
 

Prefab Layers and Prefab Annotations:  
Extensible Pixel-Based Interpretation of Graphical Interfaces 

 Morgan Dixon, Conrad Nied, and James Fogarty 
Computer Science & Engineering 

DUB Group, University of Washington 
{mdixon,anied,jfogarty}@cs.washington.edu 

 
ABSTRACT 
Pixel-based methods have the potential to fundamentally 
change how we build graphical interfaces, but remain 
difficult to implement. We introduce a new toolkit for 
pixel-based enhancements, focused on two areas of support. 
Prefab Layers helps developers write interpretation logic 
that can be composed, reused, and shared to manage the 
multi-faceted nature of pixel-based interpretation. Prefab 
Annotations supports robustly annotating interface elements 
with metadata needed to enable runtime enhancements. 
Together, these help developers overcome subtle but critical 
dependencies between code and data. We validate our 
toolkit with (1) demonstrative applications and (2) a lab 
study that compares how developers build an enhancement 
using our toolkit versus state-of-the art methods. Our toolkit 
addresses core challenges faced by developers when 
building pixel-based enhancements, potentially opening up 
pixel-based systems to broader adoption. 
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INTRODUCTION AND MOTIVATION 
Pixel-based methods can enable modification of interfaces 
without their code, independent of their implementation. 
For example, the applications in Figure 1 use pixel-based 
methods to enhance the entire desktop. The first is an 
implementation of the Bubble Cursor [5,12], which 
dynamically resizes to always select the nearest target. The 
next is an implementation of sliding widgets [7,18], which 
replaces mouse-based interface elements with touchscreen 
widgets. The third translates the language of interfaces for 
improved localization [8]. Other examples include accessibility 
enhancements, testing frameworks, automation tools, and help 
systems [6,8,30,31]. These enhancements modify interfaces in 
a variety ways, but they are all enabled by methods that use 
pixels as a universal representation. 

Unfortunately, enhancements like these are difficult to 
implement, and so relatively few are available. There are at 
least two major reasons for this. First, interpreting an 
interface from its raw pixel values is a large and 
multi-faceted problem. For example, the translation 
enhancement requires mechanisms to identify interface 
elements, recover text, and perform higher-level analysis of 
that text. Requiring all of this functionality in a single 
application quickly leads to monolithic code that is difficult 
to develop and maintain. This problem is magnified by the 
fact that different enhancements require different 
interpretations. For example, in contrast to the translation 
enhancement, the Bubble Cursor is agnostic to text values 
and only needs to identify clickable targets. When 
enhancements do require similar methods that could 
potentially be reused, the current lack of structured support 
leads developers to re-implement large portions of code. 

Second, writing sophisticated code is not enough to 
successfully interpret most interfaces. This is because some 
information is not obtainable through raw pixel analysis. 
For example, Dixon et al. report that clickable “targets” are 
often ambiguous and cannot be reverse engineered without 
human intervention [5]. This ambiguity is pervasive in 
pixel-based methods and causes unavoidable errors. 
Developers then patch their code by mixing in their own 
outside knowledge about an interface. This results in fragile 
and monolithic code that is difficult to broadly deploy.  

We address these two problems in a new toolkit for 
pixel-based reverse engineering of graphical interfaces. 
First, Prefab Layers helps developers write interpretation 
logic that can be composed, reused, and shared to manage 
the multi-faceted nature of pixel-based methods. Second, 
Prefab Annotations supports robust annotation of interface 
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Figure 1: We present a toolkit that streamlines the 
implementation of pixel-based enhancements. Three examples 
supported by our toolkit include the Bubble Cursor [5,12], 
sliding widgets [7,18], and interface language translation [8]. 



 

elements with metadata that has been inferred, provided by 
a developer, or collected from end-users of pixel-based 
enhancements. Together, Prefab Layers and Prefab 
Annotations help developers focus on the high-level 
functionality of their enhancements instead of the low-level 
challenges of pixel-based analysis. 

Contributions of this work to pixel-based methods include: 

• Prefab Layers, which offer a set of techniques to 
simplify the development of interpretation code while 
encouraging composition and reuse.  

• Prefab Annotations, which offer a set of techniques for 
managing portable and robust interface metadata.  

• Demonstration of reusable interpretations implemented 
using our methods. These range from low-level reusable 
components to high-level pixel-based enhancements.  

• A comparison of how developers use our methods 
versus state-of-the-art tools. We show that our methods 
speed up development time, enable code reuse, require 
less data management, and help developers focus on the 
high-level behavior of their enhancement.   

RELATED WORK 
We focus on pixel-based interpretation of graphical 
interfaces, as applied to runtime modification of existing 
interfaces. This section overviews prior runtime 
modification work, and then looks more specifically at the 
current strengths and limitations of pixel-based methods. 

Runtime Modification 
Runtime modification has broad applications in accelerating 
innovation and facilitating adoption. In classic work, 
Edwards et al. [10] and Olsen et al. [22] modify existing 
interfaces by replacing the toolkit drawing object and 
intercepting commands (e.g., draw_string). They use this to 
update old interfaces with new functionality, such as search 
and bookmark widgets. More recent examples of runtime 
modification leverage the open nature of a website’s 
Document Object Model (DOM) to access and modify 
existing interfaces. Web-based modifications include 
creating mash-ups between existing applications [11,14,28], 
re-authoring web applications for mobile interfaces [20,21], 
and automating repetitious interactions [2,28]. 

