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Despite physical simulation’s advantages, 
it’s often considered an overly complex 
or obtuse way to animate characters. 

This is partly because existing character control-
lers require tuning esoteric parameters with little 
apparent connection to the motion they produce. 
Animators have difficulty tuning these parameters 
to produce a desired motion in a particular style.

Tracking controllers, a new breed 
of physical controller, look like a 
promising way to make control-
ler design more intuitive. They 
require only a single motion as 
input. This approach automati-
cally computes the control out-
puts for the character, such that 
the character mimics the input 
motion as closely as possible. 
Unfortunately, tracking control-
lers tend to lack robustness to 
even small perturbations from 
the input motion. Making robust 
tracking controllers has been an 
ongoing challenge.

Here, we propose a 2D track-
ing controller that improves robustness by al-
lowing for variations in the timing of tracked 
motions. Previous tracking methods lack robust-
ness partly because they adhere too rigidly to the 
input motion’s original timing. For example, con-
sider a character that’s pushed from behind while 
walking. Previous methods would try to match the 
step’s original timing, whereas a more robust reac-
tion would be to take a quick step to regain bal-
ance. Owing to our controller’s time-invariance, 
we call it a phase-indexed tracking controller, as op-

posed to previous controllers, which are best de-
scribed as time-indexed.

To demonstrate phase-indexed tracking, we devel-
oped a walking controller that exhibits robustness 
to unanticipated terrain and to force perturbations 
while mimicking an input motion’s style (see Figure 
1). Our approach can withstand external force per-
turbations an order of magnitude larger than the 
state-of-the-art, time-indexed controller based on 
the nonlinear quadratic regulator (NQR).

At the heart of our controller are motion con-
straints. One of their benefits is that they induce 
a reduced dynamics we can use to design control 
policies that incorporate prediction. Prediction 
lets controllers take into account current actions’ 
consequences, which is important for controlling 
characters that exhibit lifelike reaction. (For more 
information on biped controllers in animation, 
see the related sidebar.)

Phase-Indexed Tracking
A phase-indexed tracking controller mimics an 
input motion’s joint configurations while allow-
ing the overall timing to deviate. To do this, it 
first identifies in the input motion a state vari-
able that’s monotonic with respect to time. The 
controller uses motion constraints to synchro-
nize the character’s remaining degrees of freedom 
(DOF) with this variable, as opposed to time. For 
example, for walking, the controller synchronizes 
the character’s internal DOF with the swing leg’s 
angle (see Figure 2). This produces a robust gait 
that mimics the input motion’s style.

Character Dynamics
First, we must describe our character’s dynamics. 

Current time-indexed trackers 
lack robustness because they 
adhere strictly to the input 
motion’s timing. A proposed 
phase-indexed tracker 
deviates from that timing and 
can withstand larger force 
perturbations than nonlinear 
quadratic regulators. The 
tracker also induces a reduced 
dynamics that can be used to 
design robust control policies 
that incorporate prediction.
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For both control and forward simulation, we model 
our character as a collection of rigid bodies adjoined 
by joints. We describe the configuration by a vector 
of joint angles q ∈ 𝒬. The controller provides a vec-
tor of joint forces u ∈ 𝒰. We then determine the 
character’s motion by integrating a standard set of 
motion equations.1

Here, we write the equations in a decoupled 
form that explicitly delineates the root coordinates 
qr (and forces ur) from the internal DOF qa (and 
forces ua):
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Figure 1. A phase-indexed tracking controller adapts robustly to new terrain.

The simulation and control of biped characters has long 
been an area of interest for animation research. Some 

of the most successful biped controllers relied on procedural 
feedback laws to produce motion.1–3 However, tuning the 
parameters of these controllers so that they produce a de-
sired motion is difficult. Various automatic approaches 
exist for tuning the parameters, but they involve long 
stochastic searches with carefully chosen objective-
shaping terms.4,5 Recently, researchers have proposed 
a hybrid approach that combines procedural feedback 
laws with data-driven trajectories.6

However, an alternative approach is to directly track a sin-
gle input motion using a tracking controller. Track ing control-
lers are easy for animators to use because they don’t require 
tuning of parameters to produce a desired motion. The first 
tracking controllers used simple proportional-derivative 
(PD) joint servos that couldn’t handle full-body balancing.7 
More sophisticated tracking controllers coordinated the 
full body to enforce static balance criteria8,9 but were still 
inadequate for dynamic motions such as walking and run-
ning. Recently, researchers devised tracking controllers 
incorporating a predictive feedback strategy that suc-
cessfully handles walking and running.10,11 However, they 
lack robustness and tend to fail when confronted with 
un planned disturbances in the environment. Evidence sug-
gests that this is due partly to an overly strict adherence to 
the input motion’s original timing.12
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In this equation, M is the mass matrix. For for-
ward simulation, qr ∈ R3 describes the 2D char-
acter’s global rotation and translation, which we 
assume to be unactuated (that is, ur = 0). We also 
use the motion equations to derive the feedback 
in the controller.

