
22 July/August 2011 Published by the IEEE Computer Society 0272-1716/11/$26.00 © 2011 IEEE

Physics-Based Characters

Simulating 2D Gaits with a Phase-
Indexed Tracking Controller
Yeuhi Abe ■ MIT

Jovan Popović ■ Adobe

Despite physical simulation’s advantages,
it’s often considered an overly complex
or obtuse way to animate characters.

This is partly because existing character control-
lers require tuning esoteric parameters with little
apparent connection to the motion they produce.
Animators have difficulty tuning these parameters
to produce a desired motion in a particular style.

Tracking controllers, a new breed
of physical controller, look like a
promising way to make control-
ler design more intuitive. They
require only a single motion as
input. This approach automati-
cally computes the control out-
puts for the character, such that
the character mimics the input
motion as closely as possible.
Unfortunately, tracking control-
lers tend to lack robustness to
even small perturbations from
the input motion. Making robust
tracking controllers has been an
ongoing challenge.

Here, we propose a 2D track-
ing controller that improves robustness by al-
lowing for variations in the timing of tracked
motions. Previous tracking methods lack robust-
ness partly because they adhere too rigidly to the
input motion’s original timing. For example, con-
sider a character that’s pushed from behind while
walking. Previous methods would try to match the
step’s original timing, whereas a more robust reac-
tion would be to take a quick step to regain bal-
ance. Owing to our controller’s time-invariance,
we call it a phase-indexed tracking controller, as op-

posed to previous controllers, which are best de-
scribed as time-indexed.

To demonstrate phase-indexed tracking, we devel-
oped a walking controller that exhibits robustness
to unanticipated terrain and to force perturbations
while mimicking an input motion’s style (see Figure
1). Our approach can withstand external force per-
turbations an order of magnitude larger than the
state-of-the-art, time-indexed controller based on
the nonlinear quadratic regulator (NQR).

At the heart of our controller are motion con-
straints. One of their benefits is that they induce
a reduced dynamics we can use to design control
policies that incorporate prediction. Prediction
lets controllers take into account current actions’
consequences, which is important for controlling
characters that exhibit lifelike reaction. (For more
information on biped controllers in animation,
see the related sidebar.)

Phase-Indexed Tracking
A phase-indexed tracking controller mimics an
input motion’s joint configurations while allow-
ing the overall timing to deviate. To do this, it
first identifies in the input motion a state vari-
able that’s monotonic with respect to time. The
controller uses motion constraints to synchro-
nize the character’s remaining degrees of freedom
(DOF) with this variable, as opposed to time. For
example, for walking, the controller synchronizes
the character’s internal DOF with the swing leg’s
angle (see Figure 2). This produces a robust gait
that mimics the input motion’s style.

Character Dynamics
First, we must describe our character’s dynamics.

Current time-indexed trackers
lack robustness because they
adhere strictly to the input
motion’s timing. A proposed
phase-indexed tracker
deviates from that timing and
can withstand larger force
perturbations than nonlinear
quadratic regulators. The
tracker also induces a reduced
dynamics that can be used to
design robust control policies
that incorporate prediction.

 IEEE Computer Graphics and Applications 23

For both control and forward simulation, we model
our character as a collection of rigid bodies adjoined
by joints. We describe the configuration by a vector
of joint angles q ∈ 𝒬. The controller provides a vec-
tor of joint forces u ∈ 𝒰. We then determine the
character’s motion by integrating a standard set of
motion equations.1

Here, we write the equations in a decoupled
form that explicitly delineates the root coordinates
qr (and forces ur) from the internal DOF qa (and
forces ua):

M M

M M

q
q

u
u

r ra

ra a

r

a

r

a
T

=

��

��

.

Figure 1. A phase-indexed tracking controller adapts robustly to new terrain.

The simulation and control of biped characters has long
been an area of interest for animation research. Some

of the most successful biped controllers relied on procedural
feedback laws to produce motion.1–3 However, tuning the
parameters of these controllers so that they produce a de-
sired motion is difficult. Various automatic approaches
exist for tuning the parameters, but they involve long
stochastic searches with carefully chosen objective-
shaping terms.4,5 Recently, researchers have proposed
a hybrid approach that combines procedural feedback
laws with data-driven trajectories.6

However, an alternative approach is to directly track a sin-
gle input motion using a tracking controller. Track ing control-
lers are easy for animators to use because they don’t require
tuning of parameters to produce a desired motion. The first
tracking controllers used simple proportional-derivative
(PD) joint servos that couldn’t handle full-body balancing.7
More sophisticated tracking controllers coordinated the
full body to enforce static balance criteria8,9 but were still
inadequate for dynamic motions such as walking and run-
ning. Recently, researchers devised tracking controllers
incorporating a predictive feedback strategy that suc-
cessfully handles walking and running.10,11 However, they
lack robustness and tend to fail when confronted with
un planned disturbances in the environment. Evidence sug-
gests that this is due partly to an overly strict adherence to
the input motion’s original timing.12

References
 1. I. Mordatch, M. de Lasa, and A. Hertzmann. “Robust Physics-

Based Locomotion Using Low-Dimensional Planning,” ACM

Trans. Graphics, vol. 29, no. 3, 2010, article 71.

 2. M.H. Raibert and J.K. Hodgins, “Animation of Dynamic

Legged Locomotion,” ACM Siggraph Computer Graphics, vol.

25, no. 4, 1991, pp. 349–358.

 3. K. Yin, K. Loken, and M. van de Panne, “Simbicon: Simple

Biped Locomotion Control,” ACM Trans. Graphics, vol. 26,

no. 3, 2007, article 105.

