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Figure 1: Real-time control ensures fixed simulation outcome regardless of runtime user forces: First: the rest configuration of the
“T”-shape structure and the two target balls. Second: reference motion from an external simulator; the two ends of the “T” impact the two
balls. Third: user-perturbed real-time simulation, without control. The two ends miss the target. Forth: controlled user-perturbed real-time
simulation, with gentle control forces, tracks the reference motion and successfully impacts the target. The perturbation force load (green
arrow; applied 1/5 through the simulation, only in the third and fourth motion) pushes the “T” in the opposite direction of motion.

Abstract

Recent advances have brought real-time physically based simula-
tion within reach, but simulations are still difficult to control in real
time. We present interactive simulations of passive systems such as
deformable solids or fluids that are not only fast, but also directable:
they follow given input trajectories while simultaneously reacting
to user input and other unexpected disturbances. We achieve such
directability using a real-time controller that runs in tandem with
a real-time physically based simulation. To avoid stiff and over-
controlled systems where the natural dynamics are overpowered,
the injection of control forces has to be minimized. This search
for gentle forces can be made tractable in real-time by linearizing
the system dynamics around the input trajectory, and then using a
time-varying linear quadratic regulator to build the controller. We
show examples of controlled complex deformable solids and fluids,
demonstrating that our approach generates a requested fixed out-
come for reasonable user inputs, while simultaneously providing
runtime motion variety.
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1 Introduction

Fast physically based simulation of passive systems such as de-
formable models or fluids is a well-researched area in computer
graphics. General optimal control of such systems, however, is
computationally more demanding than mere forward simulation
and is not tractable in real time for complex models. In this paper,
we present physically based simulations which are not only fast, but
also directable in real-time. We give a real-time controller which
directs our nonlinear simulations to follow a given input trajectory
while simultaneously reacting to user input and other unexpected
disturbances. Such a controller enables directable interaction, i.e.,
interaction that can satisfy certain goals despite the fact that the
particular perturbations (such as user forces, stochastic forces or
numerical error) are not known at design time. For example, the
deformable T-shape in Figure 1 impacts the two pendulum balls yet
its motion is not fixed because it simultaneously responds to applied
user forces; likewise the bee lands on the controlled flower despite
user forces or stochastic wind forces (Figure 4). Many techniques
exist that can generate animations offline, satisfying, say, a sparse
set of keyframes. However, once authored, these animations are
fixed. At runtime, one cannot modify the motion and still preserve
desired outcomes; one would have to go back to the authoring phase
and re-design the motion. In contrast to existing offline techniques,
our method therefore enables interaction with specific, rather than
merely physical outcomes. It can be used in computer games to
provide animations that require both variety (so that no play is the
same), and scripting (so that the story progresses).

Such a controller also makes it possible to replicate the look and feel
of detailed physically based simulations under computational bud-
get constraints. For example, film production has almost unlimited
budget because a final frame needs to be created only once. Inter-
active systems (such as games), in turn, only have a limited amount
of computation time available to produce the next simulation frame.
Even in identical environments, one often cannot replicate the look
and feel of an offline simulation within an interactive system. Once
proper parameters and initial conditions are painstakingly devised
for one simulation, their effect should be replicated in every sim-



ilar simulation, but it is often not, due to (for example) varying
timesteps and different mesh resolutions. Our method can create
real-time simulations that preserve target salient features of detailed
simulations generated using a lot of human or computational effort.
For example, in our fluid example in Figure 2, we first generated
an offline fluid simulation where an immersed leaf follows a curve
“S”. The controller can then steer interactive simulations so that
the leaf trajectory is preserved. Furthermore, an arbitrary number
of simulations with similar leaf trajectories can be generated, ei-
ther through runtime user input, or by sampling random external
force perturbations. In training systems, our work could be used to
replace the action of a human participant with a controller. For ex-
ample, say that a surgeon needs to train a procedure which requires
two surgeons manipulating a certain tissue in a collaborative effort.
One could then replace one surgeon with our controller, allowing
the single trainee to perfect just his part of the task.

Real-time controlled physically based simulation is not possible
without real-time forward simulation. In our work, we achieve fast
forward simulation using model reduction, a popular theme in many
scientific disciplines [Li and Bai 2005]. We use model reduction
because it gives very compact low-dimensional state spaces where
real-time control is tractable. Reduced simulations, which approxi-
mate full simulations, can forward-simulate deformable solids and
fluids at real-time rates. The underlying general principle of model
reduction is to replace the full simulation state (say, with several
thousand degrees of freedom) with a low-dimensional reduced state
(with only several tens of DOFs), relate the two via a projection ma-
trix, and approximate the full equations of motion with a projection
onto the low-dimensional space.

The core of our method is a real-time controller which runs in tan-
dem with a real-time physically based simulation. Our controller
is a tracking controller: its objective is to steer the runtime sim-
ulation toward a given pre-simulated system trajectory. In the ab-
sence of any runtime perturbations, the controller simply plays back
the external forces which generated the tracked trajectory (the feed-
forward control), which in turn replays the tracked trajectory. In
the presence of runtime disturbances, however, the controller ap-
plies control forces (the feedback control) which guide the simula-
tion toward the pre-simulated trajectory. Our feedback forces are a
solution of an optimization problem. They minimize an objective
function that combines the tracking error and amount of injected
control for the remainder of the tracked trajectory. For a given
level of tracking error, our controller produces smaller forces than
previous strategies (such as PD control), hence we call our feed-
back forces “gentle”. These gentle control forces can be computed
quickly. They are a linear function in the current (position and/or
velocity) deviation from the tracked trajectory, with time-varying
gains. The gain matrices incorporate system’s natural dynamics
and are generated automatically using a quick precomputation step.

2 Related work

Physically based simulations of geometrically detailed models
in general do not run at real time rates, but real-time simula-
tions are possible with various approximations. Each approxima-
tion inevitably creates a different simulation making it difficult
to enforce consistent outcome. Even in offline simulations, fic-
tional discretization-dependent forces cause simulations on one dis-
cretization to differ from simulations on another. Our control can
counter such forces to ensure user-prescribed outcomes while pre-
serving plausible interaction.