Although websites expose a DOM, traditional approaches 
to modifying desktop applications are based in accessibility 
APIs [28] or injecting into an interface toolkit [9,10,22]. 
Accessibility APIs expose interface state, but unfortunately 
are frequently incomplete because application developers 
fail to implement the API. For example, Hurst et al. found 
25% of elements are completely missing [15]. Injection 
techniques insert custom logic into an interface via the 
toolkit or other runtime system. However, injection must be 
carefully crafted for each interface and underlying toolkit. 
This limits the utility of injection for general-purpose 

enhancements, as people typically use a variety of 
applications implemented with several toolkits.  

In contrast, pixel-based methods do not require cooperation 
from the developers of an interface and circumvent 
fragmentation of interfaces and toolkits. Leveraging these 
advantages, researchers have explored a variety of 
pixel-based approaches to recover and modify the structure 
of an interface. St. Amant’s Segman uses hand-crafted code 
to identify specific types of interface elements [27]. Sikuli 
uses template matching and voting on local features for 
image-based identification of interface elements [30]. 
Savva uses more sophisticated computer vision techniques 
for automated visualization retargeting [26]. Finally, PAX 
presents a hybrid approach, supplementing the accessibility 
API with pixel-based processing [3].  

Flexibility and Robustness of Pixel-Based Methods 
Prior pixel-based methods enable a variety of modifications 
to existing interfaces, including contextual and video-based 
tutorials [1,25,31], interface testing frameworks [4], new 
window managers [29], note-taking overlays [23], and 
systems for exploring document workflow histories [13]. 
Although these begin to demonstrate the potential of 
pixel-based methods, most of this initial success is based on 
a low-level understanding of existing interfaces (e.g., the 
locations of salient regions in an image, the position of a 
single element that matches a specific template). There are 
few enhancements based on higher-level interpretations, as 
current tools are not flexible or robust enough to support 
multiple levels of interpretation. 

Althought it is difficult to recover high-level information 
from pixels, the Bubble Cursor and sliding widgets 
enhancements in Figure 1 require relatively sophisticated 
interpretation. Their success is due to their combination of 
interpretation code and human annotation of identified 
elements. Specifically, their systems heuristically infer 
semantic information about interface elements and then use 
human-provided corrections to override erroneous 
inferences. The goal of our toolkit is to support these and 
other complex enhancements. Our validation demonstrates 
that developers can build the same methods used by the 
state-of-the-art Bubble Cursor implementation, and we also 
show how our methods allow developers to easily extend 
the cursor to support more advanced behaviors. We 
describe the details of other enhancements enabled by our 
toolkit, and we also describe how annotations and code can 
be shared among multiple enhancements. 

We build on Prefab’s methods for reverse engineering 
interface structure [6,8]. Prefab identifies interface elements 
from pixels and organizes them into a hierarchy. The root 
corresponds to the processed image, and identified elements 
are added as children to elements in which they are spatially 
contained. This spatial hierarchy is not the same as an 
interface’s logical hierarchy, but represents visible 
containment (e.g., buttons, group boxes, tab panes). 



 

Importantly, this tree only provides identified elements and 
does not include metadata about elements (e.g., whether 
they are targets, their widget type). The following sections 
describe how developers use our methods to build 
high-level interpretations on Prefab’s low-level hierarchy.  

OVERVIEW AND SCENARIO WALKTHROUGH 
We now introduce our toolkit with a brief overview. To 
clarify how developers use our toolkit, this section also 
presents a scenario that walks through the development of 
the interface language translation enhancement in Figure 1. 

Toolkit Overview 
As in prior work [5,6,7,8], our methods are designed to be 
combined with input and output redirection. Figure 2 
illustrates: (1) a source window bitmap is captured, (2) the 
source image is interpreted, (3) a modified interface is 
presented in a target window, (4) input in the target window 
is mapped back to the source, which then (5) generates new 
output that is captured to update the target. Runtime 
modification is realized by rapidly and repeatedly executing 
this cycle. Implementing this cycle is hard because of the 
lack of support for interpreting the source image in step (2). 

To address this challenge, our toolkit decomposes 
interpretation into a series of tree transformations, as shown 
at the top of Figure 2. Interfaces are hierarchies and can be 
reverse engineered by iteratively working from raw pixels 
to a detailed interpretation. Developers implement custom 
interpretations for their enhancement using a combination 
of layers, layer chains, interface metadata (specifically 
tags and annotations), and annotation libraries. 

A layer is a script that performs a specific set of tree 
transformations using the current structure and properties of 
the interface hierarchy, the pixel values of the captured 
screenshot, and any interface metadata. 

A layer chain is a group of layers that execute in sequence. 
An interface is interpreted by passing the raw image into 
the first layer as a single root node, then passing the output 
of each layer into the next. Developers reuse and compose 
existing functionality by concatenating layer chains. 
Alternatively, they modify or enhance a chain by adding or 
replacing layers. As mentioned, Prefab recovers a spatial 
hierarchy from pixels, and so we include this functionality 
as the default set of layers at the beginning of a chain. 
Developers typically append their own custom layers to 
infer higher-level semantics on top of Prefab’s hierarchy.  

Interface metadata stores information about a specific 
node in a hierarchy (e.g., whether a node is a target, a 
corrected translation for a given node). A critical distinction 
is the intended persistence of the metadata representation. 
A tag is interface metadata stored on a node in the 
hierarchy created by a particular layer chain’s interpretation 
of a source image. An annotation is interface metadata 
described in terms of the source image, which can be 
persistently stored and used with different layer chains. 

An annotation library is a set of related annotations, and a 
developer will typically create a library for each type of 
annotation used by an enhancement. Before a layer chain 
executes, each layer can import annotations to be used at 
runtime. The details of how these are robustly stored and 
imported are challenging and discussed in a later section. 

