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ABSTRACT 

Most people are unaware of how their daily activities affect 
the environment. Previous studies have shown that 
feedback technology is one of the most effective strategies 
in reducing electricity usage in the home. In this position 
paper, we expand the notion of feedback systems to a broad 
range of human behaviors that have an impact on the 
environment. In particular, we enumerate five areas of 
consumption: electricity, water, personal transportation, 
product purchases, and garbage disposal. For each, we 
outline their effect on the environment and review and 
propose methods for automatically sensing them to enable 
new types of feedback systems. 
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INTRODUCTION 

Everyday human behaviors (e.g., home energy use and 
personal travel) are directly responsible for 28% of US 
energy consumption and 41% of US CO2 emissions (Shui 
and Dowlatabadi, 2005). Most people, however, are 
unaware of how their daily activities affect the environment 
nor how often they engage in those activities. Feedback has 
been shown to be one of the most effective strategies in 
reducing electricity usage in the home (Geller, 1982). 
Because of limitations in sensing, however, there has been a 
dearth of feedback technologies in other domains, such as 
personal transportation and water usage. With the advent of 
low-cost sensing technologies, fast computation, and 
advances in machine learning, we now have the potential to 
provide personal, relevant feedback in real time for a 
variety of consumption activities. 

In this paper, we highlight the state-of-the-art in sensing 
electricity, water, personal transportation, product 
purchases, and garbage disposal. In particular, we focus on 
resource consumption that is within an individual’s primary 
locus of control. For each of the five consumption areas, we 
briefly outline their impact on the environment and review 
methods for automatically sensing them. For some areas, 
like electricity, a large number of sensing approaches 
already exist to measure energy consumption (driven in 

large part by utility companies’ need to charge based on 
utilization as well as the ease in which this data can be 
sensed)—for others, like transportation or product 
purchases, very few sensing methods exist. In some cases, 
we also propose our own methods or suggest ways in which 
existing sensing systems could be reappropriated for the 
purposes of feedback technology to reduce consumption. 

The goal here is twofold: (1) to inform the reader about the 
ways in which environmentally impactful human behaviors 
can be sensed; (2) to inspire thinking about ways in which 
these new types of sensor data may be aggregated, 
analyzed, and fed back to the individual in order to increase 
awareness about environmentally impactful activities and 
motivate sustainable behaviors. The scope of this paper 
prevents us from discussing particular feedback designs or 
visualizations (for a review see Pierce et al., 2008 and 
Froehlich, 2009) and instead focuses primarily on the 
sensing aspects. 

Some open questions worth considering while reading 
through the rest of the paper: 

• How can we automatically sense and measure the ways in 
which human activities impact the environment? Is this 
something that even should be done? 

• How do we present this information to the user? Will the 
effective feedback strategies used to reduce home energy 
consumption (Fischer, 2008) translate to other 
environmentally impactful activities such as transit and 
trash disposal habits? 

• Certain activities, such as plane rides, dwarf the impact of 
other activities. What are the implications of such 
contrasts for motivating sustainable behaviors? 

• Assuming environmentally impactful activities can be 
sensed, how can we reduce the cognitive burden of 
consuming all of this information, particularly given that 
“the environment” is rarely a first-order concern of 
individuals when making decisions? 

• How do we reconcile the paradox of creating new 
sensing/feedback technologies to reduce energy 
consumption when the manufacturing, distribution and 
powering of such technologies has an environmental 
impact itself? 
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HOME ELECTRICITY USAGE 

The consumption of electricity is unlike most consumable 
goods: it is abstract, invisible, and untouchable (Fischer, 
2008). Without a tangible manifestation, home energy 
usage often goes unnoticed—unlike, for example, the 
decreasing amount of milk in the fridge, the increasing 
dullness of a razor blade, or a gas gauge nearing empty. In 
addition, energy consumption is never a goal within itself 
but rather a by-product of a wide variety of diverse actions 
such as doing laundry, driving to work, staying warm, or 
watching television. The residential sector accounts for 
21% of the nation’s energy use contributing 20% of CO2 
emissions into the air (US Department of Energy, 2006). 
Moreover, about two-thirds of fossil energy used to produce 
electricity is lost in production, transmission and 
distribution, which means that the electricity consumed is 
about three times as carbon intensive as the primary energy 
source used in its production (Bin and Dowlatabadi, 2005). 

