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Abstract

Many data-driven animation techniques are capable of producing high quality motions of human characters. Few

techniques, however, are capable of generating motions that are consistent with physically simulated environ-

ments. Physically simulated characters, in contrast, are automatically consistent with the environment, but their

motions are often unnatural because they are difficult to control. We present a model-predictive controller that

yields natural motions by guiding simulated humans toward real motion data. During simulation, the predictive

component of the controller solves a quadratic program to compute the forces for a short window of time into

the future. These forces are then applied by a low-gain proportional-derivative component, which makes minor

adjustments until the next planning cycle. The controller is fast enough for interactive systems such as games and

training simulations. It requires no precomputation and little manual tuning. The controller is resilient to mis-

matches between the character dynamics and the input motion, which allows it to track motion capture data even

where the real dynamics are not known precisely. The same principled formulation can generate natural walks,

runs, and jumps in a number of different physically simulated surroundings.

Categories and Subject Descriptors (according to ACMCCS): I.3.7 [Computer Graphics]: Three Dimensional Graph-

ics and Realism Animation

1. Introduction

Many data-driven animation techniques are capable of pro-

ducing high quality motions of human characters. These ap-

proaches extend the usefulness of captured motions by al-

lowing applications to adapt existing motions to meet dif-

ferent needs. Applications can create motions that satisfy

new user constraints while maintaining the input motion

style [AFO03,KGP02] or exhibit new styles while preserv-

ing content [HPP05]. Interactive applications such as games

can respond to user input and synthesize new results in real-

time.

Few techniques, however, are capable of generating mo-

tions that are consistent with physically simulated environ-

ments. The implicit assumption made by all kinematic syn-

thesis approaches is that the performance environment is the

same as the capture environment. This assumption is invalid

when motions are performed in physically simulated envi-

ronments. In a physical simulation, the character can en-

counter new or unpredictable circumstances such as being

hit by a ball or standing on a shaky platform. Ignoring these

interactions leads to physically inconsistent motion.

In contrast, physically simulated character motions are au-

tomatically consistent with the environment but are often

unnatural because they are difficult to control. Recorded mo-

tions provide an intuitive control specification but simulating

any such motion remains a difficult problem. Human char-

acters, in particular, have many degrees of freedom (dofs)

subject to non-smooth, non-linear dynamics. This makes it

hard to find the forces that reproduce a desired motion, par-

ticularly in new environments.

We present a controller, McSim (motion capture in simu-

lation), that yields natural motions by guiding simulated hu-

mans toward real motion data. McSim can be categorized as

an instance of model-predictive control (MPC). In MPC, the

controller predicts a control signal that achieves a desired

change in system state based on the current system state
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Figure 1: An overview of McSim’s design. At 40 to 100 Hz,

the predictive model solves a quadratic program for the joint

and external forces that track the reference motion. These

forces are adjusted by a low gain proportional derivative

component that computes feedback forces at every simula-

tion time step (1-10kHz). Our controller can work with any

black-box simulator.

and a model of the system’s dynamics. Our controller uses

a predictive component (§4) based on a linearized model of

linked rigid body and contact dynamics. The linear dynam-

ics model is used as a constraint in a quadratic program (QP)

that solves for the joint and external forces that track the pro-

vided input motion for a short window of time into the fu-

ture.

McSim combines the predictive component with a low

gain proportional-derivative (PD) component (§5) as de-

picted in Figure 1. The predictive component’s control has

errors due to high latency and modeling assumptions. The

PD component compensates for these errors. The PD com-

ponent also provides a low-latency response to unexpected

perturbations. For certain motions, robustness can be further

improved by adapting the input motion according to heuris-

tic feedback rules (§6).

McSim is fast enough for application in interactive sys-

tems such as games and training simulations. It can adapt

to differences between the character dynamics and the input

motion allowing it to track motion capture where the char-

acter model can only be estimated. With no precomputation

and little manual tuning, McSim is able to produce walking,

running, and jumping motions similar to the reference mo-

tion while also adapting to new physical surroundings (§7)

at interactive rates.

2. Related Work

Most prior online control techniques in the graphics

literature have been based on manually designed PD

controllers [Rai86, RH91, HWBO95, FvdPT01, YLvdP07,

SKL07]. These approaches are typically sensitive to gain pa-

rameters and not intuitively directed. In contrast, off-line au-

thoring tools based on continuous optimization leverage the

benefit of time to search for physical motions that are op-

timal according to some metric and satisfy user constraints

[WK88,Coh92, PW99, FP03, SP05]. The predictive compo-

nent of McSim is inspired by these off-line approaches but

sacrifices global optimality for computation speed by re-

stricting the search to a short amount of time into the fu-

ture. The predictive component of our controller allows the

PD component to use relatively small gain parameters, re-

sulting in more stable simulations and more natural motion

[YCP03].

McSim can be guided by an arbitrary input motion. Re-

cently, both off-line and online physically based character

animation have used data to produce life-like animations,

though the role of data differs for each approach. Since the

goal of an off-line approach is to produce a new motion

with new content, data is used to restrict the search space of

possible solutions [SHP04], to model simplified equations

of motion [BJ05, TLP06], and to learn parameters of mo-

tion style [LHP05]. In online control, the goal is often to

simply track a provided input motion in a dynamically sim-

ulated environment [ZH02]. Recent approaches, however,

have been limited to special cases of motion such as cyclic

motions [YLvdP07] or standing [AdSP07, ZH02]. Our ap-

proach can track arbitrary motions exhibiting stylistic varia-

tions and transitions such as walking to standing.