Enhancements are therefore implemented by creating and 
composing combinations of layers and annotation libraries. 
An enhancement might use several instances of a layer, but 
point each at a different annotation library. Alternatively, an 
enhancement might contain several layers that work 
together and share a single annotation library. 

Our toolkit is implemented in C#, with annotation libraries 
implemented as CouchDB databases. We selected 
CouchDB in part because its replication support allows easy 
sharing and synchronization of annotation libraries. As a 
convenience, we also provide an interpreter that uses Iron 
Python to allow layers to be defined in short Python scripts. 
For clarity, this paper presents its example layers in Python. 

Scenario: Runtime Interface Translation 
To better understand how developers use our toolkit, let us 
follow Emily as she implements the interface translation 
enhancement from Figure 1. Emily has found many 
applications do not support her native language, or their 
translations are erroneous and incomplete. Instead of being 
stuck hoping application developers will add or fix their 
translations, she decides to develop an enhancement to 
recover text from the pixels of an interface, translate that 
text, and re-render interfaces incorporating the translations. 
Figure 3 illustrates her implementation. Emily primarily 
composes and parameterizes existing layers, writing only a 
small amount of custom behavior (as shown here in red). 

Emily starts by creating an input and output redirection 
loop as shown in Figure 2, within which a layer chain 
executes upon receiving a screenshot. She then imports a 
layer providing Prefab's base recovery capabilities. This 
outputs a tree representing the elements of an interface, as 
recovered from its pixels. Emily finds the base layer does 
not recover text (an optimization based on the fact that text 
recovery is expensive and many enhancements do not 
require textual content). Emily will obviously need the 
interface text, so she adds a standard text recovery layer.  

 
Figure 2: We present a new toolkit that structures pixel-based 
interpretation as a series of tree transformations. 

#	  main.py	  
import	  prefab_layers	  
chain	  =	  prefab_layers.new_chain()	  
chain.import_layer(‘prefab_identification’)	  
chain.import_layer(‘text_recovery’)	  



 

Emily is unable to find a layer implementing translation, so 
she authors a custom layer. Within her layer, she walks the 
tree recovered by previous layers. For each node containing 
recovered text, she runs the text through a web translation 
service and tags the node with the resulting translation.  

With her core layers built, Emily now focuses on the 
behavior of her enhancement. For each node tagged with a 
translation, she uses Prefab’s pixel-level methods to overlay 
a mask that removes the element’s original text. She then 
renders the translated text within the same bounds. 

 
With her enhancement now working, Emily finds many of 
the translations are erroneous and decides to add interactive 
correction. She builds an interface that allows a person who 
observes an erroneous translation to view the original text 
and provide a correction. She wants these corrections to be 
persistent, so she stores them as an annotation library. She 
then imports a layer that uses the annotations at runtime to 
tag elements with their corresponding corrections.  

Emily also notices she is translating text that should not be 
modified, such as system paths in file widgets. Emily adds 
an annotation library for a “do not translate” flag, updates 
her interface to allow toggling this flag for any element, 
adds a layer to tags nodes according to this annotation, and 
updates her machine translation layer to respect the flag.  

Emily is satisfied her enhancement gives control over 
whether to translate each element, but wants to minimize 
the need to tag elements. She therefore uses a layer that 
trains a classifier using collected annotations as training 
data. Emily does not need to implement this functionality, 
she just imports an existing layer and parameterizes it to use 
her annotation library for training. It then learns a classifier 
based on the annotations and at runtime tags any nodes that 
the classifier determines should not be translated.  

With her enhancement implemented, Emily uses it in a 
variety of applications. She can also share her enhancement 

and its annotation libraries with other people. Eventually, 
she might decide to parameterize her layers to allow people 
to choose a target language. This would require adjustments 
to how she invokes machine translation and would probably 
introduce different annotation libraries to store corrections 
in different languages. Importantly, her layers and 
annotations continue to work together, so she is not 
burdened with migrating data or code as she iterates. 

PREFAB LAYERS 
In defining pixel-based interpretation as a series of tree 
transformations, the primary challenge is ensuring layers 
have the power and flexibility to construct arbitrary 
interpretations while also preserving simplicity in each 
layer (i.e., obtaining a high ceiling and low threshold [19]). 
The naïve approach of simply allowing layers to arbitrarily 
mutate a hierarchy falls short for at least two reasons. First, 
it could be expected to easily regress to monolithic layers, 
undermining our goals for reuse and composition. Second, 
we have found it difficult to reason about the entire 
structure of a 2D interface, especially when in-progress 
mutations mean the current hierarchy represents neither the 
input nor the output of a layer. It is difficult to even traverse 
a hierarchy while also mutating it, and we found more 
complex transformations near impossible to reason about. 

Prefab Layers therefore gives each layer an immutable view 
on its input. We provide a set of tree transformation 
operations, and layers can request any number of operations 
be applied to nodes in the hierarchy. All operations are then 
applied in batch after the layer terminates (i.e., the 
hierarchy is mutated between layers in a layer chain). This 
guarantees layers always observe trees that are in a stable 
state, making it easier to reason about a hierarchy. It also 
limits the scale of transformation that can be accomplished 
in a single layer, encouraging developers to think of 

 
Figure 3: Our toolkit simplifies runtime interface translation. 
It uses layers that recover interface text, decide what text 
should be translated, and then present translations obtained 
using both machine translation and human correction. 