 4. M. van de Panne and A. Lamouret, “Guided Optimization

for Balanced Locomotion,” Proc. 6th Eurographics Workshop

Computer Animation and Simulation, Eurographics Assoc.,

1995, pp. 165–177.

 5. J.M. Wang, D.J. Fleet, and A. Hertzmann, “Optimizing Walking

Controllers,” ACM Trans. Graphics, vol. 28, no. 3, 2009, article 168.

 6. Y. Lee, S. Kim, and J. Lee, “Data-Driven Biped Control,” ACM

Trans. Graphics, vol. 29, no. 4, 2010, article 129.

 7. V.B. Zordan and J.K. Hodgins, “Motion Capture-Driven

Simulations That Hit and React,” Proc. 2002 ACM Siggraph/

Eurographics Symp. Computer Animation (SCA 02), ACM

Press, 2002, pp. 89–96.

 8. Y. Abe, M. da Silva, and J. Popović, “Multiobjective Control

with Frictional Contacts,” Proc. 2007 ACM Siggraph/Euro

graphics Symp. Computer Animation (SCA 07), ACM Press,

2007, pp. 249–258.

 9. A. Macchietto, V. Zordan, and C.R. Shelton, “Momentum

Control for Balance,” ACM Trans. Graphics, vol. 28, no. 3,

2009, article 80.

 10. M. da Silva, Y. Abe, and J. Popović, “Interactive Simulation

of Stylized Human Locomotion,” ACM Trans. Graphics, vol.

27, no. 3, 2008, article 82.

 11. U. Muico et al., “Contact-Aware Nonlinear Control of Dynamic

Characters,” ACM Trans. Graphics, vol. 28, no. 3, 2009, article 81.

 12. Y. Ye and C. Karen Liu, “Optimal Feedback Control for

Character Animation Using an Abstract Model,” ACM Trans.

Graphics, vol. 29, no. 4, 2010, article 74.

Biped Controllers in Animation

24 July/August 2011

Physics-Based Characters

In this equation, M is the mass matrix. For for-
ward simulation, qr ∈ R3 describes the 2D char-
acter’s global rotation and translation, which we
assume to be unactuated (that is, ur = 0). We also
use the motion equations to derive the feedback
in the controller.

The character dynamics we use depends on the
character’s contact state with the environment.
For example, in the single- or double-support
stages of walking, it’s easier to assume a fixed con-
nection between the character’s stance foot and
the ground. (In single support, one foot swings
through the air; in double support, both feet touch
the ground.) So, for control, we abuse notation
and use qr ∈ R to describe the ankle angle of the
flat-stance foot.

Motion Constraints
We use motion constraints primarily to derive the
feedback that enforces the relationship between
the character’s internal DOF. However, they have
much broader applicability. (For more informa-
tion, see the “Motion Constraints” sidebar.) Here,
we describe motion constraint theory in the most
general terms.

Motion constraints rely on an invertible coordi-
nate transformation,

H–1(q) = [hu(q)T, ha(q)T]T : 𝒬 → Rn,

which maps joint angles to a partitioned set of
controlled, ha ∈ Rm, and uncontrolled, hu ∈ Rn–m,
coordinates. Fortunately, coming up with such
transformations is easy; we discuss a simple one
useful for bipeds later. We assume the size of ha is
the same as the number of actuated DOF.

We also define a scalar variable q(hu) as a func-

tion of the unactuated coordinates hu. The choice
of q will vary depending on the type of motion
being tracked, but it is assumed to be monotonic
in time. For example, for walking or running mo-
tions, a natural choice for q is the absolute angle of
the vector between the stance ankle and the pelvis
(see Figure 2).

We define the motion constraints y by the re-
lationship

y = ha – cw(q) = 0,

where cw(q) is a parametric function (a spline for
our purposes) controlled by parameters w.

Because the size of y is the same as the number of
actuated DOF, precise control is possible through a
partial feedback linearization of the form

��h A A u bh h hu a ru u u= + +0 1u (1)

��y A u A u by y= + +0 1
a r y, (2)

where A and b are matrix and vector quantities that
can be solved for, and Ay

0 is known to be full rank.
Our assumption that ur is underactuated prevents
direct control of ��hu and ��y simultaneously. How-
ever, we can stabilize the motion constraint around
y = 0 by applying feedback of the form

u A y A u by y ya r= () −()0 1−
−

1
��* (3)

�� �y y y*= − −
1 1

2e e
k ks d ,

where ks and kd are gains and e controls the ex-
ponential rate of convergence of y y, �() to (0, 0).
Although we could directly invert Ay

0 , that’s not
the most efficient way to solve for ua. We can for-
mulate efficient O(n) algorithms similarly to Roy
Featherstone’s articulated-body method.1

A Reduced-Dimension System
When we enforce the motion constraints through
controller feedback (when y = 0), we can express
the state solely in terms of the uncontrolled coor-
dinates hu:

q = H(ha, hu) = H(cw(q(hu)), hu) = qw(hu)

� �q
q
h

h=
∂
∂

w

u
u ,

where qw is a map from the uncontrolled coordi-
nates to the full state, with the subscript w de-
noting the dependence on the motion constraints’
parameters. The subset of states that can be rep-
resented by qw (and its tangent space operator 𝒯),

Time-indexed trajectory

Time

Motion constraints

= qa

qa

q

= qr

θ

θ

Figure 2. Motion constraints enforce a kinematic relationship between
a state variable q and the actuated degrees of freedom (DOF) qa,
with qr indicating the root coordinates. Phased-indexed tracking fits
the constraints’ parameters to match a specific input motion. The
constraints serve a function similar to the trajectories tracked by time-
indexed controllers, but without enforcing a specific timing.