The character dynamics we use depends on the 
character’s contact state with the environment. 
For example, in the single- or double-support 
stages of walking, it’s easier to assume a fixed con-
nection between the character’s stance foot and 
the ground. (In single support, one foot swings 
through the air; in double support, both feet touch 
the ground.) So, for control, we abuse notation 
and use qr ∈ R to describe the ankle angle of the 
flat-stance foot.

Motion Constraints
We use motion constraints primarily to derive the 
feedback that enforces the relationship between 
the character’s internal DOF. However, they have 
much broader applicability. (For more informa-
tion, see the “Motion Constraints” sidebar.) Here, 
we describe motion constraint theory in the most 
general terms.

Motion constraints rely on an invertible coordi-
nate transformation,

H–1(q) = [hu(q)T, ha(q)T]T : 𝒬 → Rn,

which maps joint angles to a partitioned set of 
controlled, ha ∈ Rm, and uncontrolled, hu ∈ Rn–m, 
coordinates. Fortunately, coming up with such 
transformations is easy; we discuss a simple one 
useful for bipeds later. We assume the size of ha is 
the same as the number of actuated DOF.

We also define a scalar variable q(hu) as a func-

tion of the unactuated coordinates hu. The choice 
of q will vary depending on the type of motion 
being tracked, but it is assumed to be monotonic 
in time. For example, for walking or running mo-
tions, a natural choice for q is the absolute angle of 
the vector between the stance ankle and the pelvis 
(see Figure 2).

We define the motion constraints y by the re-
lationship

y = ha – cw(q) = 0,

where cw(q) is a parametric function (a spline for 
our purposes) controlled by parameters w.

Because the size of y is the same as the number of 
actuated DOF, precise control is possible through a 
partial feedback linearization of the form

��h A A u bh h hu a ru u u= + +0 1u  (1)

��y A u A u by y= + +0 1
a r y, (2)

where A and b are matrix and vector quantities that 
can be solved for, and Ay

0  is known to be full rank. 
Our assumption that ur is underactuated prevents 
direct control of ��hu  and ��y  simultaneously. How-
ever, we can stabilize the motion constraint around 
y = 0 by applying feedback of the form

u A y A u by y ya r= ( ) −( )0 1−
−

1
��*  (3)

�� �y y y*= − −
1 1

2e e
k ks d ,

where ks and kd are gains and e controls the ex-
ponential rate of convergence of y y, �( ) to (0, 0). 
Although we could directly invert Ay

0 , that’s not 
the most efficient way to solve for ua. We can for-
mulate efficient O(n) algorithms similarly to Roy 
Featherstone’s articulated-body method.1

A Reduced-Dimension System
When we enforce the motion constraints through 
controller feedback (when y = 0), we can express 
the state solely in terms of the uncontrolled coor-
dinates hu:

q = H(ha, hu) = H(cw(q(hu)), hu) = qw(hu)

� �q
q
h

h=
∂
∂

w

u
u ,

where qw is a map from the uncontrolled coordi-
nates to the full state, with the subscript w de-
noting the dependence on the motion constraints’ 
parameters. The subset of states that can be rep-
resented by qw (and its tangent space operator 𝒯),

Time-indexed trajectory

Time

Motion constraints

= qa
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q

= qr
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Figure 2. Motion constraints enforce a kinematic relationship between 
a state variable q and the actuated degrees of freedom (DOF) qa, 
with qr indicating the root coordinates. Phased-indexed tracking fits 
the constraints’ parameters to match a specific input motion. The 
constraints serve a function similar to the trajectories tracked by time-
indexed controllers, but without enforcing a specific timing.
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q q y y q q, , ,� � �( ) ( ) ={ } ⊂ ( )0 TQ  ,

is the zero-dynamics set. It’s parameterized by the 
reduced coordinates h hu u, �( ).