Real-Time Simulation: We achieve real-time forward simula-
tion using model reduction; in particular, we follow [Barbič and

Figure 2: Controlled simulation with runtime variety: the red
leaf in this fluid simulation is controlled to follow the S curve,
while random external forces (Perlin noise; sampled continuously
in time) provide different perturbations for each simulation run.
The other leaves are only advected by the fluid (not controlled).
Two separate simulation runs shown.

James 2005] for deformable solids and [Treuille et al. 2006] for
fluids. Both of these methods simulate nonlinear systems, sup-
porting large deformations of solids and chaotic fluid dynamics.
We use empirical simulation bases, obtained by applying Princi-
pal Component Analysis (PCA) to data computed using a full of-
fline simulator. Model reduction can also employ pre-determined
global bases, such as low-order polynomial or super-quadric defor-
mation fields [Witkin and Welch 1990; Metaxas and Terzopoulos
1992]. In computer graphics, real-time forward simulations have
also been achieved using multi-resolution methods [Debunne et al.
2001; Capell et al. 2002; Grinspun et al. 2002], or by driving de-
tailed rendering meshes with coarse simulations [Faloutsos et al.
1997; Müller and Gross 2004]. Unfortunately, real-time simula-
tions seldom match the spatial and temporal behavior of more de-
tailed simulations.

Fictitious Forces: Numerical damping is present in cloth simu-
lations or particle systems, especially with implicit integrators at
large timesteps. This has prompted the use of explicit integra-
tors in industry applications [Kačić-Alesić et al. 2003] where artifi-
cial forces can be purposefully added and removed. Likewise, en-
ergy dissipation in semi-Lagrangian fluid advection schemes [Stam
1999] is often a mix of user-prescribed damping and uncontrollable
numerical viscosity, especially at large time steps common in com-
puter graphics. Excessive diffusion has been combated by artifi-
cially re-introducing vorticity into the flow [Fedkiw et al. 2001],
using FLuid-Implicit-Particle (FLIP) methods [Zhu and Bridson
2005], by circulation-preserving discrete operators [Elcott et al.
2007], or higher-order advection techniques [Selle et al. 2008].
With model reduction, numerical diffusion causes a mismatch be-
tween full and reduced simulations. Even though reduced fluids can
be made energy preserving [Treuille et al. 2006], numerical viscos-
ity in full simulations does not necessarily correspond to any par-
ticular viscosity level. In our work, we inject small fictional forces
in order to steer reduced simulations toward full simulation trajec-
tories, allowing us to preserve features of full simulations such as
trajectories of particles immersed into the fluid.

Control Forces: Nonlinear dynamics presents a key challenge
for controlling real-time systems. One approach is to negate nonlin-
earities with inverse dynamics [Isaacs and Cohen 1987]. Although
this simplifies control, inverse-dynamics will use arbitrary forces to
overpower (cancel) the system natural dynamics, resulting in over-
controlled (stiff) interaction even for naturally compliant materials.



These problems can be reduced with the constrained-Lagrangian
formulation of inverse dynamics [Barzel and Barr 1988; Bergou
et al. 2007]. This approach expresses control tasks as constraints
and maintains them with fictional constraint forces, acting in direc-
tions normal to the constraint surface. However, forces of arbitrary
magnitude can be applied to remove any disturbance components
that violate the constraint. Hence, naturally compliant materials
will feel stiff for some interactions and compliant for others.

Compliant control can be accomplished with linear feedback such
as proportional-derivative control that has led to some of the most
striking simulations of human and animal motion [Hodgins et al.
1995; Wooten and Hodgins 2000; Faloutsos et al. 2001; Yin et al.
2007]. Similar approaches have also been used to design force
fields to control fluids [Fattal and Lischinski 2004; Rasmussen et al.
2004; Shi and Yu 2005; Thürey et al. 2006] and elastic deforma-
tions [Sifakis et al. 2005; Capell et al. 2005]. However, all of these
approaches have depended on manual tuning of control gains. De-
sired outcome is difficult to enforce, the gains must be retuned with
every change in simulation parameters, and the control efforts are
not minimized. Tuning can be improved with heuristics [Hodgins
and Pollard 1997; Zordan and Hodgins 2002; Yin et al. 2003; Zor-
dan et al. 2005] or exhaustive search [Tedrake 2004; Sharon and
van de Panne 2005; Sok et al. 2007]. However, it is not known how
to extend these heuristics to new simulation domains or to state
spaces with tens of degrees of freedom. We further compare our
work to PD control in Section 6.

Optimal control minimizes the injection of control forces using the
knowledge of the natural dynamics of the system. It has been used
extensively for automatic generation of human motion [Popović
and Witkin 1999; Fang and Pollard 2003; Safonova et al. 2004;
Sulejmanpasić and Popović 2005; Liu et al. 2005]. The benefit
of similar strategies has been demonstrated for control of rigid-
body simulations [Popović et al. 2003] and fluids [McNamara et al.
2004]. However, all of these approaches are either too slow for
real-time control or only generate feed-forward control, which is
quickly invalidated by any user input. In this paper, we demon-
strate real-time near-optimal feedback control. Although the gen-
eral formulation of our problem is well known as a Linear Quadratic
Regulator (LQR) [Stengel 1994], its practical applications in com-
puter animation have been limited to offline control of simple phys-
ical systems [Brotman and Netravali 1988], and character anima-
tion [da Silva et al. 2008]. Another unique aspect of our study is
the exploration of time-varying approximations whereas LQR con-
trol is more commonly applied to stabilize linear time-invariant ap-
proximations. With these approximations, LQR control, which is
optimal for linear systems, will not ensure that we inject the small-
est possible control forces, but it will reduce force levels to enable
plausible real-time controlled interaction.