 IEEE Computer Graphics and Applications 25

q q y y q q, , ,� � �() () ={ } ⊂ ()0 TQ ,

is the zero-dynamics set. It’s parameterized by the
reduced coordinates h hu u, �().

By substituting Equation 3 into Equations 1 and
2, we write the resulting closed-loop dynamics as

�� � �h f q q g q q uu r= ()+ (), ,

�� �� �y y q q= ()* , ,

where f and g are computable functions of q and �q.
Finally, when the constraints have stabilized to

the set y y, �() = 0 , we can write the dynamics in a
simplified form,

�� � �h f h h g h h uu u u u u r= ()+ (), , (4)

��y = 0,

which depends only on h hu u, �(). The dynamics of
the system written in this reduced form is called
the zero dynamics of y.

Motion Constraints for 2D Bipeds
When designing motion constraints for 2D bipeds,
we assume a specific form of the coordinate trans-
form H:

ha = qa, hu = q(q)

(see Figure 2). The motion constraints take on the
form

y = qa – cw(q), (5)

and the zero-dynamics set is parameterized by the
reduced coordinates q q, �()∈ S alone:

q q

q
q

= ()

=
∂
∂

w

w

q

q
q� � . (6)

Eric Westervelt and his colleagues first intro-
duced this choice of H to model the unactuated
ankle of a biped with point feet.2 Our character
models have feet, but the torque that we can ap-
ply at the ankle without causing the foot to rotate
and slip is limited. So, modeling the ankle as an
unactuated joint, at least initially, is still prudent.

Designing Motion Constraints for 2D Bipeds
Motion constraints aim to mimic an input mo-
tion’s joint configurations. We do this by finding
the parameters w that best fit the motion. First, we
divide the motion into different stages depending

on the contact configuration between the character
and the ground. For example, we divide a walk cycle
into a single-support and a double-support stage.

A different set of motion constraints is active
during each stage. In general, between stages, im-
pulsive collisions change the character’s velocity
state discontinuously. We must ensure that the
motion constraints at the end of one stage are con-
sistent with the motion constraint at the begin-
ning of the next stage. We call this the consistency
condition.

At contact events, we assume a standard inelastic
impulse between the character and environment:

L � �q q− += , (7)

where �q− and �q+ are the joint velocities before
and after the impulse and L is a linear map that
depends only on the configuration of q at the im-
pulse event. By substituting Equation 6 into Equa-
tion 7, we see that the condition for consistency is

L L
∂
∂

=
∂
∂

=
∂
∂

∂
∂

∂
∂

⇒ =

− + −q q q
q

qw w w w

q
q

q
q

q
q

q
q� � �1 1 0

0 CC
q q

q
q

=
∂

∂
−

∂
∂

∂
∂

∂
∂

L Lw w w0 1 0

q q
q

q
, (8)

where w0 and w1 are the constraint parameters in
the adjacent phases.

Finally, we solve for the parameters w that satisfy

The feedback mechanism we call motion constraints is also
called virtual constraints in the robotics and control literature.

They’re widely used to analyze nonlinear and underactuated con-
trol systems1,2 because they effectively reduce a complex dynamic
to a simpler one that’s easier to study. Motion constraints have
been particularly fruitful in the analysis and control of simplified
biped walkers.2–4

References
 1. C. Byrnes and A. Isidori, “Asymptotic Stabilization of Minimum Phase

Nonlinear Systems,” IEEE Trans. Automatic Control, vol. 36, no. 10,

1991, pp. 1122–1137.

 2. A.P. Shiriaev and C. Canudas, “Constructive Tool for Orbital Stabi-

lization of Underactuated Nonlinear Systems: Virtual Constraints

Approach,” IEEE Trans. Automatic Control, vol. 50, no. 8, 2005, pp.

1164–1176.

 3. C. Canudas, “On the Concept of Virtual Constraints as a Tool for

Walking Robot Control and Balancing,” Ann. Rev. in Control, vol. 28,

no. 2, 2004, pp. 157–166.

 4. E.R. Westervelt et al., Feedback Control of Dynamic Bipedal Robot

Locomotion, CRC Press, 2007.

Motion Constraints

26 July/August 2011

Physics-Based Characters

the consistency condition (see Equation 8) and
that minimize y along the input motion’s trajec-
tory. The optimization takes the form

min

 ,

w
i

i

w

j

ky
c

C

2

2

2
2

0

+
∂
∂

=

∑ ∑ qq

subject to

where yi is the value of the motion constraints at
each time index i along the walk cycle, Cj is the
consistency condition at stage transition j, and
k is a scalar regularization term that helps avoid
large accelerations in the motion constraints. The
consistency condition is nonlinear in w because
L depends on the character’s configuration at the
transition between stages. We solve the system
using nonlinear optimization with finite differ-
encing of the gradients. Generally, we can obtain
solutions in minutes on a desktop computer.

Robust Contact and Double Support
The feedback on the motion constraints assumes a
fixed connection between the swing foot and the
ground. However, in simulation, the character’s
foot isn’t actually attached to the ground. When
the input motion is tracked closely, ground reac-
tion forces produced by the character remain in a
friction cone, thus acting identically to the fixed
foot. However, when large perturbations occur, the
feedback from the motion constraints might gen-
erate ground reaction forces outside the friction
cone. When this occurs, the simulated character’s
foot will rotate or slip on the ground, often result-
ing in the character falling. To prevent this, we
must temporarily violate the motion constraints
in favor of keeping the foot steady.