#	  translate_text.py	  
from	  microsoft_translator	  import	  Translator	  
translator	  =	  Translator(‘client	  id’,	  ‘client	  secret’)	  
	  
def	  interpret(interpret_data):	  
	  	  	  	  ‘‘‘	  This	  method	  is	  called	  by	  the	  Prefab	  Layers	  
	  	  	  	  	  	  	  	  toolkit	  when	  it	  needs	  this	  layer	  	  
	  	  	  	  	  	  	  	  to	  perform	  its	  transformations	  ’’’	  
	  	  	  	  root	  =	  interpret_data.tree	  
	  	  	  	  recursively_translate	  (root,	  interpret_data)	  
	  
def	  recursively_translate(currnode,	  interpret_data):	  
	  	  	  	  ‘‘‘	  This	  method	  recursively	  visits	  each	  node	  
	  	  	  	  	  	  	  	  and	  translates	  its	  text	  value	  to	  French	  ’’’	  
	  	  	  	  if	  currnode.get_tag(‘is_text’):	  
	  	  	  	  	  	  	  text	  =	  currnode.get_tag(‘text_value’)	  
	  	  	  	  	  	  	  french	  =	  translator.translate(text,	  ‘fr’)	  
	  	  	  	  	  	  	  interpret_data.add_tag(text,‘translation’,french)	  
	  	  	  	  	  
	  	  	  	  for	  child	  in	  currnode.get_children():	  
	  	  	  	  	  	  	  recursively_translate(child,	  interpret_data)	  

#	  main.py	  
params	  =	  {	  ‘library’	  :	  ‘translation_corrections’	  }	  
prefab_layers.import_layer(‘apply_annotations’,	  params)	  



 

interpretation in discrete steps. In the terminology of Myers 
et al. [19], we create a path of least resistance toward reuse 
and composition by leading developers to create layers that 
each implement a single piece of well-defined functionality. 

Our specific operations are tagging a node, setting an 
ancestor for a node, and deleting a node. We chose these 
operations for simplicity and completeness. Each operates 
on a single element or a pair of elements, and they can be 
combined to create any hierarchy. 

Tagging. Layers can add interface metadata 
at runtime by tagging nodes. Subsequent 
layers can read that metadata to inform their own execution.  

Setting an Ancestor. Layers can require a 
hierarchy be modified to ensure a given 
node is an ancestor of another given node. This can be set 
for two existing nodes (i.e. set one as the parent of the 
other), for an existing ancestor node (i.e., inserting a new 
child), or for an existing child (i.e., inserting a new parent). 

Deleting. Layers can delete nodes from a 
hierarchy. Any children of a deleted node 
are attached to the deleted node’s parent. 

After a layer requests a set of operations, we efficiently 
apply all operations to its input hierarchy. Tag operations 
are trivial, but are executed in batch as part of encouraging 
layers that perform a single step of interpretation. For each 
delete operation, we remove the node and attach its children 
to the deleted node’s parent. We apply ancestry requests by 
adding an edge from each ancestor to its descendent and 
pruning any redundant edges. Finally, we raise an exception 
if these requests do not produce a valid tree (e.g., if 
operations create cycles or multiple paths between nodes). 

PREFAB ANNOTATIONS 
The goal of Prefab Annotations is to store metadata about 
specific interface elements, such that the metadata can be 
accessed and shared by arbitrary layers. Storing metadata is 
trivial, but robustly storing the interface element itself is 
challenging. This is because different layer chains represent 
the element differently (i.e., the tree structure recovered 
from a screenshot depends on the specific layer chain used). 
For example, the sliding widgets enhancement requires a 
tree with related buttons grouped (so they can be replaced 
with a single slider, as in Figure 1). In contrast, language 
translation can leave these buttons separate, but needs to 
group related text. As a result, annotations cannot be stored 
in an encoding that depends on the structure of one specific 
layer chain. Otherwise it would be difficult to share 
libraries of annotations among enhancements. Even within 
a single enhancement, a developer would not be able to 
iteratively build and test a layer chain because its tree 
representations would change throughout development. 

Prefab Annotations address this challenge by storing 
annotations using a pixel-level representation. Specifically, 
an annotation library contains a set of image annotations, 

each stored as an image of an interface, a region within that 
image to be annotated, and associated metadata. When a 
layer imports an annotation library at runtime, the 
pixel-level representations are converted to trees consistent 
with the current layer chain. Therefore, the sliding widget 
enhancement views an annotated element as a node in a tree 
where related buttons are grouped together. Similarly, the 
translation enhancement views that same annotated element 
in a different tree where text is grouped together. 

Figure 4 illustrates this process. First, images in the library 
are interpreted by the preceding layers in the current chain. 
This creates hierarchies consistent with the current runtime. 
We then use region information in each annotation to 
identify the corresponding hierarchy node. We pass these 
matched pairs of image annotations and aligned tree nodes 
to the layer (together with a list of image annotations that 
do not match any nodes). Using these matched pairs, the 
layer computes and stores any information it will need at 
runtime (e.g., path descriptors, a learned classifier).  

For clarity, Figure 5 presents the entire script for a simple 
layer that uses annotations. This layer tags elements at 
runtime that were previously annotated with metadata. The 
layer indexes each annotation using a unique reference that 
can be matched against nodes at runtime. Specifically, it 
computes an XPath-like path descriptor based on properties 
of the annotated node and its ancestors. Importantly, this 
layer does not attempt to generalize the annotation. At 
runtime it visits each node in the input tree and checks if the 
node’s path matches any of descriptors it has stored. If there 
is a matching descriptor, it tags that node with the 
corresponding metadata. These path descriptors always 
represent a valid path that can be retrieved at runtime 
because they are computed from hierarchies consistent with 
the current layer chain. For example, the sliding widgets 
layer can import this layer and use it with an annotation 
library of “replace this widget” Boolean flags. The 
language translation enhancement can similarly import this 
layer with a library of translation corrections. 