3 Background: Full and reduced simulation

Full simulations are simulations without reduction; they can in gen-
eral (assuming linear control) be expressed as the following (high-
dimensional) system of ODEs:

q̇ = F(q, t)+Bu. (1)

Here, q ∈ Rn is the state vector (n will typically be at least several
thousands), F(q, t)∈Rn is some (nonlinear) function specifying the
system’s internal dynamics, B ∈ Rn×m is a constant control matrix,
and u∈Rm is the control vector. We demonstrate our method using
two particular forms of Equation 1:

1. Navier-Stokes equations of incompressible fluid (smoke) in-
side a 2D rectangular domain, discretized on a MAC Eulerian
grid, with free-slip boundary conditions. These assumptions

lead to a first-order ODE for MAC grid velocities (our state
vector q) [Fedkiw et al. 2001].

2. Geometrically nonlinear FEM solid deformable simulations
supporting large deformation dynamics [Capell et al. 2002].
State vector q consists of displacements and velocities of the
vertices of a 3D simulation mesh. Equations of motion are
second-order. The inclusion of velocities into the state allows
us to write them in the first-order form of Equation 1.

Neither of these equations uses explicit time dependency (we have
F=F(q)); this is a common assumption and could be relaxed easily.

Reduced simulations are obtained by projecting Equation 1 onto a
r-dimensional subspace, spanned by columns of some basis matrix
U ∈ Rn×r (r is in the 24-64 range for our simulations). The full
state is then approximated as q = Uz, where z ∈ Rr is the reduced
state. The resulting low-dimensional system of ODEs

ż = F̃(z, t)+Bw, for F̃(z, t) = UT F(Uz, t), (2)

approximates the high-dimensional system provided that the true
solution states q are well-captured by the chosen basis U . Here,
B ∈ Rr,s is a constant matrix, and w ∈ Rs is the reduced control
vector (usually s ≤ r).

4 Real-time control

Our runtime simulations are reduced simulations with control; they
are obtained by time-stepping Equation 2, with the controller com-
puting w(t) in real-time. Our controller runs entirely in the low-
dimensional space. Its objective is to make the reduced state z(t)
track a given reduced trajectory zref(t). We call this tracked low-
dimensional trajectory the reference trajectory. The reference tra-
jectory is some given sequence of states {zref

i }i, corresponding to
times {ti}i = i∆t along the time axis (∆t is the timestep size). At
runtime, the user will apply disturbances to the system, which, in
the absence of control, will cause the reduced system to veer off
the tracked trajectory. The goal of our control is to minimize this
deviation while still providing a plausible physical response to the
runtime interaction forces.

The reference trajectory is accompanied with the feed-forward con-
trol (also called reference control); this is the low-dimensional con-
trol (we denote it by wff(t)) that reproduces the reference trajectory
(in a reduced simulation) in the absence of runtime disturbances:

d
dt

zref(t) = F̃
(

zref(t), t
)

+Bwff(t). (3)

It is not always possible to obtain wff(t) that satisfies Equation 3
exactly. Our controller is able to track the reference trajectory even
if wff(t) is only approximate. The control term of Equation 2 can
now be decomposed as

w(t) = wff(t)+wfb(t)+wext(t), (4)

where wfb(t) is the control applied by our real-time controller, and
wext(t) are external disturbances, such as user-applied interaction
forces, stochastic forces, or numerical simulation error.

We treat the low-dimensional basis U, the reference trajectory, and
feed-forward control as inputs to our algorithm. Our objective is to
build a controller which can track (replay with variety) given offline
data in real-time; generation of this data itself is not the subject of
our work. For our examples, we generated our input using an ex-
ternal simulator which can timestep Equation 1 offline, potentially
followed by appropriate reduced simulations. We describe this ex-
perimental setup in Results (Section 5).



4.1 Controller objective function

Given the reference trajectory {zref
i }i, feed-forward control {wff

i }i,
the current runtime timestep index i and current state z = z(ti), the
goal of our controller is to minimize

1
2
(
z(tfinal)− zref(tfinal)

)T Q(tfinal)
(
z(tfinal)− zref(tfinal)

)
+ (5)

1
2

∫ t=tfinal

t=ti

((
z(t)− zref(t)

)T Q(t)
(
z(t)− zref(t)

)
+wfb(t)T R(t)wfb(t)

)
dt

over all possible feed-back control values wfb
i ,wfb

i+1, . . . ,w
fb
T−1. The

first term penalizes the deviation from the reference state at time
t = tfinal = T ∆t, the first integral term penalizes the tracking error
from the current time to the end of the reference trajectory, and the
second integral term penalizes using control. Here, Q(t) ∈ Rr×r

and R(t) ∈ Rs×s are arbitrary (potentially time-varying) position
error and control cost matrices, respectively. These two matrices
determine the trade-off between tracking the reference trajectory
tightly and exerting control. The matrix Q(tfinal) is the final cost. It
enables one to boost the importance of meeting the reference state
at the last frame along the reference trajectory. For example, by
setting Q(t) = 0 for all t in the integral term, and Q(tfinal) 6= 0, one
obtains a controller that ensures the final condition is met closely,
without regard on the intermediate tracking error . Note that Equa-
tion 5 explicitly singles out the tracking error at t = tfinal. However,
using a proper time-varying position cost Q = Q(t), one can easily
emphasize (or single out using a δ -function) other important times
along the trajectory. Also, by time-varying R, one can shift the
balance between tracking and control along the time axis. In our
examples, we set Q and R to multiples of the identity matrix:

Q(t) = αQ Ir×r, Q(tfinal) = αQfinal Ir×r, R = αR Is×s, (6)

where αQ,αQfinal and αR are appropriate scalar parameters. Note
that scaling these parameters with an arbitrary constant only
rescales the objective function, so there are essentially only two in-
dependent parameters. Furthermore, we often set one of αQ,αQfinal
to zero. In this case, animators can tune a single intuitive scalar pa-
rameter (ratio of position vs control cost), allowing them to directly
set the tradeoff between tracking error and amount of control.