The Foot Rotation Indicator Policy and
Contact Preservation
To prevent the foot from slipping, we compute the

resulting ground reaction force (GRF)
�
fGRF and en-

sure that it’s within a Coulomb friction cone. To
prevent foot rotation, we compute the foot rotation
indicator (FRI) point pFRI, a point that must remain
in the support of the stance foot to prevent rota-
tion3 (see Figure 3). Formally, pFRI is defined as the
point on the ground plane such that

u p fr = ×FRI GRF

�
, (9)

where ur is the torque on the ankle (assuming a
massless foot and the origin at the ankle joint). It
is worthwhile noting that the FRI is identical to
the similar-purposed zero-moment point (ZMP)
for an equivalent mechanism with a fixed foot.3

Under the motion constraints’ feedback, the
choice of ur fully determines the system’s instan-
taneous acceleration (compare this with Equation
4). Because

�
fGRF is solely a function of the center

of mass’s acceleration, we can compute this linear
relationship:

�
�f u bGRF GRF GRF= () +A q q, r . (10)

In the 2D case, Equation 9 reduces to

u f p f pr
y x x y= −()
� �
GRF FRI GRF FRI . (11)

By substituting Equation 10 into Equation 11
and solving for ur, we can see that to prevent the
foot from rotating, we must limit ur to the set

u
p b b p
p p

r y=
−

− −
FRI GRF GRF FRI

GRF FRI GR

y x y x

y xA A1.0 FRI FF
FRI FRI FRIx
x x xp p p− +< <

,

 (12)

where pFRI
x+ and pFRI

x− are the upper and lower
bounds of the support foot’s contact with the
ground. Rather than choosing ur directly, we de-
fine an FRI policy,

Π q q, : ,�() →

 ∈+ −S Rp pFRI FRI

x x ,

which maps from the reduced state q q, �()∈ S to a
value of pFRI in the valid range. Given a value of
pFRI from the policy, we compute ur using Equation
12 and then ua using Equation 3. This completes
the calculation of the joint torques.

In extreme cases, the computed torque still
produces a GRF that’s outside the allowable fric-
tion cone, which would cause the character to
slip. To prevent this, we project the resulting GRF
back onto the friction cone. However, because the
GRF is no longer consistent with the motion con-

p x–

pFRI pFRIptoe
fGRF

FRI p x+
FRI p x–

FRI p x+
FRI

(a) (b)

fGRF

Figure 3. The foot rotation indicator point pFRI and ground reaction
force

�
fGRF during (a) single and (b) double support. The FRI’s horizontal

component, pFRI
x , must remain within the bounds of the support

p pFRI FRI
x x+ −

, to prevent foot rotation. The swing toe, ptoe, is constrained to

remain in contact with the ground during double support.

 IEEE Computer Graphics and Applications 27

straints, a least-squares minimization is necessary
to compute the final joint accelerations:

min

,

*

��
�� ��

� �

�

q
y q

f f

p

()

=

=

2

subject to GRF GRF

FRI Π q qq(), (13)

where
�
fGRF
* is the projected version of

�
fGRF . We

formulate this optimization as a linear-equality
constrained least-squares problem, which Lapack’s
dgglse function solves efficiently at runtime. Once
dgglse determines ��q, an O(n) inverse-dynamics
algorithm computes u.

Double Support
Previous analyses of gaits with motion constraints
have treated double-support stages as instanta-
neous impulse events. This avoids dealing with
closed-loop kinematic configurations but limits
motions to ones that don’t often occur in na-
ture. The human walking gait, for example, in-
volves a noninstantaneous double-support stage
called toe-off, in which the back foot pushes off
the ground and injects forward momentum. This
phase is critical to walking up steep inclines and
makes the gait more robust to force perturbations.

In double support, we assume that the back
foot’s toes contact the ground. To ensure this even
when perturbations occur, we modify the motion
constraints (see Equation 5) to include the toe’s
acceleration ��ptoe :

y
q
p

c
=

−

()

ˆ ˆ
��toe

w q

0
. (14)

The hat symbol represents an operation that re-
moves an appropriate number of rows from the
original vector such that the total number of con-
straints is still equal to the total number of actu-
ated joints. The removed rows correspond to the
back leg’s heel and knee. This adapts those joints’
motion to the ground contact requirements dur-
ing the simulation. We apply the same FRI control
strategy as in single support, except we expand the
bounds on the FRI to include the inscribing poly-
gon of both feet (see Figure 3).

In the final computation of joint torques, an
ambiguity still exists owing to redundancy in the
actuation due to having both feet on the ground.
This ambiguity corresponds to the choice of where
to place the aggregate linear force on each foot.
Previous control strategies for characters have ei-
ther ignored this redundancy or resolved it though
minimum-joint-torque criteria. However, a better

way to resolve the redundancy is to choose an ag-
gregate force near each foot’s center. This strategy
will be more robust to model discrepancies and force
disturbances that might otherwise cause the foot to
rotate on edge.

To compute the final joint torques, we use this
efficient algorithm:

1. Calculate a valid set of accelerations ��q under
the motion constraints (see Equation 14) and
the FRI policy.

2. Use an O(N) recursive algorithm to calculate
the joint torques for an open-loop skeleton
that’s rooted at the front foot.

3. Determine the location of the aggregate linear
force on each foot (near the foot’s center if
possible).

4. Project the aggregate linear force on the back
foot onto the joint space through the Jacobian
transpose.

We apply the resulting torque directly to the simu-
lated character.

