the low-level pixel hierarchy recovered by
Prefab. This raised a larger issue that elements in the
hierarchy did not have human-readable names. Thus, it
might be useful to include a default set of layers that tag
Prefab’s pixel-identified elements with such names.

Finally, participants requested the ability to more easily
inspect the hierarchy at any point in a layer chain execution.
This highlights a need for improvements in debugging
tools, within which developers might toggle layers on and
off or set breakpoints to view output at specific layers. We
also believe there is an opportunity to explore IDEs for
pixel-based methods, perhaps drawing on ideas from
runtime modification or computer vision [9,16,17].

Prefab Layers and Prefab Annotations dramatically
streamline the implementation of pixel-based runtime
enhancements. Specifically, they help developers overcome
subtle but critical dependencies between code and data.
This toolkit is available at https://github.com/prefab, and
we ultimately see this work as a step towards enabling the
adoption of pixel-based methods in research and practice.

ACKNOWLEDGMENTS
We thank Jeffrey Heer, Dan Weld, and Jacob Wobbrock for
discussions related to this work. This work was supported by the
National Science Foundation under award IIS-1053868.

REFERENCES
1. Banovic, N., Grossman, T., Matejka, J., and Fitzmaurice, G.

Waken: Reverse Engineering Usage Information and Interface
Structure from Software Videos. UIST 2012. 83–92.

2. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R.C. Automation
and Customization of Rendered Web Pages. UIST 2005. 163–172.

3. Chang, T.-H., Yeh, T., and Miller, R. Associating the Visual
Representation of User Interfaces with Their Internal Structures and
Metadata. UIST 2011. 245–254.

4. Chang, T.-H., Yeh, T., and Miller, R.C. GUI Testing Using
Computer Vision. CHI 2010. 1535–1544.

5. Dixon, M., Fogarty, J., and Wobbrock, J. A General-Purpose
Target-Aware Pointing Enhancement Using Pixel-Level
Analysis of Graphical Interfaces. CHI 2012. 3167–3176.

6. Dixon, M. and Fogarty, J. Prefab  : Implementing Advanced
Behaviors Using Pixel-Based Reverse Engineering of Interface
Structure. CHI 2010. 1525–1534.

7. Dixon, M., Laput, G., and Fogarty, J. Pixel-Based Methods for
Widget State and Style in a Runtime Implementation of
Sliding Widgets. CHI 2014. 2231-2240.

8. Dixon, M., Leventhal, D., and Fogarty, J. Content and
Hierarchy in Pixel-Based Methods for Reverse Engineering
Interface Structure. CHI 2011. 969–978.

9. Eagan, J.R., Beaudouin-Lafon, M., and Mackay, W.E.
Cracking the Cocoa Nut: User Interface Programming at
Runtime. UIST 2011. 225–234.

10. Edwards, W.K., Hudson, S.E., Marinacci, J., Rodenstein, R.,
Rodriguez, T., and Smith, I. Systematic Output Modification
in a 2D User Interface Toolkit. UIST 1997. 151–158.

11. Fujima, J., Lunzer, A., Hornbæk, K., and Tanaka, Y. Clip,
Connect, Clone: Combining Application Elements to Build
Custom Interfaces for Information Access. UIST 2004. 175-184.

12. Grossman, T. and Balakrishnan, R. The Bubble Cursor  :
Enhancing Target Acquisition by Dynamic Resizing of the
Cursor’s Activation Area. CHI 2005. 281–290.

13. Grossman, T., Matejka, J., and Fitzmaurice, G. Chronicle:
Capture, Exploration, and Playback of Document Workflow
Histories. UIST 2010. 143–152.

14. Hartmann, B., Wu, L., Collins, K., and Klemmer, S.R.
Programming by a Sample: Rapidly Creating Web
Applications with d.mix. UIST 2007. 241–250.

15. Hurst, A., Hudson, S.E., and Mankoff, J. Automatically
Identifying Targets Users Interact with During Real World
Tasks. IUI 2010. 11–20.

16. Kato, J., Mcdirmid, S., and Cao, X. DejaVu  : Integrated
Support for Developing Interactive Camera-Based Programs.
UIST 2012. 189–196.

17. Meng, X., Zhao, S., Huang, Y., Zhang, Z., and Eagan, J.R.
WADE  : Simplified GUI Add-on Development for Third-party
Software. CHI 2014. 2221–2230.

18. Moscovich, T. Contact Area Interaction with Sliding Widgets.
UIST 2009. 13–22.

19. Myers, B., Hudson, S.E., and Pausch, R. Past, Present, and
Future of User Interface Software Tools. TOCHI 7 (1). 3–28.

20. Nichols, J., Hua, Z., and Barton, J. Highlight: A System for Creating
and Deploying Mobile Web Applications. UIST 2008. 249–258.

21. Nichols, J. and Lau, T. Mobilization by Demonstration: Using
Traces to Re-author Existing Web Sites. IUI 2008. 149–160.

22. Olsen, D.R., Hudson, S.E., Verratti, T., Heiner, J.M., and
Phelps, M. Implementing Interface Attachments Based on
Surface Representations. CHI 1999. 191–198.

23. Olsen, D.R., Taufer, T., and Fails, J.A. ScreenCrayons:
Annotating Anything. UIST 2004. 165–174.

24. Olsen, D.R. Evaluating User Interface Systems Research.
UIST 2007. 251–258.

25. Pongnumkul, S., Dontcheva, M., Li, W., Wang, J., Bourdev, L.,
Avidan, S., and Cohen, M. Pause-and-Play: Automatically Linking
Screencast Video Tutorials with Applications. UIST 2011. 135–144.

26. Savva, M., Kong, N., Chhajta, A., Fei-fei, L., Agrawala, M.,
and Heer, J. ReVision: Automated Classification, Analysis and
Redesign of Chart Images. UIST 2011. 393–402.

27. St Amant, R., Riedl, R., Ritter, F.E., and Reifers, A. Image
Processing in Cognitive Models with SegMan. HCII 2005.

28. Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel, N.
User Interface Façades: Towards Fully Adaptable User
Interfaces. UIST 2006. 309–318.

29. Waldner, M., Steinberger, M., Grasset, R., and Schmalstieg,
D. Importance-Driven Compositing Window Management:
CHI 2011. 959–968.

30. Yeh, T., Chang, T.-H., and Miller, R.C. Sikuli: Using GUI
Screenshots for Search and Automation. UIST 2009. 183–194.

31. Yeh, T., Chang, T.-H., Xie, B.,Walsh, G., Watkins, I.,
Wongsuphasawat, K., Huan, M., Davis, L.S., Bederson, B. Creating
Contextual Help for GUIs Using Screenshots. UIST 2011. 145–154.