4.2 The controller

Both full and reduced dynamical systems from Equations 1 and 2
are nonlinear, causing the minimization from Equation 5 to have no
closed-form solutions. Assuming perturbations are known ahead of
time, the solution can be obtained offline using standard techniques
such as space-time optimization. Such approaches lead to nonlin-
ear optimizations with many degrees of freedom and are orders of
magnitude too slow for an interactive system.

There is, however, a way to simplify the problem to make it
tractable in real-time: if one linearizes the ODEs of Equation 2
around the reference trajectory, then the minimization problem
from Equation 5 has an exact analytical solution. Linearization
around the reference trajectory means that the system of ODEs of
Equation 2, at time t, is linearized around the reference state at
time t, yielding a time-varying linear system of ODEs. Lineariza-
tion is performed by introducing the state error variable (∆z)(t) =
z(t)− zref(t), rewriting Equation 2 in terms ∆z, taking into account
Equation 3, and applying the approximation

F̃
(

zref(t)+∆z, t
)
≈ F̃

(
zref(t), t

)
+

∂ F̃
∂ z |z=zref(t)

∆z. (7)

This gives a linear ODE for ∆z, controlled only by wfb :

d
dt

∆z =
∂ F̃
∂ z |z=zref(t)

∆z + Bwfb. (8)

If the minimization of Equation 5 is performed with respect to the
dynamical system of Equation 8, the optimal control policy can be
shown to be linear in the current state error ∆z. The controller that
executes this policy is called a linear quadratic regulator [Stengel
1994]. Optimal control at timestep i when the current state error is
∆z, equals wfb = Ki∆z, where Ki ∈ Rs×r is a constant gain matrix
that depends only on the timestep index i, and not on ∆z.

Given a reference trajectory, the feed-forward control, and the cost
matrices, the matrices Ki can be precomputed efficiently by solv-
ing a Riccati differential equation, with an initial condition at the
last timestep, backwards in time. Table 1 gives LQR computation
statistics. Computation details are given in Appendix A.

r T computation time space for {Ki}i
T-shape 24 501 17.5 sec 4.4 Mb
flower 24 1281 46.9 sec 11.2 Mb

dinosaur 30 181 12.5 sec 2.5 Mb
fluid 64 90 8.4 sec 3.1 Mb

leaves 64 200 15.2 sec 6.5 Mb

Table 1: LQR precomputation statistics: All statistics are totals
for the entire sequence Ki, i = 0, . . . ,T −1. Space complexity (given
in double precision) is rsT floating point numbers, and time com-
plexity is O

(
( f + r3)T

)
, where f is the complexity of a reduced

forward-simulation timestep: f = O(r3) for fluids, f = O(r4) for
geometrically nonlinear deformable solids.

4.3 Deformable solids

We use the reduced deformable model obtained by applying (POD-
style) model reduction to geometrically nonlinear FEM deformable
models [Barbič and James 2005]. These models support large de-
formations and dynamics. The reduced model is simply a pro-
jection of the standard nonlinear second-order FEM deformable
model [Capell et al. 2002]:

p̈+ D̃(p)ṗ+ R̃(p) = f̃ext(t), (9)

where p ∈ Rr are the reduced deformations, D̃(p) ∈ Rr×r is the re-
duced Rayleigh damping matrix, R̃(p)∈Rr are the reduced internal
forces, and f̃ext(t)∈Rr are the reduced external forces. The full de-
formation vector, consisting of displacements of the vertices of the
FEM simulation mesh, is given by U p(t), where U ∈Rn×r is a sub-
space basis matrix. We rewrite Equation 9 into first-order form by
introducing the state vector z = [pT , ṗT ]T ∈ R2r; the resulting F̃(z)
and B ∈ R2r×r are given in Appendix B. Equation 8 now reads

d
dt

∆z = A(t)∆z+Bwfb, (10)

where the matrix A(t) ∈ R2r×2r is given in Appendix B. In order
to build the gain matrices Ki (Appendix A) it is necessary to evalu-
ate A(ti), for all timesteps i. This computation has equal asymptotic
cost as forward reduced simulation and can re-use much of the same
code. We are only injecting control through reduced deformations,
not reduced velocities (upper r× r block of B is zero). This is a
common choice with second-order dynamical systems where exter-
nal forces are the natural place to add control. In principle, one
could inject control also at the velocity level, however, the results
would then generally look less physical.



4.4 Fluids

We also demonstrate our results using real-time 2D reduced flu-
ids [Treuille et al. 2006], which are obtained by applying proper
(POD-style) model order reduction to standard Eulerian grid fluid
equations encountered in computer graphics. We use a standard
MAC grid with velocities at edge centers and pressures at cell cen-
ters. The reduced equations of motion are

ż = Â(z)z+νD̂z+w, (11)

where z are the reduced velocities, Â(z) is the reduced advection
matrix, D̂ is the reduced diffusion matrix, ν ≥ 0 is viscosity, and
w are the reduced external forces (including control). The unre-
duced fluid velocities are approximated as Uz(t), where U is a ve-
locity basis matrix. Note that divergence-free pressure projection is
not necessary for reduced simulations, as columns of U already are
divergence-free by basis construction [Treuille et al. 2006]. For full
simulations, we use a standard semi-Lagrangian advection scheme,
and we performed pressure projection with a direct sparse solver.