Policy Optimization on
the Reduced Dynamics
Robust controllers must incorporate prediction so
that they can take the best action to accomplish
future goals. Prediction must occur at many time
scales. Consider a walking controller. At the instan-
taneous time scale, it must ensure that the foot
doesn’t slip. At the time scale of an individual step,
it must guide the joint angles along a prescribed
path while rejecting unanticipated disturbances. At
the time scale of multiple steps, it must ensure that
the character reaches its final destination while
avoiding obstacles. A character’s high dimension-
ality makes achieving reliable prediction difficult.

A key advantage of motion constraints is that they
restrict the character’s state to the zero-dynamics
set. Owing to this set’s low dimensionality, it’s com-
putationally feasible to directly sample and tabulate
actions’ outcomes to provide reliable predictions of
future states. These predictions are in the form of
transition functions that map a reduced state in R
and an action in A to a future reduced state:

T = R × A → R. (15)

On the basis of these transition functions,
we can construct policies that optimally accom-
plish goals using vanilla reinforcement-learning
techniques. (For further information about re-
inforcement learning, see the related sidebar). In
particular, we used value iteration4 to design two

28 July/August 2011

Physics-Based Characters

types of optimal policies in the reduced space: a
continuous FRI policy for broad jumping and a dis-
crete policy for walking. We discuss these policies
in more detail in the next section.

In practice, the character will act optimally under
the learned policies only if the motion constraints
are satisfied (y = 0). However, because the feedback
causes the constraints to exponentially converge
toward zero, the controller can recover from un-
anticipated disturbances in two stages. First, the
motion constraints converge toward zero. Once the
character is on the zero-dynamics set, it behaves
optimally according to the learned policy.

Results
We experimented with designing phase-indexed

tracking controllers and optimizing policies on the
reduced dynamics.

Walking
We constructed a robust walking controller that
can handle significant force perturbations and
unanticipated terrain. We started with a recorded
motion and applied spline smoothing to produce
a cyclical walk. Next, we identified a monotonic
variable q. As we mentioned before, for walking, a
convenient choice is the angle of the vector between
the stance ankle and the pelvis. We partitioned the
cycle into single- and double-support stages, and we
fit the motion constraints’ parameters to the mo-
tion using the process we described earlier.

The final step in our controller design was to de-
fine the FRI policy P. The simplest policy keeps the
FRI constant throughout the entire gait cycle. With
this policy, the controller achieves a constant walk-
ing speed. Moving the FRI forward or back results
in slower or faster walks. If the FRI is too far for-
ward, the controller stops or, in some cases, steps
backward, depending on the motion constraints’
parameters. For a summary of our walking control
algorithm, see Figure 4.

A constant FRI policy won’t robustly combat un-
expected perturbation such as deviation from flat
ground. A simple way to regulate the forward walk-
ing speed is to incorporate a PID (proportional-
integral-derivative) controller. We found through
experimentation that using the integral term alone
works best:

Π q q, min ,max ,�() = + ()

+ − ∫fri fri fri e t dt
t

0

,

where e t d() = −� �q q is an error between the current
and desired velocity of q.

The controller can consistently withstand a for-
ward or backward push of up to 350 Newtons for
0.1 second at all points along the walking cycle.
These results are comparable to the ones described
for the Simbicon controller5 after accounting for
our character’s smaller weight (51 versus 90 kg).

The walking controller is robust to terrain varia-
tions and to unanticipated pushes applied to the
body. The same controller designed to walk over
flat ground also makes forward progress over a
sloped ground between –18 and 10 degrees. Other
terrain adaptations are possible, including walk-
ing over stairs, spongy ground, and a moving-link
bridge (see Figure 1). The main failure mode for
our controller is when the toe unexpectedly stubs
the ground. One possible solution might be to

Reinforcement learning is a way to design control policies that’s
well established in robotics and other fields.1 In biped control,

researchers have applied it mainly to simple models2–6 because
computations become intractable in higher dimensions. In the
main article, we apply a form of reinforcement learning called value
iteration to more complicated bipeds, using motion constraints to
reduce the dimension of the state space. Our research is closely
related to using value iteration to actuate a passive walker7 and to
the research of Stelian Coros and his colleagues, who also used
reinforcement learning to control a biped.8

References
 1. D.P. Bertsekas and J.N. Tsitsiklis, Neurodynamic Programming, Athena

Scientific, 1996.

 2. H. Benbrahim and J. Franklin, “Biped Dynamic Walking Using Rein-

forcement Learning,” Robotics and Autonomous Systems, vol. 22, nos.

3–4, 1997, pp. 283–302.

 3. K. Byl and R. Tedrake, “Approximate Optimal Control of the Com-

pass Gait on Rough Terrain,” Proc. 2008 IEEE Int’l Conf. Robotics and

Automation (ICRA 08), IEEE CS Press, 2008, pp. 1258–1263.

 4. C. Chew and G.A. Pratt, “Dynamic Bipedal Walking Assisted by

Learning,” Robotica, vol. 20, no. 5, 2002, pp. 477–491.

 5. G. Endo et al., “Learning CPG-Based Biped Locomotion with a Policy

Gradient Method: Application to a Humanoid Robot,” Int’l J. Robotics

Research, vol. 27, no. 2, 2008, pp. 213–228.

 6. J. Morimoto et al., “Poincaré-Map-Based Reinforcement Learning for

Biped Walking,” Proc. 2005 IEEE Int’l Conf. Robotics and Automation

(ICRA 05), IEEE CS Press, 2005, pp. 2381–2386.