This simple tagging layer is one of several exact-match 
layers in our toolkit, each performing one of the tree 
operations in our toolkit. An exact-match deletion layer 
similarly deletes any node that matches a path descriptor. 
These layers are designed to be simple building blocks for 
more advanced layer chains, and the next section introduces 
several additional strategies that go beyond exact-matching 
of path descriptors to more sophisticated generalizations. 

 

 

 

 
 

Figure 4: When a layer imports an annotation library, we 
provide a tree representation for each annotated element. 
Image annotations are interpreted by preceding layers, aligned 
to nodes in the resulting hierarchies, and then handed to the 
layer, where it computes information it will need at runtime. 



 

VALIDATION THROUGH EXAMPLE LAYER CHAINS 
Our toolkit is designed to support diverse pixel-based 
methods. In this half of our validation, we demonstrate and 
give insight into our toolkit by implementing and discussing 
several example layer chains. In the terminology 
established by Olsen [24], these examples demonstrate an 
inductive combination of functionality. Specifically, we 
select examples to illustrate how interpretation code can be 
composed, reused, and shared, and also how annotations 
can be used and shared among enhancements. We start with 
examples of low-level reusable interpretations and then 
move to high-level composition in full enhancements. 

Reusable Low-Level Layer Chains 
This section expands upon the previous section’s reusable 
exact-match layer. Specifically, we present two more 
example layer chains: (1) a reusable chain that learns to 
automatically generalize Boolean annotations, and (2) a text 
recovery chain that applies multiple techniques to recover 
text from an interface. Like the exact-match layer, these are 
reusable building blocks that can be parameterized with an 
annotation library to obtain a desired capability. Decoupling 
the code layers from the data annotations thus creates 
building blocks for developers to create complex behaviors.  

Learning-Based Annotation 
Exact-match annotations are sufficient and even preferable 
for many applications, but others benefit from expediting 
annotation through generalization. We support such 
inference with a layer chain that learns to tag nodes based 
on positive and negative example annotations. For example, 
Figure 2’s demonstration uses this chain to generalize its 
“do not translate” annotation. We implement learning as 
two layers sharing a library of Boolean annotations. The 
first is an exact-match layer, tagging nodes that are 
explicitly annotated as either positive or negative. The 

second applies a classifier to generalize tags onto nodes that 
are not explicitly tagged. Annotations are thus treated as 
ground truth and always override the classifier. Sharing the 
annotation library means a single annotation both tags a 
specific element and contributes to training the classifier. 

Our learning layer uses a decision tree, with features 
computed from an element’s spatial properties, its location 
in a hierarchy, and tags applied by preceding layers. It 
imports annotations by using them as training examples to 
create a classifier. During interpretation, it applies the 
classifier to nodes not tagged by the exact-match layer. Our 
current classification algorithm was designed and evaluated 
in the context of the applications described in this paper, so 
its performance is optimized for our explorations. However, 
our goal in implementing this example is to illustrate how 
any learning algorithm could be deployed in our toolkit. 
Developers could swap in layers that implement custom 
classification algorithms tailored for their application, or 
could use general-purpose classifiers they customize by 
populating an annotation library of training data. 

Text Recovery 
The exact-match and learning-based chains are relatively 
simple, with their power coming from how they can be 
composed. But it is also possible to implement complex 
layer chains providing sophisticated reusable functionality. 
One example is our current chain to recover textual content. 
Prior work has found the extremely low resolution of 
interface text makes it difficult to implement text recovery 
with off-the-shelf character recognition, instead turning to 
human transcription [8]. Other work explores incorporating 
text from the accessibility API [3]. Failures are inevitable in 
both approaches, so we leverage the flexibility of our 
toolkit to combine recovery from the accessibility API with 
human transcription. Figure 6 presents an overview of the 
layer chain, which consists of four main components:  
text classification, grouping related text, human 
transcription, and accessibility recovery. 

The first layer tags each interface element with a Boolean 
indication of whether the node represents text. The chain is 
a parameterization of the learning-based annotation chain, 
trained with positive and negative examples of text 
elements. Prefab’s background differencing discovers many 
types of elements (e.g., text, icons, widgets), but does not 
indicate the types of those discovered elements. This layer 
therefore identifies which should be processed as text. 

The second and third layers are used to group related text. 
Low-level methods often naturally group text within a 
parent. For example, a button with a two-word label will 
group the two text elements. But text rendered without a 
visible container may need explicit grouping (e.g., a 
checkbox may have a multi-word label with no visible 
enclosure). We implement grouping in two layers. A first 
learns to tag each element with a Boolean flag indicating 
whether it should be grouped with the next sibling in 
reading order. A second then performs the actual grouping. 