The reduced fluid can be controlled with a procedure equivalent
to the one described with reduced deformations: first identify F̃
and its gradients, then evaluate them along the reference trajectory
to build a LQR controller. This allows one to steer the reduced
velocities to that of the reference trajectory. While this tracking
worked well in our experiments, we usually augment the reduced
state by immersing one or a few particles into the fluid. Particles
provide more visual output to the user than using only the veloci-
ties; control of fluids with particle forces has been embraced by the
community [Rasmussen et al. 2004; Thürey et al. 2006]. We con-
trol the particles to their reference trajectories in addition to con-
trolling the reduced fluid velocities. In particular, for a reduced
fluid with N immersed particles, we augment the reduced state to
ẑ = [pT

1 , . . . , pT
N ,zT ]T ∈ R2N+r, where pi ∈ R2 is the current posi-

tion of particle i. The equations of motion of particles are then

d
dt

p =
[
Ψ

(
p1(t)

)T
, . . . ,Ψ

(
pN(t)

)T
]T

z(t), (12)

where we have assembled p = [pT
1 , . . . , pT

N ]T ∈ R2N , and where
Ψ(x) ∈ R2×r are the fluid velocity modes, evaluated at the world-
coordinate location x in the fluid. These modes Ψ(x) are obtained
by interpolating MAC edge basis velocities of U to arbitrary loca-
tions x inside the fluid domain. We obtain particle reference trajec-
tories either using a reduced simulation, or by immersing particles
into a full simulation. Equation 8 takes the form

d
dt

(
∆p
∆z

)
=

(
Y (t) W (t)

0 A(t)

)(
∆p
∆z

)
+

(
0
B

)
wfb (13)

where wfb ∈ Rr only injects reduced velocity control, and matrices
A,Y,W and B are given in Appendix C. Note that particles’ posi-
tions are now coupled with reduced velocities and that one obtains
pure reduced velocity control for N = 0.

Our position cost matrix is a diagonal matrix with entries
λP, . . . ,λP, λQ, . . . ,λQ, where λP and λQ are the costs of errors in
particle position and reduced state, respectively. In practice, we
usually set λP orders of magnitude higher to λQ so that control puts
more emphasis on steering the particles rather than velocities.

5 Results

Our controller requires a subspace basis, a reference trajectory and
feed-forward control, which we generated using an external simu-
lator (by time-stepping Equation 1 offline). The simulator produces

one or more full simulation trajectories; each is a sequence {qi}i of
high-dimensional states qi, together with the high-dimensional se-
quence of controls (external forces) ui = u(ti) that generated {qi}i.
The choice of this control is not the focus of our work; we applied
a few initial impulses and selected an interesting trajectory to track
(the center-line trajectory) using trial and error.

5.1 Basis extraction

Once the tracking trajectory has been selected, it is necessary to
establish a low-dimensional basis for model reduction. The basic
requirement is that the basis must capture the center-line trajectory
well. We do so by applying Principal Component Analysis (PCA)
to properly selected simulation data, which includes the center-line
trajectory and enrichment data (see below). We apply PCA in the
standard way: we assemble {qi}i into one (large) matrix, column i
containing qi, and use SVD (or incremental SVD [James and Fata-
halian 2003]) to extract a low-dimensional space.

5.2 Basis enrichment

Our reduced simulations should be able to express a rich set of per-
turbations to the center-line trajectory, establishing runtime simula-
tion variety. It is not sufficient simply to PCA the centerline trajec-
tory; this usually gives over-specific bases which do not generalize
beyond the tracked trajectory. Instead, we enrich the centerline tra-
jectory before PCA. We do so by running full simulations with con-
trol (external forces) randomly perturbed. We sampled N (typically
∼ 50) locations ti along the time-axis, using time-stratified random
sampling. We then ran N full simulation runs, with each of the runs
applying a single random perturbation, at time ti.

With fluid simulations, our perturbations are wind fields with ran-
domized magnitude and width. Their location is either randomized
with bias toward high-velocity regions at time ti, or, when we im-
merse particles in the fluid, simply selected to be a particle’s posi-
tion in the center-line simulation at time ti. With solid deformable
simulations, we either randomly perturb initial velocities of the de-
formable object, or we sample random force impulses on a subset
of mesh vertices, at times ti.

The perturbations need to be sufficiently large to establish variety,
but not too large, so that a low-dimensional basis can still capture
them adequately. The different sampling runs should sample a tun-
nel around the center-line trajectory, rather than completely new
trajectories (see Figure 3, Red). In our experiments, the magnitude
of perturbation forces was about 5-20% of the center-line control.

5.3 Reference trajectory and feed-forward control

We must now convert the selected full center-line trajectory into a
low-dimensional pair (reference trajectory, feed-forward control),
to be tracked by our controller. This can be done by projecting
the control used to generate the full center-line simulation into the
subspace, obtaining wff

i = UT Bui, for all timesteps i = 0, . . . ,T −1.

Next, we simulate the reduced system using control {wff
i }i, produc-

ing the reference trajectory {zref
i }i.

It is sometimes difficult to make such reference trajectories match
the projection of the full simulation into the subspace. For example,
full simulations in graphics usually advect with semi-Lagrangian
backtracking [Stam 1999] which introduces numerical dissipation.
Reduced simulations, however, preserve energy (or the chosen vis-
cosity level) [Treuille et al. 2006] much more closely, resulting in
a visual mismatch between full and reduced simulations. In such
cases, our controller can be used to make the reduced simulation
match the full simulation by setting the reference trajectory to the



Figure 3: Fluid simulation particle trajectories: Thick black
line: full simulation “center-line” trajectory (ν = 0; semi-
Lagrangian advection). Red thin lines: full simulation basis enrich-
ment trajectories. Bottom 1/4 of the simulation box is not shown.
All trajectories correspond to a particle initially located at the cen-
ter of the simulation box (denoted by the black circle) and inte-
grated using a Runge-Kutta second-order integrator. Same initial
external force, followed by control-free motion. 256x256 MAC grid.

projection of the full center-line trajectory: zi = UT qi. The feed-
forward control is set to wff

i = UT Bui. Note that such feed-forward
control and reference trajectory do not necessarily match. However,
in our experiments, controllers were robust and tolerated moderate
mismatches. For example, in a fluid simulation where the motion
was excited by a single initial impulse, the controller easily recov-
ered to the reference trajectory even if feed-forward control was set
to a constant zero vector (Figure 5, bottom).