 7. R. Tedrake and H.S. Seung, “Improved Dynamic Stability Using Rein-

forcement Learning,” Proc. 5th Int’l Conf. Climbing and Walking

Robots and the Support Technologies for Mobile Machines (Clawar 02),

Professional Engineering Publishing, 2002, pp. 341–348.

 8. S. Coros, P. Beaudoin, and M. van de Panne, “Robust Task-Based Control

Policies for Physics-Based Characters,” ACM Trans. Graphics, vol. 28,

no. 5, 2009, article 170.

Reinforcement Learning

 IEEE Computer Graphics and Applications 29

check for ground clearance and take a higher step,
but our controller currently doesn’t incorporate
any higher-level decision-making of this kind.

Comparison to NQR
The linear quadratic regulator and nonlinear vari-
ants6,7 have shown promising results for tracking
motions with robustness. They represent the state-
of-the-art in time-indexed trajectory tracking. To
compare our controller with this indexed-tracking
controller, we implemented both our controller
and an NQR on a simplified five-link model with
point feet.

To produce a trajectory for the NQR to track,
we ran our controller for six steps. Designing the
NQR involves tuning five different parameters
per model DOF. To simplify tuning, we used the
same five parameters for all DOFs, as is common
practice. We tuned both controllers to be as robust
as possible while retaining some compliancy. We
clamped torques to 300 Newton meters to prevent
use of large forces. To test the robustness, we ap-
plied a force to the torso midway through the sec-
ond step.

After we tuned the NQR gains for maximum
stability, the character could withstand forces
from –50 to 10 N (in the horizontal direction for
100 milliseconds) without falling during the re-
maining steps. In contrast, our controller could
sustain forces between –500 and 400 N. Tables 1
and 2 summarize the two controllers’ parameter
sensitivities and shows the viable range of param-
eters in which they could recover from the push.

Qualitatively, our controller responds consid-
erably differently to the –50 Nm push than the
NQR controller does. The NQR controller flails a
leg outward to catch up with the motion’s original
timing. The motion will often diverge significantly
from the original trajectory, which can create ex-
citing, dynamic recoveries. However, these recov-
eries aren’t always natural or graceful. The exact
response depends heavily on setting the parameters
in an unintuitive manner. For example, increasing
the penalty for deviating from the joint angles’ ref-
erence value had the opposite effect in some cases.

Our controller recovers more predictably and uses
smaller torques to do so (see Figure 5).

Broad Jumping with Dynamic Balance
Our broad-jump controller performs a sequence
of forward jumps. Because this motion involves
dynamic balance, in which the center of mass
isn’t over the base of support, performing it is
tricky. The key control challenge is regulating the
landing speed so that the character is prepared for
the next jump.

stage ← DOUBLE

loop

 q, �q ← ComputeTheta(q, �q)

 if stage = DOUBLE && q > qs then

 stage ← SINGLE

 else if stage = SINGLE && footContact() then

 stage ← DOUBLE

 end if

 pFRI = P(q, �q)

 (u,
�
fGRF) = ComputeTorque(pFRI) ▷ Equations 3 and 12

 if
�
f

GRF

y < 0 then

�
fGRF = 0

 u = ComputeLeastSquaresTorque(pFRI,
�
fGRF) ▷ Equation 13

 else if
� �
f f

GRF GRF

x y > friction coefficient then

�
f

GRF

x = (friction coefficient) * sign(
�
f

GRF

x) *
�
f

GRF

y

 u = ComputeLeastSquaresTorque(pFRI,
�
fGRF) ▷ Equation 13

 end if

 (q, �q) = ForwardSimulate(q, �q, u)

end loop

Figure 4. A walking controller algorithm. The walking controller
algorithm detects transitions between double and single support and
switches between exact tracking of the motion constraints and a least-
squares solver that prevents loss of foot stability.

Table 1. Our controller: the parameter range for a stable response to a
–50-Newton push.

Parameter Description Value Min. Max.

e Exponential convergence
factor

0.05 0.001 0.49

Ks Position gain 10 0.01 10,000

*We compute the velocity gain as K Kd s= 2 .

Table 2. The nonlinear quadratic regulator: the parameter range for a stable response to a –50-Newton push.

Parameter Description Value Min. Max.

Q Position cost 1,000,000 0 10,000,000
�Q Velocity cost 100 60 60,000

Qend Final position cost 100,000,000 10,000,000 1,000,000,000

�Qend Final velocity cost 100,000,000 100 100,000,000

R Actuation cost 10 1 10,000

30 July/August 2011

Physics-Based Characters

For this motion, q is the horizontal position of
the center of mass relative to the feet. The jump-
ing controller involves four stages corresponding
to different contact configurations between the
character’s feet and the ground: initial, toe-off,

flight, and landing (see Figure 6). Switching be-
tween stages occurs at designated values of q for
all transitions except the transition between flight
and landing, which occurs when the feet are flat
on the ground.

During the flight stage, the initial angular and
linear momentums fully determine the charac-
ter’s deterministic trajectory. So, the controller
is highly sensitive to the ground reaction force
through the toe-off stage. To better control these
forces, we replaced the motion constraints on the
left knee and ankle with direct control over the
ground reaction forces. When designing the con-
troller, we fit a spline function

�
fGRF q() to the de-

sired values of these forces, as a function of q. We
treat motion constraints in the initial and land-
ing stages the same way as the double-support
stage of walking.