By substituting Equation 3 into Equations 1 and 
2, we write the resulting closed-loop dynamics as

�� � �h f q q g q q uu r= ( )+ ( ), ,

�� �� �y y q q= ( )* , ,

where f and g are computable functions of q and �q.
Finally, when the constraints have stabilized to 

the set y y, �( ) = 0 , we can write the dynamics in a 
simplified form,

�� � �h f h h g h h uu u u u u r= ( )+ ( ), ,  (4)

��y = 0,

which depends only on h hu u, �( ). The dynamics of 
the system written in this reduced form is called 
the zero dynamics of y.

Motion Constraints for 2D Bipeds
When designing motion constraints for 2D bipeds, 
we assume a specific form of the coordinate trans-
form H:

ha = qa, hu = q(q)

(see Figure 2). The motion constraints take on the 
form

y = qa – cw(q), (5)

and the zero-dynamics set is parameterized by the 
reduced coordinates q q, �( )∈ S  alone:

q q

q
q

= ( )

=
∂
∂

w

w

q

q
q� � .  (6)

Eric Westervelt and his colleagues first intro-
duced this choice of H to model the unactuated 
ankle of a biped with point feet.2 Our character 
models have feet, but the torque that we can ap-
ply at the ankle without causing the foot to rotate 
and slip is limited. So, modeling the ankle as an 
unactuated joint, at least initially, is still prudent.

Designing Motion Constraints for 2D Bipeds
Motion constraints aim to mimic an input mo-
tion’s joint configurations. We do this by finding 
the parameters w that best fit the motion. First, we 
divide the motion into different stages depending 

on the contact configuration between the character 
and the ground. For example, we divide a walk cycle 
into a single-support and a double-support stage.

A different set of motion constraints is active 
during each stage. In general, between stages, im-
pulsive collisions change the character’s velocity 
state discontinuously. We must ensure that the 
motion constraints at the end of one stage are con-
sistent with the motion constraint at the begin-
ning of the next stage. We call this the consistency 
condition.

At contact events, we assume a standard inelastic 
impulse between the character and environment:

L � �q q− += , (7)

where �q−  and �q+ are the joint velocities before 
and after the impulse and L is a linear map that 
depends only on the configuration of q at the im-
pulse event. By substituting Equation 6 into Equa-
tion 7, we see that the condition for consistency is

L L
∂
∂

=
∂
∂

=
∂
∂

∂
∂

∂
∂

⇒ =

− + −q q q
q
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q
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q
q

q
q

q
q� � �1 1 0

0 CC
q q

q
q

=
∂

∂
−

∂
∂

∂
∂

∂
∂

L Lw w w0 1 0

q q
q

q
,  (8)

where w0 and w1 are the constraint parameters in 
the adjacent phases.

Finally, we solve for the parameters w that satisfy 

The feedback mechanism we call motion constraints is also 
called virtual constraints in the robotics and control literature. 

They’re widely used to analyze nonlinear and underactuated con-
trol systems1,2 because they effectively reduce a complex dynamic 
to a simpler one that’s easier to study. Motion constraints have 
been particularly fruitful in the analysis and control of simplified 
biped walkers.2–4
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the consistency condition (see Equation 8) and 
that minimize y along the input motion’s trajec-
tory. The optimization takes the form

min

  ,

w
i

i

w

j

ky
c

C

2

2

2
2

0

+
∂
∂

=

∑ ∑ qq

subject to 

where yi is the value of the motion constraints at 
each time index i along the walk cycle, Cj is the 
consistency condition at stage transition j, and 
k is a scalar regularization term that helps avoid 
large accelerations in the motion constraints. The 
consistency condition is nonlinear in w because 
L depends on the character’s configuration at the 
transition between stages. We solve the system 
using nonlinear optimization with finite differ-
encing of the gradients. Generally, we can obtain 
solutions in minutes on a desktop computer.

Robust Contact and Double Support
The feedback on the motion constraints assumes a 
fixed connection between the swing foot and the 
ground. However, in simulation, the character’s 
foot isn’t actually attached to the ground. When 
the input motion is tracked closely, ground reac-
tion forces produced by the character remain in a 
friction cone, thus acting identically to the fixed 
foot. However, when large perturbations occur, the 
feedback from the motion constraints might gen-
erate ground reaction forces outside the friction 
cone. When this occurs, the simulated character’s 
foot will rotate or slip on the ground, often result-
ing in the character falling. To prevent this, we 
must temporarily violate the motion constraints 
in favor of keeping the foot steady.