5.4 Examples

We show examples of complex physically based simulations track-
ing precomputed data and reacting to user input. Table 2 gives run-
time statistics of our controlled real-time reduced simulations.

r n FS control FU fps
T-shape 24 1032 0.8 0.02 95 160 Hz
flower 24 12705 0.8 0.02 2300 65 Hz

dinosaur 30 53178 1.4 0.03 22,000 55 Hz
fluid 64 131,584 3.0 0.07 78 80 Hz

leaves 64 131,584 3.0 0.07 78 145 Hz

Table 2: Runtime statistics: Our control is computationally very
inexpensive compared to reduced forward simulation. All timings
are for a single timestep and are given in milliseconds. FS=reduced
forward simulation cost (without control), FU=full forward simula-
tion cost (no control). The number of simulation mesh vertices is
n/3. Output graphical frame rate is fps. Rendering is accelerated
on the GPU. Machine specs: Apple MacBook Pro, Mac OS X, 2.33
GHz Intel Core 2 Duo processor with 3 Gb memory, ATI Radeon
X1600 graphics card with 256 Mb memory.

Our first solid deformable example is a deformable T-shape struc-
ture (see Figure 1). In the reference trajectory, the two endpoints
of the “T” strike two suspended balls. In a forward simulation with
user-applied runtime forces, however, the “T” misses its target. Our
real-time controller ensures that the “T” hits the two targets, despite
user perturbations, with a minimal amount of artificially injected
forces. Several trade-offs between control and tracking error are

possible: tracking can be made stiff (overwhelming natural dynam-
ics), final cost can be set high to enforce the final goal with less
emphasis on the in-between trajectory, or control can be kept at a
low level which better preserves system’s inherent dynamics.

The flower example (see Figure 4) demonstrates robust real-time
interaction in the presence of large disturbances. In this example,
feed-forward control is non-zero throughout the motion: we man-
ually scripted feed-forward forces that cause the flower’s stem to
swing far left, then far right, and then back to undeformed pose,
thus making a complete cycle of motion. We also added stochastic
feed-forward wind forces so that the leaves are in constant motion.
It was difficult to script the forces so that the last frame cycle meets
the initial frame. We only matched them approximately through
trial and error, and then used our controller to fix the discrepancies,
generating endless motion. To illustrate how our controller can en-
sure fixed outcomes, we added a non-controlled bee following a
scripted trajectory in space-time. The bee only lands on the flower
because our controller ensures that the landing spot is at the right
place at the right time. Without control, user forces alter the motion
of the flower, and the bee does not land on the flower.

Figure 4: Real-time control enables simulations with pre-
dictable outcomes: Top-left: four frames of the reference trajec-
tory. Top-right: user applies a large perturbation. Bottom-left:
controlled simulation; flower and bee meet in space-time. Bottom-
right: uncontrolled simulation; flower and bee do not meet. Wire-
frame mesh gives the reference trajectory. Same user external
forces in both cases (shown at Top-right).

Our method can be used to create real-time simulations that pre-
serve offline simulators properties, such as the trajectory of one or
a few particles immersed in the fluid. This usually causes smoke
in the vicinity of particles to be advected in a similar way to offline
simulations. Figure 5 (top-left) shows the mismatch between the
full and reduced trajectory of a particle. We can use our controller to
cause the particles to follow their trajectories from full simulation.
We selected three particles and performed the full forward (center-
line) simulation to obtain their full simulation trajectories. Next,
we set these trajectories as particle reference trajectories, and set the
projection of the full simulation to the low-dimensional space as the
reference velocity trajectory. We then ran real-time controlled sim-



ulations (r = 64), using the enrichment basis from Figure 3, with
and without user disturbances, for several control cost values (see
Figure 5). Without disturbances, the controller maintains both the
reduced velocities and particles’ positions close to the reference
trajectories (Figure 5, top-left). With disturbances, the controller
applies a compromise between state error and control (Figure 5,
top-right). Cheaper controls causes closer trajectory matches, but
disturbs the natural dynamics with higher levels of control forces.

Figure 5: Particle trajectories in controlled real-time fluid sim-
ulations: Top-Left: The trajectory of a particle in a 256x256 full
simulation (thick solid), in an uncontrolled reduced simulation (thin
dashed), and in controlled reduced simulations (thin solid) under
three levels of LQR control: green and blue trajectories correspond
to 100x, 100,000x cheaper control than the red trajectory, respec-
tively. Numerical viscosity causes the full simulation to be less en-
ergetic than the uncontrolled reduced simulation rendering the two
trajectories quite different. Top-Right: Full particle trajectory and
projected fluid velocities are used as a reference for controlled sim-
ulations with three user perturbations (forces F1,F2,F3 applied at
times t ′1, t

′
2, t

′
3, indicated by green arrows; reference particle posi-

tions at perturbation times are indicated by yellow boxes). Bottom:
relative velocity tracking error. We used zero feed-forward control
in this example; in the initial part of the simulation the controller
quickly increases the velocities to match the high initial reference
velocities.Three particles were controlled simultaneously in this ex-
periment; only one is shown in the top row diagrams for clarity.

6 Comparison to PD control

In this section, we compare the LQR controller to the proportional-
derivative (PD) controller. While PD has the advantage of simplic-
ity (although a LQR implementation is not very complex either; see
Appendix A), LQR produces visibly more natural motions for the
same level of tracking error (see Figure 6). A PD controller (for-
mulated here for reduced fluids with immersed particles) applies a
force only by looking at the current state:

wPD
fb =−kZ∆z− kP∆p− kD(∆p)′, (14)

where kZ ,kP and kD are scalar PD gains. The LQR controller, in
turn, picks control forces that minimize an objective function over

the remaining part of the reference trajectory. Assuming a linear
time-varying system (LTV), PD will therefore always give sub-
optimal objective values. In our work, controllers drive a nonlin-
ear simulation which is well-approximated by a LTV for moderate
state errors ∆z, causing LQR to use less control than PD, for same
level of tracking error. The advantage of LQR is particularly pro-
nounced when long-horizon planning is important, such as when
control is expensive (gentle forces), or when final costs are high
(both of which are relevant for computer animation). With inex-
pensive (stiff) control, the two controllers yield similar results, as
any trajectory deviations are quickly removed by either controller.