Traditionally, there are two types of electricity sensing 
systems for the home: (1) plug-in load meters that measure 
the power draw of electrical units plugged into them (Kill-

A-Watt
1, Watt’s Up

2) and (2) transformer/transducer sensors 
clipped-on to the home’s main circuit breaker or electric 
meter that provide household-wide (aggregate) energy 
usage information (The Energy Detective

3 (TED), 
PowerCost Monitor

4). Plug-in load meters typically sense 
and provide feedback (e.g., via a small monochrome LCD 
screen) within the same unit. Aggregate sensors 
communicate their measured values to a feedback display 
via a dedicated hardwire connection, wirelessly, or through 
internal home power lines themselves (using a technique 
called power-line carrier, PLC). See Figure 1. 

Literature in environmental psychology has shown that 
appliance-level specificity increases the effectiveness of 
feedback (Fischer, 2008). Sensing solutions that provide 
detailed, appliance specific breakdown of energy usage 
either require several sensing units placed strategically at 
outlets throughout the home (plug-in meters) or multiple 
sensors installed at the circuit breaker box. For example, the 
Whirlpool Corporation designed a breaker-box system of 
the latter type, which could provide per-device energy 
levels assuming the home’s circuits were partitioned in an 
amenable manner. However, they found no standard circuit 
partitioning method across homes: “While one home may 

have several bedrooms combined onto a single circuit, 

another home combined the sockets in two bedrooms with 

part of the living room” (Horst, 2006). 

                                                        

1 http://www.thinkgeek.com/gadgets/travelpower/7657/ 
2 http://www.wattsupmeters.com 
3 http://www.theenergydetective.com/ 
4 http://www.powercostmonitor.com/ 

In contrast to the above approaches, we have developed a 
sensor capable of detecting device specific energy use with 
only a single, plug-in module (Patel, 2007). Our system 
records and analyzes electrical noise on the power line 
caused by the switching of electrical loads. Machine 
learning techniques applied to these patterns identify when 
unique events occur. Examples include human-initiated 
events, such as turning on or off a specific light switch or 
plugging in a CD player, as well as automatic events, such 
as a compressor or fan of an HVAC system turning on or 
off under the control of a thermostat. By observing 
actuation of certain electrical devices, the location and 
activity of people in the space can be inferred and used to 
create new types of feedback displays. For example, a light 
turning on inside the kitchen and then the refrigerator or 
microwave when its door is opened might indicate meal 
preparation. Thus, we could feedback information to the 
resident not just about how much energy the microwave 
consumed but link it to a higher-level human activity, that 
of meal preparation. We believe that linking not just 
specific appliance use to energy consumption but the 
human activity around that use will provide additional, 
useful insights to the user about their consumption habits. 

HOME WATER USAGE 

Water is essential to many activities around the home 
including washing, cleaning, cooking, drinking and 
gardening. Yet, the consumption of water in residential 
homes is a serious concern. Homes use more than half of 
publicly supplied water in the US, which is significantly 
more than either business or industry (EPA, 2008). 
According to US government estimates, 36 states will face 
serious water shortages in the next five years (EPA, 2008). 
Simply a 15% reduction in water usage across US 
households would save an estimated 2.7 billion gallons a 
day and more than $2 billion per year (American Water 
Works Association, 2001). This does not incorporate the 
impact such a reduction would have on water utilities, 
which currently consume about 56 billion kWh per year to 
supply and treat the water—enough electricity to power 
more than five million homes for an entire year 
(WaterSense, 2009). In addition, water heating accounts for 

 

Figure 1. (left) The Kill-A-Watt plug-in load meter. (right) 

The Energy Detective uses sensors that clip-on to the 

home’s main circuit breaker. 
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9.1% of energy usage in the home (Energy Information 
Administration, 2001) so it is critical for residents to 
differentiate the amount of heated vs. non-heated water.  