The jump controller is particularly sensitive to
the FRI’s location throughout the initial and land-
ing stages. Depending on the FRI’s value, the jump
will either speed up or slow down, which results
in the character falling down after several cycles.
Simple FRI policies, such as the integral controller

(a)

(b)

Sw
in

g
le

g
an

gl
e

(r
ad

ia
ns

)

Stance leg angle (radians) Time Time

−300

300

−0.8

1.0

−0.3 0.5
−0.8

1.0

0 1 2 0 1 2
−0.3

Stance leg angle (radians) Time Time
−0.3 0.5 0 1 2 0 1 2

−0.3

0.5

−100

100

0.5

St
an

ce
 le

g
an

gl
e

(r
ad

ia
ns

)

St
an

ce
 h

ip
 t

or
q

ue
 (

N
m

)

Sw
in

g
le

g
an

gl
e

(r
ad

ia
ns

)

St
an

ce
 le

g
an

gl
e

(r
ad

ia
ns

)

St
an

ce
 h

ip
 t

or
q

ue
 (

N
m

)

Figure 5. Graphs comparing (a) our controller’s response to (b) that of the nonlinear quadratic regulator
(NQR) controller, for a push of –50 Newtons for 100 ms. Black lines indicate the response; red lines are the
unperturbed reference trajectory. Our controller stays close to the original trajectory (the left graph) by
deviating from the original timing (the middle graph). The NQR controller closely tracks the original timing
(the middle graph) but uses larger torques (the right graph) to recover. Compared to the NQR controller, ours
can recover from pushes that are an order of magnitude larger.

Center of
mass

Initial Toe-off Flight Landing

GRF

FRI

Figure 6. In the initial stage of jumping, the character’s feet are flat on
the ground. Briefly before flight, the character pushes off with its toes.
In the flight stage, there’s no contact between the feet and the ground.
The character enters the landing stage when the feet are flat on the
ground again. Finally, the character transitions back to the initial stage.

 IEEE Computer Graphics and Applications 31

we described for walking, don’t work. Instead, we
designed an optimal FRI policy using value iteration.

We learned the FRI policy in the 2D reduced
state space S indexed by the tuple q q, �() . We dis-
cretized the state into a 100 × 100 grid, for a total
of 10,000 discrete states. The action space A, cor-
responding to the position of the FRI, was also di-
vided into 20 values in the range p pFRI FRI

x x− +

, . Next,

we sampled a discrete transition function T (see
Equation 15) by initializing the system at each dis-
crete state in S and simulating with each discrete
value of the FRI from A. We defined transitions to
an end state whenever the controller switched back
to the initial stage. To each end state, we assigned
a value � �q q− d , where �qd is the desired horizontal
speed at the beginning of the initial stage. Finally,

we propagated the value function back to all prior
states using value iteration, which also defines an
optimal policy P (see Figure 7).

With a constant FRI policy, the jump control-
ler either speeds up or slows down until failure.
You can see this by examining the return map
of �q in the top right of Figure 7. The FRI policy
reshapes the return map and indicates the jump
cycle’s stability. By using the learned policy, the
jump controller can jump indefinitely on flat
ground and even up slight inclines.

Constrained Stepping
We can use policy optimization to sequence phase-
indexed controllers, which is the goal of our con-
strained stepping controller. This controller uses a

–0.40

–0.06FRI–

FRI+
Value function

Min.

Max.

0

 Return map (with policy)

0.25 0.50

0

1.0 1.0

Return map (without policy)

Policy Π

.
θ +

.
θ – 0.25 0.50

 .
θ –

.
θ +

0 3.0
 .

θ 0 3.0
.
θ

θ

–0.40

–0.06

θ

Figure 7. Return maps indicate stability. They map the value of �q, which is the horizontal velocity of the center
of mass, just before the initial stage of one jump to the value of �q at the same point in the next jump in the
sequence. If the return map’s slope (the red line) is less than 1 (the green line) at the point of intersection (the
circle), successive jumps will converge toward the intersection, and the controller will be stable. Otherwise,
the controller will speed up or slow down until failure. We learn an optimal FRI policy P (bottom left) that
results in a stable return map (top right). Although we allow for a range of FRI values, the controller chooses
to rapidly switch between extreme values of the FRI. In the policy and value function graphs (bottom left
and right), white regions correspond to states from which the controller will fail. The value function predicts,
given the current state q q, �(), how close the controller will be to the desired value of �q at the beginning of the
next jump.

32 July/August 2011

Physics-Based Characters

stepping policy to choose optimal transitions in a
connected graph of phase-indexed controllers. The
policy is used to guide a character over a terrain to a
goal. The stepping policy is discrete in that it’s eval-
uated only at each step’s start (as opposed to the FRI
policy of the previous section, which is evaluated at
every simulation step). An action of the policy cor-
responds to a choice of a phase-indexed controller
for the next step’s duration.

We constructed an initial set of 100 phase-
indexed stepping controllers by sampling 10 dif-
ferent stride lengths and 10 different speeds at
even intervals. We also constructed transition
controllers between each pair of stepping control-
lers. This ensured that the controller maintains
the motion constraints’ consistency condition be-
tween steps of different lengths and speeds. The
result was a connected graph of phase-indexed
stepping controllers with 100 possible transitions
at each node (see Figure 8).

We optimized our sequencing policy to choose
an appropriate sequence of steps such that the
character reaches the goal while avoiding gaps in
the ground. In reinforcement-learning language,
this is equivalent to maximizing a value function
that rewards steps that reach the goal and penal-
izes steps resulting in the character stepping in a
gap or failing to make forward progress. To opti-
mize the policy, we formulated a value iteration
in a 3D state space. The first dimension is the in-

dex of the node in the graph (that is, a transition
region); the second dimension is the value of �q
at the step’s start. The remaining dimension is the
horizontal position on the terrain.