 
 
def	  import_annotations(annotation_data):	  
	  	  	  	  ‘‘‘	  This	  method	  indexes	  annotations	  using	  
	  	  	  	  	  	  	  	  path	  descriptors,	  so	  it	  can	  tag	  these	  
	  	  	  	  	  	  	  	  annotated	  elements	  at	  runtime.’’’	  
	  	  	  	  runtime_storage	  =	  annotation_data.runtime_storage	  
	  	  	  	  annotated_nodes	  =	  annotation_data.annotated_nodes	  
	  	  	  	  for	  annotation	  in	  annotated_nodes:	  
	  	  	  	  	  	  	  	  path	  =	  get_path(annotation.node,	  annotaion.root)	  
	  	  	  	  	  	  	  	  runtime_storage[path]	  =	  annotation.metadata	  
	  
def	  interpret(interpret_data):	  
	  	  	  	  ‘‘‘	  This	  method	  tags	  nodes	  with	  annotation	  metadata	  
	  	  	  	  	  	  	  	  by	  matching	  path	  descriptors	  against	  each	  node	  ’’’	  
	  	  	  	  currnode	  =	  interpret_data.node	  
	  	  	  	  path	  =	  get_path(currnode,	  interpret_data.tree)	  
	  	  	  	  if	  path	  in	  interpret_data.runtime_storage:	  
	  	  	  	  	  	  	  	  metadata	  =	  interpret_data.runtime_storage[path]	  
	  	  	  	  	  	  	  	  for	  key	  in	  metadata:	  
	  	  	  	  	  	  	  	  	  	  interpret_data.add_tag(currnode,	  key,	  metadata[key])	  
	  	  	  	  #recurse	  on	  children	  
	  	  	  	  for	  child	  in	  currnode.get_children():	  
	  	  	  	  	  	  	  	  interpret(interpret_data,	  child)	  
	  

Figure 5: Layers import annotations for use at runtime. 
Here an exact-match creates a path descriptor from each 
annotation and uses those descriptors to tag nodes at runtime.   

 

 



 

The final two layers tag elements with text values. The first 
obtains these from human transcriptions. It works similar to 
an exact-match layer, but generalizes the annotations 
differently. It uses a hash of the pixel-level appearance of 
annotated text to apply that same annotation whenever it 
finds the same pixels (e.g., it matches multiple buttons with 
the same "OK" label). The second layer obtains text values 
from the accessibility API hierarchy corresponding to the 
captured interface. It finds the set of corresponding nodes in 
the pixel-based hierarchy by testing for spatial containment, 
and tags the parent node with the textual labels. 

Full Layer Chains for Enhancements 
Our final examples demonstrate how our toolkit can be 
used to compose full layer chains used by enhancements. 
Specifically, we examine interface translation, target-aware 
pointing, and sliding widgets. Our toolkit both: (1) lowers 
the threshold to developing enhancements, and (2) raises 
the ceiling to enable new pixel-based enhancements.  

Language Translation 
We previously presented pixel-based language translation 
[8], but the implementation in that initial work is fragile. 
Lacking explicit support for modular and reusable code, 
most of that work focuses on text recovery methods and 
ignores important aspects of translation. For example, that 
work ignores interactive correction (e.g., incorrect machine 
translations, elements that should not be translated at all). 
Figure 2 and our introductory scenario present a new and 
more extensible implementation addressing these issues. 
Our new solution builds directly on reusable low-level layer 
chains, so there is minimal new work required (as 
illustrated by Figure 3’s red highlights of that new work). 

Target-Aware Pointing 
Our prior Bubble Cursor implementation is an example of 
the state-of-the-art in pixel-based enhancements [5,12]. 
It enables target-aware pointing across the entire desktop, 
identifying targets using Prefab and human annotations. 
Specifically, it: (1) uses Prefab to identify a hierarchy of 
elements, (2) uses path descriptors to store annotations 
about whether to target an element (e.g., target a button, do 
not target an icon), and (3) expedites annotation with two 
heuristics, one that targets leaf nodes and one that 
generalizes annotations across identical subtrees. 

Our new toolkit dramatically streamlines this enhancement. 
Figure 7 shows our new implementation, where we first 
instantiate a base Prefab layer and then an exact-match 
layer for target annotations. We then add two custom 
layers, one for each of the target heuristics. Importantly, the 
subtree matching layer shares the same annotation library as 
the exact-match layer, but generalizes those annotations. 
Alternatively, we could replace these lightweight layers 
with our learning-based chain from the previous subsection.  

We also expand upon our prior work by differentiating 
major and minor targets. In our prior work we identified 
that some targets are infrequently used and act as distractors 
to more important targets. We suggested it would be 
valuable to distinguish major versus minor targets, but our 
prior monolithic implementation did not allow exploration 
of this idea. Figure 7 shows that our new toolkit makes it 
trivial to add a layer and annotation library to support 
exploration of this distinction. Existing target annotations 
can continue to be used, and a new annotation is added to 
indicate which of those are minor targets. This example 
shows our new abstractions raising the ceiling relative to 
what we could accomplish with the prior state-of-the-art. 

Sliding Widgets 
The two previous layer chains highlight re-implementations 
of prior systems, but we have also used our toolkit to 
implement an entirely new enhancement. As shown in 
Figure 1, sliding widgets are touchscreen widgets activated 
by sliding a moveable element [7,18]. In the course of 
developing our toolkit, we implemented an enhancement 
that replaces mouse-based widgets with sliding widgets. A 
detailed presentation is presented in our recent work [7].  

The sliding widgets enhancement would have been tedious 
or impractical to develop without our toolkit. Developing a 
new enhancement like this requires iteratively refining code 
and exploring different approaches. But that code also 
requires annotations, and prior approaches to storing such 
annotations are brittle to code changes and would need to 
constantly be migrated. Our toolkit also provides a clear 
conceptual model for reasoning about and describing our 
sliding widgets enhancement. Using figures similar to the 
layer chain illustrations throughout this paper, that paper is 
able to succinctly overview the code and data used in the 
enhancement [7]. Our current contribution is therefore not 

 
Figure 6: Layer chains can implement sophisticated reusable 
interpretation logic. Our text recovery chain combines human 
transcription with text recovered from the accessibility API. 