The Foot Rotation Indicator Policy and  
Contact Preservation
To prevent the foot from slipping, we compute the 

resulting ground reaction force (GRF) 
�
fGRF  and en-

sure that it’s within a Coulomb friction cone. To 
prevent foot rotation, we compute the foot rotation 
indicator (FRI) point pFRI, a point that must remain 
in the support of the stance foot to prevent rota-
tion3 (see Figure 3). Formally, pFRI is defined as the 
point on the ground plane such that

u p fr = ×FRI GRF

�
, (9)

where ur is the torque on the ankle (assuming a 
massless foot and the origin at the ankle joint). It 
is worthwhile noting that the FRI is identical to 
the similar-purposed zero-moment point (ZMP) 
for an equivalent mechanism with a fixed foot.3

Under the motion constraints’ feedback, the 
choice of ur fully determines the system’s instan-
taneous acceleration (compare this with Equation 
4). Because 

�
fGRF  is solely a function of the center 

of mass’s acceleration, we can compute this linear 
relationship:

�
�f u bGRF GRF GRF= ( ) +A q q, r . (10)

In the 2D case, Equation 9 reduces to

u f p f pr
y x x y= −( )
� �
GRF FRI GRF FRI . (11)

By substituting Equation 10 into Equation 11 
and solving for ur, we can see that to prevent the 
foot from rotating, we must limit ur to the set

u
p b b p
p p

r y=
−

− −
FRI GRF GRF FRI

GRF FRI GR

y x y x

y xA A1.0 FRI FF
FRI FRI FRIx
x x xp p p− +< <












,

 (12)

where pFRI
x+  and pFRI

x−  are the upper and lower 
bounds of the support foot’s contact with the 
ground. Rather than choosing ur directly, we de-
fine an FRI policy,

Π q q, : ,�( ) → 



 ∈+ −S Rp pFRI FRI

x x ,

which maps from the reduced state q q, �( )∈ S  to a 
value of pFRI in the valid range. Given a value of 
pFRI from the policy, we compute ur using Equation 
12 and then ua using Equation 3. This completes 
the calculation of the joint torques.

In extreme cases, the computed torque still 
produces a GRF that’s outside the allowable fric-
tion cone, which would cause the character to 
slip. To prevent this, we project the resulting GRF 
back onto the friction cone. However, because the 
GRF is no longer consistent with the motion con-

p x–

pFRI pFRIptoe
fGRF

FRI p x+
FRI p x–

FRI p x+
FRI

(a) (b)

fGRF

Figure 3. The foot rotation indicator point pFRI and ground reaction 
force 

�
fGRF  during (a) single and (b) double support. The FRI’s horizontal 

component, pFRI
x , must remain within the bounds of the support 

p pFRI FRI
x x+ −



,  to prevent foot rotation. The swing toe, ptoe, is constrained to 

remain in contact with the ground during double support.
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straints, a least-squares minimization is necessary 
to compute the final joint accelerations:

min

,

*

��
�� ��

� �

�

q
y q

f f

p

( )

=

=

2

subject to  GRF GRF

FRI Π q qq( ), (13)

where 
�
fGRF
*  is the projected version of 

�
fGRF . We 

formulate this optimization as a linear-equality 
constrained least-squares problem, which Lapack’s 
dgglse function solves efficiently at runtime. Once 
dgglse determines ��q, an O(n) inverse-dynamics 
algorithm computes u.

Double Support
Previous analyses of gaits with motion constraints 
have treated double-support stages as instanta-
neous impulse events. This avoids dealing with 
closed-loop kinematic configurations but limits 
motions to ones that don’t often occur in na-
ture. The human walking gait, for example, in-
volves a noninstantaneous double-support stage 
called toe-off, in which the back foot pushes off 
the ground and injects forward momentum. This 
phase is critical to walking up steep inclines and 
makes the gait more robust to force perturbations.

In double support, we assume that the back 
foot’s toes contact the ground. To ensure this even 
when perturbations occur, we modify the motion 
constraints (see Equation 5) to include the toe’s 
acceleration ��ptoe :

y
q
p

c
=
















−

( )















ˆ ˆ
��toe

w q

0
. (14)

The hat symbol represents an operation that re-
moves an appropriate number of rows from the 
original vector such that the total number of con-
straints is still equal to the total number of actu-
ated joints. The removed rows correspond to the 
back leg’s heel and knee. This adapts those joints’ 
motion to the ground contact requirements dur-
ing the simulation. We apply the same FRI control 
strategy as in single support, except we expand the 
bounds on the FRI to include the inscribing poly-
gon of both feet (see Figure 3).