We partitioned the state space into a 100 × 20 ×
500 grid. We sampled the phase-indexed stepping
controllers at each discrete state in the grid to tab-
ulate a transition function. Transitions to states
in which the character’s foot is on a gap map to a
failure state; transitions to the goal map to a suc-
cess state. Discrete states in which the character
fails to make forward progress (�q < 0) also map to
a failure state. Because we assume forward prog-
ress, the transition map is acyclic, and the value
function is guaranteed to converge in fewer than
500 iterations.

The main cost in performing the value iteration
is in tabulating the transition function, which in-
volves performing a number of simulations equal
to the number of states times the number of ac-
tions (100 × 20 × 500 × 100). Because the steps
are identical modulo horizontal translation on
the ground plane, the number of necessary sim-
ulations decreases by a factor of 500. Once we
tabulated the transition function, computing an
optimal policy was relatively easy. We can adapt
the policy for a different sequence of gaps without
resampling the transition function. Additionally,
our action set is rich enough that we can include
in the value function a weighting for a second-

Step 1 Step 2 Step 3 Step 4

Figure 8. Operation of the constrained stepping controller for a walk of four steps (at the bottom). Arrows
represent a fixed choice of motion constraints over the next step’s duration. Circles are transition regions
between steps. An optimal stepping policy chooses the best sequence of motion constraints (the red arrows)
to navigate a constrained terrain. The actual controller has 100 transition regions and 100 possible motion
constraints exiting each region.

 IEEE Computer Graphics and Applications 33

ary criterion. We demonstrated this by designing a
value function that assigns higher value to taking
either longer or shorter steps.

Implementation Details
We solved nonlinear optimization problems us-
ing Matlab’s fmincon function. To efficiently
solve the linear-equality constrained, least-squares
problems that are necessary for the controller at
runtime, we used Lapack’s dgglse function.

To perform forward simulation of articulated
rigid bodies, we used a projected Gauss-Seidel
iterative solver.8 We used a fixed size (dt = 1/240),
velocity-based integration step. We stabilized con-
tact constraints by interleaving a projection step
between simulation steps. The projection step
updates the configuration by using the general-
ized pseudoinverse of the contact Jacobian, which
minimizes the “inertial norm” (dqTMdq). Even with
a relatively large step size, this procedure closely
matched the inelastic impulse model assumed
by the consistency condition (see Equation 8).
Other procedures for handling contacts, such as
Baumgarte stabilization, resulted in less consistent
behavior during impulsive collision, which led to
rougher motion. All simulations ran in real time
or faster.

We hope to develop phase-indexed tracking
controllers for 3D characters. Motion con-

straints are applicable in 3D, and researchers have
applied them to control simplified walkers with
point feet.9 However, our initial experiments sug-
gest that directly applying our approach for the 2D
case can’t generate robust gaits in 3D. Additional
feedback on the foot placement and swing-hip
angle will likely be necessary. Despite these ob-
stacles, we believe we can apply the basic principle
of phase-indexed tracking to 3D characters, with
some modification.

References
 1. R. Featherstone, Rigid Body Dynamics Algorithms,

Springer, 2008.
 2. E.R. Westervelt et al., Feedback Control of Dynamic

Bipedal Robot Locomotion, CRC Press, 2007.
 3. A. Goswami, “Foot Rotation Indicator (FRI) Point:

A New Gait Planning Tool to Evaluate Postural
Stability of Biped Robots,” Proc. 1999 IEEE Int’l Conf.
Robotics and Automation (ICRA 99), IEEE CS Press,
1999, pp. 47–52.

 4. D.P. Bertsekas and J.N. Tsitsiklis, Neuro-dynamic
Programming, Athena Scientific, 1996.

 5. K. Yin, K. Loken, and M. van de Panne, “Simbicon:
Simple Biped Locomotion Control,” ACM Trans.
Graphics, vol. 26, no. 3, 2007, article 105.

 6. M. da Silva, Y. Abe, and J. Popović, “Interactive
Simulation of Stylized Human Locomotion,” ACM
Trans. Graphics, vol. 27, no. 3, 2008, article 82.

 7. U. Muico et al., “Contact-Aware Nonlinear Control
of Dynamic Characters,” ACM Trans. Graphics, vol.
28, no. 3, 2009, pp. 1–9.

 8. K. Erleben, “Velocity-Based Shock Propagation for
Multi-body Dynamics Animation,” ACM Trans.
Graphics, vol. 26, no. 2, 2007, article 12.

 9. C. Chevallereau, J.W. Grizzle, and C.L. Shih,
“Asymptotically Stable Walking of a Five-Link
Underactuated 3D Bipedal Robot,” IEEE Trans.
Robotics, vol. 25, no. 1, 2008, pp. 37–50.

Yeuhi Abe is a PhD candidate and member of the Computer
Graphics Group at MIT’s Computer Science and Artificial
Intelligence Laboratory. His research focuses on developing
novel methods for simulating and controlling animated char-
acters. Abe has a master’s in computer science from MIT.
Contact him at yeuhi@csail.mit.edu.

Jovan Popović is principal scientist in Adobe Systems’ Ad-
vanced Technology Labs. His research interests are computer
animation and geometric modeling. Popovíc has a PhD in
computer science from Carnegie Mellon University. Contact
him at jovan@adobe.com.

The magazine of computational
tools and methods.

MEMBERS $49
STUDENTS $25

www.computer.org/cise
http://cise.aip.org

CiSE addresses large
computational problems
by sharing

 ›› effi cient algorithms

 ›› system software

 ›› computer architecture