 
Figure 7: We streamline and expand our Bubble Cursor 
enhancement [5], resolving important limitations of our 
previous implementation. 
 



 

only code, but also a set of abstractions that allow effective 
description of pixel-based interpretation.  

VALIDATION WITH DEVELOPERS IN THE LAB 
The previous section explored examples implemented using 
our toolkit. We also conducted a lab study that compared 
how developers used our toolkit versus a baseline toolset.  

The baseline tools were designed to reflect state-of-the-art 
methods presented in our prior implementation of the 
Bubble Cursor [5]. Specifically, there were two main 
differences between our toolkit and prior methods. First, the 
baseline interpretation logic is implemented as a single 
method, where developers manually organize any code 
invoked in that method. Second, the baseline stores 
annotations using path descriptors, as used in our prior 
work and in a wide variety of DOM-based enhancements. 

To the best of our knowledge, Prefab’s prior methods 
provide the most extensive support for combining code and 
data in real-time modifications. Yeh et al.’s Sikuli offers 
robust scripting tools [30], but less support for annotating 
arbitrary interface elements. In addition, their pixel-based 
methods require a reported 200msec to identify all 
occurrences of a single target. Our toolkit is designed to 
support enhancements that need to more quickly identify 
and annotate all occurrences of many elements, so Prefab’s 
prior methods are a more meaningful comparison. 

We recruited six experienced developers to participate in 
our study. They were all male, with ages ranging from 24 to 
28 years. Although all currently develop software, their 
backgrounds included applied natural science, computer 
vision, software engineering, and programming languages. 
All were familiar with Python and at least one other 
programming language. None of the participants had 
experience with pixel-based reverse engineering. 

Study Protocol 
Study sessions took approximately three hours. Participants 
were asked to implement interpretation logic for two 
enhancements: Hello World and Bubble Cursor. Both were 
implemented twice, once with our toolkit and once with the 
baseline. Participants were allotted 90 minutes for each 
task. To control for learning effects or fatigue, we 
counterbalanced the order in which we presented each 
condition. The Hello World enhancement was designed to 
familiarize participants with the condition. It replaces 

identified text with the string “hello world”, using the 
masking technique described in our scenario walkthrough. 
In both enhancements, participants were asked to reverse 
engineer screenshots captured from an Apple iTunes dialog 
and a Microsoft Word settings dialog. 

The experiment was conducted using a standard desktop 
computer running Windows 7. Developers authored code 
using an off-the-shelf text editor. We also equipped 
participants with a debugging tool that worked similarly to 
a webpage DOM inspector. Using the tool, participants 
could load screenshots, compile and execute their code, 
navigate and inspect the hierarchy output by their code, add 
or delete annotations, and browse through their annotations.  

Both conditions consisted of seven tasks, as in Figure 8. 
The first three were to identify text for the Hello World 
enhancement. Participants implemented a simplified 
version of text recovery, where (1) leaves are heuristically 
classified as text, (2) erroneous tags are corrected with 
annotations, and (3) related text is grouped. For the 
grouping task, we wanted to examine how developers make 
use of existing code, so we gave participants access to 
grouping logic originally developed for an enhancement 
that classified widget types. In our toolkit, the functionality 
could be imported as a layer chain. In the baseline, it could 
be obtained using Python’s standard mechanism for 
importing modules. Developers were also free to copy and 
paste any code from the existing enhancement. 

The next four tasks were to classify targets for the Bubble 
Cursor. In these tasks, participants were able to reuse any 
functionality from their Hello World enhancement. Two 
tasks directly correspond to our original implementation: 
(4) leaf nodes are tagged as targets, and (5) erroneous tags 
are corrected with annotations. The next then improved 
upon that implementation by (6) identifying and grouping 
related text so that it can be targeted. We have noticed that 
groups of text are often clickable targets, such as URLs and 
the text adjacent to checkboxes, but our original 
implementation only targeted individual glyphs of text. 
Finally, in the seventh task (7) minor targets are tagged 
based on annotation. These tasks were designed to follow 
the natural progression of an implementation, simulating 
how a developer might build an enhancement in the wild. 

Successes 
When using our toolkit, participants took an average of 43 
minutes to complete all tasks. No participants completed 
the baseline. Figure 9 presents a breakdown of completion 
times for each task. Most importantly, our toolkit enabled 
participants to implement core logic for a state-of-the-art 
enhancement and address unexplored shortcomings of that 
enhancement all within a relatively short study session. 

To better understand of the difference in completion times, 
we conducted a semi-structured interview at the end of the 
study and examined the code authored by participants. We 
identified important differences between the conditions 

Study	  Outline	  for	  Each	  Condition	  
Hello	  World	  
	  	  1)	  Tag	  leaves	  as	  text	  
	  	  2)	  Correct	  text	  labels	  using	  annotations	  
	  	  3)	  Group	  related	  text	  	  
Bubble	  Cursor	  
	  	  4)	  Tag	  leaves	  as	  targets	  
	  	  5)	  Correct	  targets	  using	  annotations	  
	  	  6)	  Identify,	  group,	  and	  target	  text	  
	  	  7)	  Tag	  major	  and	  minor	  targets	  

Figure 8: Participants were given 7 tasks in each condition. 
The first three implement a Hello World enhancement. 
The next four implement and expand upon the Bubble Cursor. 



 

pertaining to code reuse and organization, data 
management, and the relationship between code and data. 