In the final computation of joint torques, an 
ambiguity still exists owing to redundancy in the 
actuation due to having both feet on the ground. 
This ambiguity corresponds to the choice of where 
to place the aggregate linear force on each foot. 
Previous control strategies for characters have ei-
ther ignored this redundancy or resolved it though 
minimum-joint-torque criteria. However, a better 

way to resolve the redundancy is to choose an ag-
gregate force near each foot’s center. This strategy 
will be more robust to model discrepancies and force 
disturbances that might otherwise cause the foot to 
rotate on edge.

To compute the final joint torques, we use this 
efficient algorithm:

1. Calculate a valid set of accelerations ��q  under 
the motion constraints (see Equation 14) and 
the FRI policy.

2. Use an O(N) recursive algorithm to calculate 
the joint torques for an open-loop skeleton 
that’s rooted at the front foot.

3. Determine the location of the aggregate linear 
force on each foot (near the foot’s center if 
possible).

4. Project the aggregate linear force on the back 
foot onto the joint space through the Jacobian 
transpose.

We apply the resulting torque directly to the simu-
lated character.

Policy Optimization on  
the Reduced Dynamics
Robust controllers must incorporate prediction so 
that they can take the best action to accomplish 
future goals. Prediction must occur at many time 
scales. Consider a walking controller. At the instan-
taneous time scale, it must ensure that the foot 
doesn’t slip. At the time scale of an individual step, 
it must guide the joint angles along a prescribed 
path while rejecting unanticipated disturbances. At 
the time scale of multiple steps, it must ensure that 
the character reaches its final destination while 
avoiding obstacles. A character’s high dimension-
ality makes achieving reliable prediction difficult.

A key advantage of motion constraints is that they 
restrict the character’s state to the zero-dynamics 
set. Owing to this set’s low dimensionality, it’s com-
putationally feasible to directly sample and tabulate 
actions’ outcomes to provide reliable predictions of 
future states. These predictions are in the form of 
transition functions that map a reduced state in R 
and an action in A to a future reduced state:

T = R × A → R. (15)

On the basis of these transition functions, 
we can construct policies that optimally accom-
plish goals using vanilla reinforcement-learning 
techniques. (For further information about re-
inforcement learning, see the related sidebar). In 
particular, we used value iteration4 to design two 
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types of optimal policies in the reduced space: a 
continuous FRI policy for broad jumping and a dis-
crete policy for walking. We discuss these policies 
in more detail in the next section.

In practice, the character will act optimally under 
the learned policies only if the motion constraints 
are satisfied (y = 0). However, because the feedback 
causes the constraints to exponentially converge 
toward zero, the controller can recover from un-
anticipated disturbances in two stages. First, the 
motion constraints converge toward zero. Once the 
character is on the zero-dynamics set, it behaves 
optimally according to the learned policy.

Results
We experimented with designing phase-indexed 

tracking controllers and optimizing policies on the 
reduced dynamics.

Walking
We constructed a robust walking controller that 
can handle significant force perturbations and 
unanticipated terrain. We started with a recorded 
motion and applied spline smoothing to produce 
a cyclical walk. Next, we identified a monotonic 
variable q. As we mentioned before, for walking, a 
convenient choice is the angle of the vector between 
the stance ankle and the pelvis. We partitioned the 
cycle into single- and double-support stages, and we 
fit the motion constraints’ parameters to the mo-
tion using the process we described earlier.

The final step in our controller design was to de-
fine the FRI policy P. The simplest policy keeps the 
FRI constant throughout the entire gait cycle. With 
this policy, the controller achieves a constant walk-
ing speed. Moving the FRI forward or back results 
in slower or faster walks. If the FRI is too far for-
ward, the controller stops or, in some cases, steps 
backward, depending on the motion constraints’ 
parameters. For a summary of our walking control 
algorithm, see Figure 4.

A constant FRI policy won’t robustly combat un-
expected perturbation such as deviation from flat 
ground. A simple way to regulate the forward walk-
ing speed is to incorporate a PID (proportional-
integral-derivative) controller. We found through 
experimentation that using the integral term alone 
works best:

Π q q, min ,max ,�( ) = + ( )










+ − ∫fri fri fri e t dt
t

0













,

where e t d( ) = −� �q q  is an error between the current 
and desired velocity of q.

The controller can consistently withstand a for-
ward or backward push of up to 350 Newtons for 
0.1 second at all points along the walking cycle. 
These results are comparable to the ones described 
for the Simbicon controller5 after accounting for 
our character’s smaller weight (51 versus 90 kg).