LQR and PD controllers are functionally equivalent: in both cases,
feedback force is a product of some (time-varying) gain matrix and
the current state deviation from the reference trajectory. LQR re-
sults can always be replicated with a PD controller that simply
employs the time-varying LQR gain matrices {Ki}i. The key dif-
ference between LQR and PD is that with PD, one needs to find
such time-varying feedback gains manually, whereas LQR com-
putes them automatically, and in seconds. For example, suppose
one needs to control a system where interim trajectory deviation is
not important, but where certain final conditions must be imposed.
The PD gains of Equation 14 are constant in time. For quality PD
tracking, one would need to tune time-varying versions of PD pa-
rameters (a large number of parameters), whereas LQR computes
the time-varying gains automatically. Also, PD gains only indi-
rectly correspond to the desired goal. With LQR, one tunes param-
eters that directly control the trade-off between tracking error and
control. Typically, one tunes a single parameter: the ratio of posi-
tion (or final) cost vs control cost. It is easier to reach a given goal
by increasing its weight in the objective function than by adjusting
the PD gains, much like we prefer using spline control points to the
coefficients of the cubic polynomial. And, because of the optimal-
ity for the linearized time-varied system, LQR gains will be difficult
to outperform by manual tuning. In our experience, LQR parameter
tuning was easy and intuitive, and fast due to short LQR precom-
putation times. Such tuning is virtually impossible with previously
proposed offline optimal control strategies, where even computing
a trajectory under a single set of parameters can take hours.

The PD controller has the advantage of being able to start track-
ing instantly, whereas a LQR controller needs to do a short pre-
computation (8.4-46.9 sec in our examples). However, both con-
trollers require a trajectory to track, which typically requires (non-
instantaneous) presimulation. Also note that the linearizations em-
ployed by LQR could be performed with respect to a sparser set of
“keyframe” shapes. Another positive aspect of PD is that it can be
used without reduction. However, 256 x 256 unreduced 2D simula-
tions with PD control are about 26x slower than reduced controlled
simulations with LQR (Table 2). Our LQR controller generalizes to
3D fluids where timing differences will be even greater. The differ-
ence is also large with deformable simulations (dinosaur: 15,700x).

Deformable LQR vs PD experiment: In this experiment,
we tracked a precomputed solid deformable dinosaur (rooted to
ground) simulation, with zero position costs and non-zero final
costs (αQ = 0, αQfinal > 0). We applied an initial force perturba-
tion, and then tried to match LQR performance with PD. When PD
gains (time-constant) were tuned such that PD dispensed equal ef-
fort as LQR, the PD simulation missed the target by a substantial
margin. When PD gains were tuned so that PD simulation achieved
the same final error as LQR, PD dispensed 6.3x the effort of LQR.

Fluid LQR vs PD experiment: Given a particular choice of
position costs, control costs, and user disturbances, one can run the
corresponding LQR controller and record the resulting particle tra-



Figure 6: PD either invests more effort, or misses the target.
Top-Left: Reference trajectory. Top-Right: LQR simulation with a
user perturbation. Middle-Left: PD simulation tuned to equal final
error as LQR. Middle-Right: PD simulation tuned to equal control
effort as LQR. Red frame is the final reference frame. Position cost
was zero, final cost was non-zero, and control cost was set to a
high value compared to final cost. Bottom: bird’s eye view on the
trajectory of a vertex at the top of dinosaur’s head. PD that matched
LQR in terms of final error consumed 6.3x the effort of LQR, with a
very visible difference: LQR dynamics is richer and more compliant
than PD (compare, e.g., to the uncontrolled curve), yet both LQR
and PD reach the same final goal. Same spatial unit on both axes.

jectories and the total amount of injected control. We selected one
such set of parameters (with expensive control cost), and then at-
tempted to match the LQR tracking performance using P and PD
controllers. We did so by exploring PD gains kZ ,kP,kD (Equa-
tion 14) such that the total amount of injected PD control matched
the LQR level. Note that LQR has two parameters in this case (1.
ratio of control cost vs position cost, 2. particle position cost), P has
two (kZ ,kP), and PD has three (kZ ,kP,kD) parameters. We chose not
to compare to a PID controller because PID has four parameters.
The PD tuning was systematic, exploring all three gain parameter
dimensions, 100 parameter values total, until we could no longer
improve performance. We plot the results in Figure 7. We found
that, for a fixed control budget, LQR is able to track the reference
trajectory more closely than PD. Two of the plotted trajectories cor-
respond to a P controller, which has the same number of parameters
as LQR, but is suboptimal both to PD and LQR. The P controller,
limited by the control budget, always failed to counter the first user

applied force, causing the particle to swirl to the right. The other
two curves show our best PD result, which is suboptimal to LQR,
and another typical PD result. Note how in the last phase of motion
PD can only asymptotically approach the reference trajectory (due
to the limited budget), whereas LQR matches it almost exactly.

Figure 7: LQR vs PD comparison (fluid): LQR trajectory
matches the reference trajectory more closely than any of the PD
trajectories. The thick solid black line gives the reference trajec-
tory, the dashed blue line is the LQR trajectory, and the solid red
lines are PD trajectories. Same setup as in Figure 5. Control cost
was set to a high value, position cost was non-zero, and final cost
was set to zero. Same amount of control for all LQR and PD curves.

7 Conclusion

We presented physically based simulations that are directable in
real-time. Our controller injects gentle forces that keep the sys-
tem trajectories close to desired input trajectories. This makes it
possible to generate simulations both with predictable outcome and
variety. Real-time control is a natural complement to offline con-
trol which can only compute strategies needed for some complex
outcome, but cannot provide simulation variety. As opposed to PD
gains, the LQR cost parameters directly control the trade-off be-
tween tracking and amount of control. We successfully used the fi-
nal cost to put emphasis only on matching the last simulation frame.