Most water utility companies provide home water usage 
meters for billing purposes, but these are often outside the 
home, measure water in esoteric units (cubic centimeters 
rather than gallons), do not provide fixture-level feedback, 
and do not communicate with a home network (Figure 2). 
There has recently been a large push towards Automatic 
Metering Technology (AMR) amongst utility companies, 
which automatically send water, gas, and/or electricity 
usage information to their centralized databases. This 
reduces the need for utility employees to physically check 
meters (eliminating travel and transcription errors) and also 
enables bills to be based on real consumption rather than on 
an estimate based on previous consumption. Companies 
such as Greenbox Incorporated

5 are pairing with utility 
companies to build personalized energy portal websites to 
enable households to access their real-time data feeds.   
AMR offers an interesting avenue to explore for easy-
access to resource consumption data; however, it still uses 
existing measuring technology, which only provides 
aggregate information on consumption (and not at a fixture 
level). 

There are two basic approaches for measuring water flow: 
positive displacement and velocity (Satterfield, 2009). 
Positive displacement systems rely on the water to 
physically displace the measuring element (e.g., a piston or 
nutating disc) in proportion to water flow volume. This 

                                                        

5 http://getgreenbox.com/ 

approach is generally very accurate at low to moderate flow 
rates, which is typical in the residential sector and thus most 
residential meters use positive displacement. Velocity 
meters measure the velocity of water through a known 
cross-sectional area and convert this into flow volume. 
There are many types of velocity meters including turbine, 
multi-jet, magnetic, propeller and ultrasonic (see 
Satterfield, 2009).  

Similar to electricity sensors, there are two primary 
locations for sensing water usage: (1) at the water fixture 
itself, which provides localized information about water 
flow at that particular fixture (Arroyo et al., 2005; 
Kuznetsov et al., 2009); and (2) at the primary intake pipe, 
which provides aggregate information on water usage for 
the entire household. Unlike electricity usage sensing 
systems, however, water usage sensing systems of any sort 
are not widely available for purchase in the residential 
sector. The main problems are the often prohibitive cost of 
installation, which requires access to and modification of 
pipes in the home, and the lack of standardization in 
plumbing (e.g., pipe size, intake/output pipe location, etc.).  

Ultrasonic flow meters (a type of non-intrusive velocity 
meter) do not use mechanical pieces to measure flow and 
thus do not require inline pipe installation; instead, they 
attach to the outside of pipes and use ultrasonic waves to 
measure flow (left image in Figure 3). Unfortunately, 
however, this technique typically requires particulates or 
bubbles in the stream, so does not work well with distilled 
or drinking water. Instead, ultrasonic flow meters tend to be 
well-suited for industrial application and are priced for that 
market ($2,000 – 5,000). 

We are building a non-intrusive system similar to the 
ultrasonic flow meters that utilizes sound and vibration to 
measure water usage, based on the work of Fogarty et al. 
(2006, see also right image in Figure 3) and Kim et al. 
(2008). Unlike the ultrasonic meters, we focus on the 
audible frequency range or, more specifically, the 
frequency response range supported by commodity 
microphones. Like our electricity sensor, we leverage the 
home’s existing infrastructure to sense usage. Fresh water 
enters a home at a single point and wastewater leaves the 
home at a handful of locations. We use a set of low-cost 
microphone and accelerometer-based sensors at these 
critical locations linked via low-powered ZigBee wireless 
connections. Attached to the outside of existing pipes, these 
sensors listen for the flow of water. Based on a model of 
water flow into and out of a home, we attempt to provide 
approximately the same information that would be obtained 
by installing sensors directly on sinks, toilets, showers, and 
appliances throughout the home. Our current work is 
focused on deploying these sensing units to multiple homes 
and trying to determine specific flow volume from the 
acoustic/vibration signature data. 

 

Figure 3. (left) A diagram of how ultra-sonic water meters 

work. (right) The audio-based water sensing system 

developed by Fogarty et al. (2006). 

 

Figure 2. A typical public utility supplied water meter 
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TRANSPORT 

Home energy and personal transport are the top two 
contributors of the average American’s CO2 emissions into 
the environment (Weber and Matthews, 2007), accounting 
for over 50% of their total carbon footprint. Transportation 
alone accounts for more than two-thirds of oil consumption 
in the US (Davis, 2008). In 2006, highway vehicles (cars, 
trucks, motorcycles, and buses) were responsible for over 
80% of all transportation petroleum use (including air, 
water, and rail). Nearly half (44%) of US carbon emissions 
are from oil use. 