Code Reuse and Organization 
Participants wrote less code and reused a higher percentage 
of their code when using our toolkit. Specifically, they 
wrote an average of 36 lines using our toolkit versus 75 in 
the baseline. This difference was mostly due to our 
decomposition of code into layer chains. With our toolkit, 
participants would often reuse a layer several times in their 
chain, each parameterized with a different annotation 
library. In contrast, most of the code in the baseline was a 
result of participants copying from another enhancement, 
then editing that code to fit their enhancement. Participants 
reflected on these differences during the interview: 
P4 stated that “the modular approach is good for code 
reusability”, and P3 said our toolkit “is the great Unix way - 
piping inputs and outputs, reusing small methods”. 

Participants also noted that our toolkit yielded more clear 
and understandable solutions. For example, when asked to 
compare the two conditions, P4 mentioned that “the pipeline 
was easier to reason about” with our toolkit, and P6 stated that 
“my organization was bad, mainly because I was copy-pasting 
stuff around” in the baseline condition.  

Participants also viewed our framework as more extensible. 
We asked them to explain which tools they would use for 
developing enhancements that are more sophisticated than 
the Bubble Cursor. P2 responded, “I definitely would use 
[Prefab Layers and Prefab Annotations] because it would be easy 
to package up layers and give them to someone, and when I add 
new layers they don’t break my code.” P1 stated, “it would be 
easy to extend my code with some machine learning, because of 
the two-step process for importing and then using annotations.” 

These successes demonstrate the value of decomposing 
code into layers. Participants were not required to write 
large amounts of code, but our toolkit still created a path of 
least resistance towards clear, extensible, and reusable code. 

Understanding Annotations 
Participants found our toolkit made it easy to understand 
the contents of their annotation libraries. In comparison, it 
was challenging to understand the path descriptors used in 
the baseline condition. This is partially because our toolkit 
provides the entire hierarchy containing an annotated 
element. Thus when debugging their code, participants 
were able to print the annotation node to the console, 
inspect its properties, and view its location in the image. In 
contrast, the path descriptors were cryptic because they 
only revealed the minimal details of an element’s path 
needed to provide a unique reference. P6 mentioned this 
problem in the interview, stating, “I liked the tree view a lot, 
as a way of navigating and examining elements”. This suggests 
Prefab Annotations are a better expressive match [24]. 

Relationship between Code and Data 
Participants using our toolkit worked through each task as 
Emily did in our scenario walkthrough. In contrast, 

participants faced a critical roadblock in the baseline 
condition. This was to address subtle dependencies between 
annotations and code. This was exemplified in P2’s session 
when implementing Hello World. The next paragraph steps 
through this as a comparison to our scenario walkthrough. 

P2 successfully implemented functionality for task (1) that 
tagged leaf nodes as text. P2 then wrote code to correct 
erroneous tags using annotations and added a few 
corrections using the debugging tool. With the annotations 
working, P2 imported functionality for grouping text and 
added a few more corrections. However, these annotations 
did not cause any change in the output hierarchy. Confused, 
P2 spent several minutes inspecting code while adding and 
removing annotations. P2 then discovered the problem: they 
were storing path descriptors computed from the final 
hierarchy, which was different from the hierarchy in which 
corrections were applied before grouping. P2 thus 
rearranged their code such that the text corrections were 
applied after the grouping. However, this did not work 
either because the grouping code relied on those corrections 
to robustly determine which elements were text. At this 
point, P2 realized they would need to restructure the path 
descriptors to be consistent with the tree as it exists before 
grouping. P2 spent the remainder of their time developing 
this migration. Prefab Annotations removes the need for 
developers to migrate annotations between representations. 

Challenges for Future Work and Conclusion 
We also discovered challenges our participants faced when 
using our toolkit. Unanimously, participants found our 
toolkit to have a steeper learning curve than the baseline. 
Most of this difficulty was regarding the method for 
importing annotations. Specifically, participants initially 
did not see the benefit of writing explicit code to generalize 
annotations. This suggests that it might be useful for layers 
to generalize annotations by default, then allow developers 
to override the default with their own logic. Importantly, 
developers understood the point of defining their own 
generalizations, and reported that this added flexibility to 
implement more sophisticated enhancements.  

Participants also noted that modularity introduced by layers 
would sometimes make it difficult to know when a piece of 
code would execute. Similarly, they wanted each layer to 
document its dependencies on any other layers, as they felt 
it was easy to lose track of how a single layer worked in the 

              
Figure 9: This graph presents each participant’s completion 
times for each task. None of the participants were able to 
complete the baseline condition. 

 



 

context of a larger chain. Ultimately, we see this overhead 
as a pervasive problem in modular programs and view this 
as a rich area for future work. 

Participants in both conditions found it difficult to 
understand the computed path descriptors because they 
were based on the low-level pixel hierarchy recovered by 
Prefab. This raised a larger issue that elements in the 
hierarchy did not have human-readable names. Thus, it 
might be useful to include a default set of layers that tag 
Prefab’s pixel-identified elements with such names. 

Finally, participants requested the ability to more easily 
inspect the hierarchy at any point in a layer chain execution. 
This highlights a need for improvements in debugging 
tools, within which developers might toggle layers on and 
off or set breakpoints to view output at specific layers. We 
also believe there is an opportunity to explore IDEs for 
pixel-based methods, perhaps drawing on ideas from 
runtime modification or computer vision [9,16,17]. 

Prefab Layers and Prefab Annotations dramatically 
streamline the implementation of pixel-based runtime 
enhancements. Specifically, they help developers overcome 
subtle but critical dependencies between code and data. 
This toolkit is available at https://github.com/prefab, and 
we ultimately see this work as a step towards enabling the 
adoption of pixel-based methods in research and practice.  
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