The walking controller is robust to terrain varia-
tions and to unanticipated pushes applied to the 
body. The same controller designed to walk over 
flat ground also makes forward progress over a 
sloped ground between –18 and 10 degrees. Other 
terrain adaptations are possible, including walk-
ing over stairs, spongy ground, and a moving-link 
bridge (see Figure 1). The main failure mode for 
our controller is when the toe unexpectedly stubs 
the ground. One possible solution might be to 

Reinforcement learning is a way to design control policies that’s 
well established in robotics and other fields.1 In biped control, 

researchers have applied it mainly to simple models2–6 because 
computations become intractable in higher dimensions. In the 
main article, we apply a form of reinforcement learning called value 
iteration to more complicated bipeds, using motion constraints to 
reduce the dimension of the state space. Our research is closely 
related to using value iteration to actuate a passive walker7 and to 
the research of Stelian Coros and his colleagues, who also used 
reinforcement learning to control a biped.8
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check for ground clearance and take a higher step, 
but our controller currently doesn’t incorporate 
any higher-level decision-making of this kind.

Comparison to NQR
The linear quadratic regulator and nonlinear vari-
ants6,7 have shown promising results for tracking 
motions with robustness. They represent the state-
of-the-art in time-indexed trajectory tracking. To 
compare our controller with this indexed-tracking 
controller, we implemented both our controller 
and an NQR on a simplified five-link model with 
point feet.

To produce a trajectory for the NQR to track, 
we ran our controller for six steps. Designing the 
NQR involves tuning five different parameters 
per model DOF. To simplify tuning, we used the 
same five parameters for all DOFs, as is common 
practice. We tuned both controllers to be as robust 
as possible while retaining some compliancy. We 
clamped torques to 300 Newton meters to prevent 
use of large forces. To test the robustness, we ap-
plied a force to the torso midway through the sec-
ond step.

After we tuned the NQR gains for maximum 
stability, the character could withstand forces 
from –50 to 10 N (in the horizontal direction for 
100 milliseconds) without falling during the re-
maining steps. In contrast, our controller could 
sustain forces between –500 and 400 N. Tables 1 
and 2 summarize the two controllers’ parameter 
sensitivities and shows the viable range of param-
eters in which they could recover from the push.

Qualitatively, our controller responds consid-
erably differently to the –50 Nm push than the 
NQR controller does. The NQR controller flails a 
leg outward to catch up with the motion’s original 
timing. The motion will often diverge significantly 
from the original trajectory, which can create ex-
citing, dynamic recoveries. However, these recov-
eries aren’t always natural or graceful. The exact 
response depends heavily on setting the parameters 
in an unintuitive manner. For example, increasing 
the penalty for deviating from the joint angles’ ref-
erence value had the opposite effect in some cases. 

Our controller recovers more predictably and uses 
smaller torques to do so (see Figure 5).

Broad Jumping with Dynamic Balance
Our broad-jump controller performs a sequence 
of forward jumps. Because this motion involves 
dynamic balance, in which the center of mass 
isn’t over the base of support, performing it is 
tricky. The key control challenge is regulating the 
landing speed so that the character is prepared for 
the next jump.

stage ← DOUBLE

loop

 q, �q  ← ComputeTheta(q, �q)

 if stage = DOUBLE && q > qs then

  stage ← SINGLE

 else if stage = SINGLE && footContact() then

  stage ← DOUBLE

 end if

 pFRI = P( q, �q )

 (u, 
�
fGRF) = ComputeTorque(pFRI) ▷ Equations 3 and 12

 if 
�
f

GRF

y  < 0 then

  
�
fGRF  = 0

  u = ComputeLeastSquaresTorque(pFRI, 
�
fGRF) ▷ Equation 13

 else if 
� �
f f

GRF GRF

x y  > friction coefficient then

  
�
f

GRF

x  = (friction coefficient) * sign(
�
f

GRF

x ) * 
�
f

GRF

y

  u = ComputeLeastSquaresTorque(pFRI, 
�
fGRF) ▷ Equation 13

 end if

 (q, �q) = ForwardSimulate(q, �q, u)

end loop

Figure 4. A walking controller algorithm. The walking controller 
algorithm detects transitions between double and single support and 
switches between exact tracking of the motion constraints and a least-
squares solver that prevents loss of foot stability.

Table 1. Our controller: the parameter range for a stable response to a 
–50-Newton push.

Parameter Description Value Min. Max.

e Exponential convergence 
factor

0.05 0.001 0.49

Ks Position gain 10 0.01 10,000

*We compute the velocity gain as K Kd s= 2 .

Table 2. The nonlinear quadratic regulator: the parameter range for a stable response to a –50-Newton push.

Parameter Description Value Min. Max.