A large corpus of previous work exists on using wearable 
sensors to infer transportation modes such as walking, 
running and bicycling (Ermes et al., 2006; Lester et al., 
2006; Parkka et al., 2006). Although the recognition 
performance is quite high, the burden of wearing and 
managing multiple sensors makes this approach impractical 
for most individuals, particularly for applications that 
require constant sensing. To mitigate this issue, some 
researchers have focused on reappropriating existing 
sensors available in commodity mobile phones. This has 
often meant leveraging the device’s radio signal (e.g., 
GSM, WiFi) to infer motion (Sohn et al., 2006; Krumm and 
Horvitz, 2004). Such data is often coarse-grain, however, 
and does not provide enough resolution to accurately 
discriminate between specific transit activities.  

More recently, SmartPhones such as the Apple iPhone and 
the T-Mobile G1 (Google’s Android phone) have begun to 
integrate fairly sophisticated sensors such as accelerometers 
and GPS into the device itself. This sensor convergence has 
enabled a slew of research projects aimed at inferring 
human motion from built-in mobile phone sensors (Zheng 
et al., 2008; Saponas et al., 2008). For example, in a 
controlled laboratory study of eight participants, Saponas et 
al. showed how the iPhone’s built-in accelerometer could 

be used to distinguish between walking, running, biking and 
standing with >95% accuracy. Zheng et al. (2008) were 
able to automatically infer walking, driving, bus, and 
bicycling using GPS with a minimum average precision of 
66%. We are currently exploring how combining mobile 
phone accelerometer data with GPS may be used to 
automatically discriminate between driver and passenger. 
This is important for mobile applications, such as the 
UbiGreen Transportation Display (Froehlich et al., 2009), 
that reward carpooling but not driving alone. In addition, 
we believe that relying on the accelerometer over GPS may 
be more energy efficient. Other possible methods for 
determining if two people are riding in the same car: 
detecting real-time route similarity between two or more 
mobile GPS traces (Froehlich and Krumm, 2008), sensing 
co-located Bluetooth signals (Eagle and Pentland, 2005).   

In light of these new SmartPhones, some commercial and 
open-source projects have been released that take advantage 
of the sensor integration. Ecorio

6 (left image, Figure 4) runs 
on Google Android phones and uses GPS to keep track of 
bus and car trips, which are then used to automatically 
calculate a personalized carbon footprint. The greenMeter

7 
iPhone application (right image, Figure 4) uses the built-in 
accelerometer to compute the user’s vehicle power and fuel 
usage characteristics to reduce fuel consumption and cost. 
It’s unclear whether the iPhone accelerometer is accurate 
enough for such analysis; in addition, the greenMeter’s 
interface is rather advanced and geared more towards car 
enthusiasts. Carbon Tracker

8, for the iPhone, calculates 
transportation-based carbon footprints based mainly on self-
report but can use GPS to determine the length of the 
journey so that reported trip distances are more accurate. 

Other potential sources of personal transit related 
information include in-car navigation systems, online travel 
sites like Dopplr

9
 which tracks travel schedules (and now 

includes a CO2 calculator), online bill statements from 
credit card purchases of gasoline, online histories of public 
transportation usage for systems that use digital payments 
systems. For example, Barcelona’s Bicing system uses 
RFID membership cards to track shared bicycling usage 
(Froehlich et al., 2008) and Japan allows individuals to pay 
for the subway using near-field communication on their cell 
phones.  