The controller can correct various imperfections in input data, such
as moderate timing mismatches between full and reduced simula-
tions. The simulation can loop endlessly by rewinding the tracked
frame to the beginning of motion; any mismatches between the final
and first frames are smoothed out by the controller. At designated
moments in time (or triggered by external events), our controller
can change the tracked goal to, say, a closest state to the current
state along the entire trajectory, and then continue tracking the sub-
sequent part of the trajectory. This can be done simply by changing
the current tracked time to that of the closest configuration.

Our control cooperates naturally with the underlying reduced
model. While the reduced model cannot produce trajectories sig-
nificantly different from data used to derive the basis, the controller
keeps the system near the data center-line. As such, the reduced
model is kept in the region where it naturally performs well.

The control forces are computed by linearizing the system dynam-
ics around the reference trajectory; their accuracy reduces when the
runtime trajectory deviates significantly from the reference. We are



unable to break our solid deformable examples. Our particles im-
mersed in fluids, however, sometimes do not recover under very
large perturbations. This happens when the linearization in the Y (t)
matrix in Equation 13 is no longer able to predict the fluid veloc-
ity modes at the current particle position. Such occurrences can be
prevented by limiting the magnitude of user-applied forces. Very
few methods in control theory of nonlinear systems can provide
theoretical guarantees on robustness. We can give the following in-
tuition: a deformable system linearized around the reference state
at some time t = t0 is of oscillatory nature; even under large devia-
tions the linearized internal forces will generally point in the correct
direction. With fluids, however, the system is more chaotic and lin-
earizations only weakly describe the behavior of the system. Due
to the chaotic nature of the Navier-Stokes equations, it is inherently
more difficult to control fluids than deformable solids.

In this paper, we track one trajectory in one global basis. In the
future, real-time control should be applied to track trajectories or-
ganized into a motion graph [Kovar et al. 2002].

Appendix

A Linear quadratic regulator

We follow the derivation in [Stengel 1994], which gives optimal
control for a continuous linear time-varying system (LTV)

ż = A(t)z+Bw(t) (15)

with constant control over each timestep. Denote Ai = A(ti), and
let position and control cost matrices at timestep i be Qi and Ri, re-
spectively, for i = 0, . . . ,T −1 (final cost is QT ). The exact solution
to controlling the LTV involves integrals of matrix exponentials:

Φi(τ) = eAiτ , Γi(τ) = A−1
i (eAiτ − I)B, Φ̂i = Φi(∆t), (16)

Γ̂i = Γi(∆t), Q̂i =
∫

∆t

0
Φ

T
i (τ)QiΦi(τ)dτ, (17)

M̂i =
∫

∆t

0
Φi(τ)QiΓi(τ)dτ, R̂i =

∫
∆t

0

(
Γ

T
i (τ)QiΓi(τ)+Ri

)
dτ. (18)

We approximate these integrals using Simpson’s rule (with 10 in-
tegration points; adaptive rule could be used instead). Matrix expo-
nentials were computed using Expokit [Sidje 1998]. Gain matrices
Ki are obtained by time-stepping a Riccati ODE backwards in time:

Ki =−
(

R̂i + Γ̂
T
i Pi+1Γ̂i

)−1(
M̂T

i + Γ̂
T
i Pi+1Φ̂i

)
, (19)

Pi = Q̂i + Φ̂
T
i Pi+1Φ̂i +(M̂i + Φ̂

T
i Pi+1Γ̂i)T Ki, PT = QT . (20)

Riccati equation can be stiff; however, sufficiently small timesteps
always resolved it well in our examples. LQR core, fluid-specific
and solid-specific parts of our implementation consisted of 402, 783
and 671 lines of C++ code, respectively. This includes all control-
related components, both precomputation and runtime.

B LQR details: Reduced deformations

We use tangential Rayleigh damping: D̃(p) = αI + β K̃(p), where
α and β are scalar damping parameters, and K̃(p) = ∂ R̃/∂ p is the
gradient of the reduced internal forces. Our reduced state vector
takes the form z = [pT , ṗT ]T =: [zT

1 ,zT
2 ]T ∈R2r. Equation 9 in first-

order form then reads

ż = F̃(z)+Bw =
[
zT

2 ,
(
−D̃(z1)z2− R̃(z1)

)T
]T

+
[
0,wT

]T
. (21)

Matrices A(t) and B of Equation 10 are

A(ti) =

[
0 I

−β ( ∂ K̃
∂ z1

: zi
2)− K̃(zi

1) −D̃(zi
1)

]
, B =

[
0
I

]
, (22)

for [zi T
1 ,zi T

2 ]T := zref
i . All partial derivatives are evaluated at zref

i .
Colon notation H : a denotes tensor-vector multiplication (contrac-
tion; see, e.g., [Barbič and James 2005]). In practice, we sometimes
omitted the damping-related Hessian tensor term ∂ K̃/∂ z1.

C LQR details: Reduced fluids

The matrices from Equation 13 are

A(t) = Â(zref(t))+νD̂+
[
Â(1)zref(t), . . . , Â(r)zref(t)

]
∈ Rr×r (23)

B = [0 I]T ∈ R(2N+r)×r (24)

W (t) = [Ψ(pref
1 (t))T , . . . ,Ψ(pref

N (t))T ]T ∈ R2N×r. (25)

Here, Â( j) denotes the j-th column of Â. Matrix Y (t) is a 2N×2N
block-diagonal matrix with one 2×2 block Yi for each particle i :

Yi(t) =
[

∂Ψ

∂x |(x,y)=pref
i (t)

: zref(t),
∂Ψ

∂y |(x,y)=pref
i (t)

: zref(t)
]
. (26)
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POPOVIĆ, Z. 2005. Physically based rigging for deformable
characters. In Symp. on Computer Animation (SCA), 301–310.

DA SILVA, M., ABE, Y., AND POPOVIĆ, J. 2008. Interactive sim-
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