Q Position cost 1,000,000 0 10,000,000
�Q Velocity cost 100 60 60,000

Qend Final position cost 100,000,000 10,000,000 1,000,000,000

�Qend Final velocity cost 100,000,000 100 100,000,000

R Actuation cost 10 1 10,000
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For this motion, q is the horizontal position of 
the center of mass relative to the feet. The jump-
ing controller involves four stages corresponding 
to different contact configurations between the 
character’s feet and the ground: initial, toe-off, 

flight, and landing (see Figure 6). Switching be-
tween stages occurs at designated values of q for 
all transitions except the transition between flight 
and landing, which occurs when the feet are flat 
on the ground.

During the flight stage, the initial angular and 
linear momentums fully determine the charac-
ter’s deterministic trajectory. So, the controller 
is highly sensitive to the ground reaction force 
through the toe-off stage. To better control these 
forces, we replaced the motion constraints on the 
left knee and ankle with direct control over the 
ground reaction forces. When designing the con-
troller, we fit a spline function 

�
fGRF q( )  to the de-

sired values of these forces, as a function of q. We 
treat motion constraints in the initial and land-
ing stages the same way as the double-support 
stage of walking.

The jump controller is particularly sensitive to 
the FRI’s location throughout the initial and land-
ing stages. Depending on the FRI’s value, the jump 
will either speed up or slow down, which results 
in the character falling down after several cycles. 
Simple FRI policies, such as the integral controller 
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Figure 5. Graphs comparing (a) our controller’s response to (b) that of the nonlinear quadratic regulator 
(NQR) controller, for a push of –50 Newtons for 100 ms. Black lines indicate the response; red lines are the 
unperturbed reference trajectory. Our controller stays close to the original trajectory (the left graph) by 
deviating from the original timing (the middle graph). The NQR controller closely tracks the original timing 
(the middle graph) but uses larger torques (the right graph) to recover. Compared to the NQR controller, ours 
can recover from pushes that are an order of magnitude larger.

Center of
mass

Initial Toe-off Flight Landing

GRF

FRI

Figure 6. In the initial stage of jumping, the character’s feet are flat on 
the ground. Briefly before flight, the character pushes off with its toes. 
In the flight stage, there’s no contact between the feet and the ground. 
The character enters the landing stage when the feet are flat on the 
ground again. Finally, the character transitions back to the initial stage.
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we described for walking, don’t work. Instead, we 
designed an optimal FRI policy using value iteration. 

We learned the FRI policy in the 2D reduced 
state space S indexed by the tuple q q, �( ) . We dis-
cretized the state into a 100 × 100 grid, for a total 
of 10,000 discrete states. The action space A, cor-
responding to the position of the FRI, was also di-
vided into 20 values in the range p pFRI FRI

x x− +



, . Next, 

we sampled a discrete transition function T (see 
Equation 15) by initializing the system at each dis-
crete state in S and simulating with each discrete 
value of the FRI from A. We defined transitions to 
an end state whenever the controller switched back 
to the initial stage. To each end state, we assigned 
a value � �q q− d , where �qd  is the desired horizontal 
speed at the beginning of the initial stage. Finally, 

we propagated the value function back to all prior 
states using value iteration, which also defines an 
optimal policy P (see Figure 7).

With a constant FRI policy, the jump control-
ler either speeds up or slows down until failure. 
You can see this by examining the return map 
of �q  in the top right of Figure 7. The FRI policy 
reshapes the return map and indicates the jump 
cycle’s stability. By using the learned policy, the 
jump controller can jump indefinitely on flat 
ground and even up slight inclines.

Constrained Stepping
We can use policy optimization to sequence phase-
indexed controllers, which is the goal of our con-
strained stepping controller. This controller uses a 
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Figure 7. Return maps indicate stability. They map the value of �q, which is the horizontal velocity of the center 
of mass, just before the initial stage of one jump to the value of �q  at the same point in the next jump in the 
sequence. If the return map’s slope (the red line) is less than 1 (the green line) at the point of intersection (the 
circle), successive jumps will converge toward the intersection, and the controller will be stable. Otherwise, 
the controller will speed up or slow down until failure. We learn an optimal FRI policy P (bottom left) that 
results in a stable return map (top right). Although we allow for a range of FRI values, the controller chooses 
to rapidly switch between extreme values of the FRI. In the policy and value function graphs (bottom left 
and right), white regions correspond to states from which the controller will fail. The value function predicts, 
given the current state q q, �( ), how close the controller will be to the desired value of �q  at the beginning of the 
next jump.
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stepping policy to choose optimal transitions in a 
connected graph of phase-indexed controllers. The 
policy is used to guide a character over a terrain to a 
goal. The stepping policy is discrete in that it’s eval-
uated only at each step’s start (as opposed to the FRI 
policy of the previous section, which is evaluated at 
every simulation step). An action of the policy cor-
responds to a choice of a phase-indexed controller 
for the next step’s duration.