PRODUCT PURCHASES 

For the purposes of this section, we define “product” as a 
good that can be purchased (e.g., in the retail setting). This 
may include food and drink, tobacco, furniture, cleaning 
products, appliances, clothing, etc. The environmental 

                                                        

6 http://www.ecorio.org 
7 http://hunter.pairsite.com/greenmeter/ 
8 http://www.clearstandards.com/carbontracker.html 
9 http://www.dopplr.com 

 

Figure 4. (left) ecorio runs in the background of the 

phone and keeps track of car and bus trips via GPS to 

calculate carbon impact. (right) greenMeter uses the 

mobile phone’s internal accelerometer to measure 

forward acceleration and compute fuel economy and 

carbon footprints. 
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impact of a product consists of its entire lifecycle from 
“cradle-to-grave,” which includes production, delivery, and 
disposal (we focus on waste in the next section). Typically, 
food and drink is cited as a major contributor to 
environmental impacts; this includes the full food 
production and distribution chain from “farm-to-fork” 
(Tukker, 2006). Meat has the most impact within this 
consumption area, followed by dairy products. In a review 
of seven exemplar studies on the environmental impacts of 
products, a European Union report (Tukker, 2006) found 
that four concerns were typically highlighted: global 
warming, acidification, photochemical ozone formation, 
and eutrophication (a process whereby water bodies, such 
as lakes or streams, receive excess nutrients that stimulate 
excessive plant growth). 

Automatically sensing of product purchases is a difficult 
problem, particularly in situ. One potential method would 
be an augmented reality system that constantly records what 
an individual sees and then feeds back information about 
environmental impact. Since this would require a 
SenseCam-like system (Hodges, 2006) paired with near 
perfect computer vision for object recognition it is currently 
technologically infeasible (not to mention the privacy 
implications).  A somewhat less intensive approach would 
be something like the Amazon Mobile Application

10, which 
allows users to upload a photo of any item and provides 
pricing information after a five minute delay via email (if 
the item exists in the Amazon.com catalog). The system 
relies on crowd-sourcing for product recognition rather than 
advanced computer vision techniques. Another approach is 
to identify products using the built-in mobile phone camera 
as a barcode scanner, a technique first pioneered by Smith 
et al. in 2003 with AURA. ShopSavvy

11 and 
CompareEverywhere

12, for example, allow users to search 
                                                        

10 http://www.amazon.com/gp/feature.html?ie=UTF8&docId=1000291661 
11 http://www.biggu.com/ 
12 http://compare-everywhere.com/ 

for the best prices online and through inventories of nearby 
stores using a mobile phone's built-in camera and GPS 
(Figure 5). 

These applications emphasize price comparison but could 
be easily modified to include details on environmental 
impact. In addition, their information need not be tied 
directly to the product itself but also to the environmental 
practices of the store selling the product. Indeed, the 

GoodGuide iPhone Application
13

 provides an easy way to 
search for information on the health, environmental, and 
social performance of everyday products and companies 
(e.g., the impact of the creation of the product and/or the 
chemical content). In all of these examples, the user must 
manually search for information. 

RFID (Radio Frequency Identification) tags, which can be 
read without a line of sight unlike bar codes, also pose new 
opportunities to sense products in situ; however, the 
technology is still too nascent and expensive to supplant 
UPC as the standard tracking label. Wal-Mart is utilizing 
RFID to lower operational costs by streamlining the 
tracking of stocks, sales and orders as RFID can be used to 
pinpoint individual items as they move across a global set 
of locations from factories, vehicles, and stores (Want, 
2006). Thus, there could be a time in the future when most 
products (even candy bars) are imbued with RFID and 
mobile phones could be integrated with small RFID readers 
such that a quick swipe would be sufficient to identify the 
product. Of course, some products such as produce and 
restaurant foods are not amenable to RFID or UPC bar 
codes. So, this solution would not scale to all product 
purchases. Some restaurants may be open to listing 
environmental impact information or placing bar codes next 
to menu items to allow customers to track consumption and 
receive information about the environmental impact of their 

                                                        

13 http://www.goodguide.com/about/mobile 

  

Figure 5. CompareEverywhere uses the mobile phone 

camera as a barcode scanner to retrieve pricing 

information and recommend nearby stores in situ. 

   

Figure 6. (left) RecycleBank automatically tracks 

household recycling using RFID and electronic scales. 

(right) JetSam is a prototype trash tracking system that 

snaps pictures and weighs trash as its deposited. 
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food. 

A completely separate source of product purchase 
information, which is not in situ, but could provide a basis 
for a comprehensive analysis of all product purchases is the 
combination of electronic receipts and credit card 
statements (Schwartz et al., 2009). Electronic receipts are 
common for online purchases but not so for brick-and-
mortar retail. Companies like Commerciant

14 are beginning 
to offer restaurants and retailers solutions for storing and 
retrieving electronic receipts with customer signatures but 
this data is not made available to the customers themselves. 
Whereas credit card statements provide only information on 
the location, source, and cost of purchase, an electronic 
receipt would also include an itemized list of purchases. 
Accounting programs such as Microsoft Money or Quicken 
could provide analytic tools to measure the environmental 
impact of purchases, just as they do for measuring purchase 
behavior.  

GARBAGE 

The EPA reports that in 2007 the US generated 
approximately 254 million tons of municipal solid waste 
(MSW)—this is about 4.6 pounds per person per day, or 
roughly 130,000 pounds over an average lifetime (EPA 
Office of Solid Waste, 2008). The average American 
manages to recycle 1.5 of the 4.6 pounds per day (~33%); 
however, the rest ends up in landfills (54%) or combusted 
for energy (13%). Many of the materials typically found in 
household waste such as batteries, aerosols, oils, acids, and 
fluorescent tubes have hazardous environmental impacts. In 
addition, the entire lifecycle of waste, from the 
manufacturing and transportation of products and product 
packaging to the infrastructure required to deal with its 
disposal (e.g., garbage trucks, landfills) has an enormous 
ecological consequence.  

How can we sense what a person throws away—
particularly as they move about the world discarding items 
at home, work, parks, on the street, etc? This problem is far 
from being solved; however, constraining it to sensing the 
amount of trash a household or business generates is a 
much more tractable. Recently, waste management 
organizations in England have begun installing RFID tags 
in garbage cans. Garbage trucks then weigh the cans and 
scan the RFID tag to calculate the amount of trash 
generated by that household for the week (Null, 2006). This 
idea has infiltrated recycling programs as well; 
RecycleBank

15 (left image, Figure 6) uses a similar method 
for tracking how much a home recycles and gives back 
reward points that can be redeemed at retailers. If and when 
RFID becomes pervasive, it could also make recycling/trash 

                                                        

14 http://www.commerciant.com/ 

15 http://recyclebank.com/ 

centers more efficient as the products could be immediately 
identified for sorting. 

There have also been a few attempts sensing garbage within 
the HCI community (Holstius et al., 2004; Paulos and 
Jenkins, 2005). Paulos and Jenkins built an augmented 
trashcan called Jetsam (right image, Figure 6) that used 
three types of sensors: a built-in camera (to record the 
trash), an infrared sensor to detect basic interactions such as 
adding or removing waste from the bin, and an electronic 
scale to measure the amount of trash. The items added to 
the trash were automatically photographed and logged 
along with their weight. Although Paulos and Jenkins built 
Jetsam as part of an Urban Probe (i.e., a thought provoking 
art installation), it is interesting to think about future trash 
and recycling bin designs in terms of their built-in sensing 
capabilities to, for example, automatically recognize trash 
that could be recycled or toxic waste such as batteries or oil 
that should be disposed of differently. The garbage could 
also attempt to associate trash with person by logging the 
nearest mobile phone identifiers (e.g., Bluetooth wireless 
ids) when a piece of trash is deposited. In the near future, 
however, such designs to the common trash/recycling bin 
are cost prohibitive.  

CONCLUSION 

In this paper, we highlighted five areas of consumption that 
impact the environment through everyday activities: 
electricity, water, transportation, product purchases, and 
waste. We outlined the state-of-the-art in automatically 
sensing each area and proposed others. Space limitations 
prevented us from discussing important issues that underlie 
a world pervaded by sensors, for example, privacy 
implications, energy used to power sensors, environmental 
costs of manufacturing and disposing of sensors. These 
issues are important, however, and deserve discussion. In 
addition, we focused primarily on how to sense rather than 
how to feed this information back to the user, which is most 
definitely an HCI problem and, we believe, a rich, open 
future area of research. 

The main point of this paper was to: (1) inform researchers 
and practioners in the CHI community that soon a large 
amount of consumption-related data will be available—we 
should start thinking about interesting applications, 
interfaces, and feedback designs to make use of this data 
and (2) highlight the many different ways that exist to 
currently sense consumption, point out some limitations of 
sensing and propose a few new methods.  
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