We constructed an initial set of 100 phase-
indexed stepping controllers by sampling 10 dif-
ferent stride lengths and 10 different speeds at 
even intervals. We also constructed transition 
controllers between each pair of stepping control-
lers. This ensured that the controller maintains 
the motion constraints’ consistency condition be-
tween steps of different lengths and speeds. The 
result was a connected graph of phase-indexed 
stepping controllers with 100 possible transitions 
at each node (see Figure 8).

We optimized our sequencing policy to choose 
an appropriate sequence of steps such that the 
character reaches the goal while avoiding gaps in 
the ground. In reinforcement-learning language, 
this is equivalent to maximizing a value function 
that rewards steps that reach the goal and penal-
izes steps resulting in the character stepping in a 
gap or failing to make forward progress. To opti-
mize the policy, we formulated a value iteration 
in a 3D state space. The first dimension is the in-

dex of the node in the graph (that is, a transition 
region); the second dimension is the value of �q  
at the step’s start. The remaining dimension is the 
horizontal position on the terrain.

We partitioned the state space into a 100 × 20 × 
500 grid. We sampled the phase-indexed stepping 
controllers at each discrete state in the grid to tab-
ulate a transition function. Transitions to states 
in which the character’s foot is on a gap map to a 
failure state; transitions to the goal map to a suc-
cess state. Discrete states in which the character 
fails to make forward progress ( �q < 0 ) also map to 
a failure state. Because we assume forward prog-
ress, the transition map is acyclic, and the value 
function is guaranteed to converge in fewer than 
500 iterations.

The main cost in performing the value iteration 
is in tabulating the transition function, which in-
volves performing a number of simulations equal 
to the number of states times the number of ac-
tions (100 × 20 × 500 × 100). Because the steps 
are identical modulo horizontal translation on 
the ground plane, the number of necessary sim-
ulations decreases by a factor of 500. Once we 
tabulated the transition function, computing an 
optimal policy was relatively easy. We can adapt 
the policy for a different sequence of gaps without 
resampling the transition function. Additionally, 
our action set is rich enough that we can include 
in the value function a weighting for a second-

Step 1 Step 2 Step 3 Step 4

Figure 8. Operation of the constrained stepping controller for a walk of four steps (at the bottom). Arrows 
represent a fixed choice of motion constraints over the next step’s duration. Circles are transition regions 
between steps. An optimal stepping policy chooses the best sequence of motion constraints (the red arrows) 
to navigate a constrained terrain. The actual controller has 100 transition regions and 100 possible motion 
constraints exiting each region.
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ary criterion. We demonstrated this by designing a 
value function that assigns higher value to taking 
either longer or shorter steps.

Implementation Details
We solved nonlinear optimization problems us-
ing Matlab’s fmincon function. To efficiently 
solve the linear-equality constrained, least-squares 
problems that are necessary for the controller at 
runtime, we used Lapack’s dgglse function.

To perform forward simulation of articulated 
rigid bodies, we used a projected Gauss-Seidel 
iterative solver.8 We used a fixed size (dt = 1/240), 
velocity-based integration step. We stabilized con-
tact constraints by interleaving a projection step 
between simulation steps. The projection step 
updates the configuration by using the general-
ized pseudoinverse of the contact Jacobian, which 
minimizes the “inertial norm” (dqTMdq). Even with 
a relatively large step size, this procedure closely 
matched the inelastic impulse model assumed 
by the consistency condition (see Equation 8). 
Other procedures for handling contacts, such as 
Baumgarte stabilization, resulted in less consistent 
behavior during impulsive collision, which led to 
rougher motion. All simulations ran in real time 
or faster.

We hope to develop phase-indexed tracking 
controllers for 3D characters. Motion con-

straints are applicable in 3D, and researchers have 
applied them to control simplified walkers with 
point feet.9 However, our initial experiments sug-
gest that directly applying our approach for the 2D 
case can’t generate robust gaits in 3D. Additional 
feedback on the foot placement and swing-hip 
angle will likely be necessary. Despite these ob-
stacles, we believe we can apply the basic principle 
of phase-indexed tracking to 3D characters, with 
some modification. 
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