Many recent approaches to tracking motion data find ap-

proximately optimal control policies using off-line precom-

putation methods such as feedback error learning or sim-

plex methods [SKL07, SvdP05, vdPL95, YLvdP07]. How-

ever, these global search methods are not easily applicable

to 3D animation where the number of dofs is large. While

McSim could incorporate a precomputed feedforward con-

trol signal, it produces plausible motions without precompu-

tation. This enables it to be coupled with kinematic motion

synthesis techniques [MK05,MP07] to track newly created

2D or 3D motions at run-time.

Among instantaneous optimization approaches, McSim

is closely related to Multiobjective Control [AdSP07]. Mc-

Sim adds the ability to track motions where the contact

state changes regularly as in locomotion. Furthermore, we

illustrate how the input motion can be modified to im-

prove tracking performance. There are many previous ap-

proaches from robotics that propose some form of optimiza-

tion over a short time horizon to achieve a motion objec-

tive [FOK98,WC06,HMPH04,Wie02], each with key differ-

ences in the details. In this paper, we propose an alternative

formulation of the tracking problem that is capable of han-

dling arbitrary motions and couple it with robust low-latency

feedback mechanisms. Others have argued that this form of

control is employed by biological systems [YCP03].

3. Method Overview

McSim’s design is guided by three goals. The output motion

should be directed by specifying any input motion. It needs

to work at interactive rates without requiring expensive pre-

computation. Finally, it has to work with existing black-box

simulators. We would like our controller to work as a plug-in
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module with any simulator without any modification to the

simulator itself. Achieving these objectives would make the

system suitable for tracking kinematically specified motions

in interactive applications such as games and training simu-

lations. In the following sections, we describe how McSim

achieves these three goals.

At each time step, t, McSim computes a control signal of

the form:

u(t,x,xr(t)) = u f (t,x,xr(t))+ub(t,x,xr(t)) (1)

where u is the control signal, x is the current system state

consisting of joint values and velocities, [q, q̇], and xr is the
desired state. The total control signal consists of the pre-

dictive component’s signal, u f , added to the PD compo-

nent’s signal, ub. A predictive dynamics model computes u f .

The PD controller computes ub which provides low-latency

feedback to deal with unexpected perturbations. Stability is

achieved by tracking the velocity of the root of the charac-

ter and modifying the reference motion, xr as described in

Section 6.

4. The Predictive Component

The predictive component’s task is to track the reference mo-

tion, xr(t). A long-horizon approach to tracking the refer-
ence motion would solve a single optimization for the con-

trol forces exerted over the entire motion [WK88]. For hu-

man motions, this form of tracking is a high-dimensional,

non-linear, non-convex minimization problem. This makes

an exact solution impractical at interactive rates. Further-

more, in interactive applications, long-horizon optimal plans

are quickly invalidated by changes in the dynamic environ-

ment. Rather than plan optimally for situations that may

never come to pass, we plan over a small interval into the

future using a linearized dynamics model and re-plan at reg-

ular intervals, incorporating changes in system state. We call

this form of the problem, short-horizon tracking.

4.1. Short-Horizon Tracking

In a physical simulation, a character’s motion is determined

by integrating a dynamical system forward in time from

some initial configuration,

x(T ) = x(0)+
Z T

0
ẋ(t)dt. (2)

For an active character modeled as a system of linked rigid

bodies with actuators between each joint, the equations of

motion depend on the current state, x(t), the control signal,
u(t), and the external forces, uc(t). The precise equations can
be derived from classical mechanics [FO00] but are summa-

rized here as

ẋ(t) = f (x(t),u(t)+uc(t)). (3)

A motion that perfectly tracks the reference satisfies

q̈(t) = q̈r(t) for all t, where q̈r is the acceleration of the refer-
ence motion. The predictive component computes a u f that

tries to reproduce the reference acceleration over a window

of size h. In practice, it is usually not possible to achieve

the reference acceleration, q̈r, exactly due to dynamics con-

straints of the character and environmental disturbances. As

a result, the simulated motion will drift from the reference

motion. To correct this drift, feedback terms are added to the

reference acceleration to form the desired acceleration, q̈d ,

as described in the next section. Once the desired accelera-

tion is known, a constrained optimization is solved for the

joint torques and external forces that achieve it.

4.2. The Desired Acceleration

The desired acceleration consists of the reference accelera-

tion and a correction term. It is computed separately for each

joint.

q̈d = q̈r+ kosd(qr,q)+ kod(q̇r− q̇). (4)

The correction terms act as a damped feedback accelera-

tion on any errors that occur. The function d compares the

current joint configuration, q, to the reference configuration,

qr, and computes an angular acceleration that will move q

closer to qr. The scale of this acceleration is determined by

the gain parameter, kos. For rotational joints with one de-

gree of freedom (dof), known as pin joints, di(a,b) = a−b.
Three dof joints, known as ball joints, are represented using

quaternions. In this case, di(a,b) = veci(a
−1 ·b)where · rep-

resents quaternion multiplication and veci maps the quater-

nion to the equivalent axis-angle rotation’s i’th component.

The last term in Equation 4 corrects for errors with respect to

the reference velocity q̇r obtained from the motion capture

data.

With the exception of the root translation, all desired ac-

celerations are computed using the same values of kos and

kod . If kos = c, then kod = 2
√
c. Errors in the current position

of the root are ignored when computing the desired acceler-

ation of the root. Thus, for the root translation, kos = 0. This
prevents the controller from trying to correct for errors that

are unavoidable due to the environment such as the charac-

ter walking down hill. The velocity gain is not zero, how-

ever. This feedback uses the same gain as the other joints,

kod = 2
√
c. The controller is fairly insensitive to the partic-

ular value of c chosen as shown in section 7.

4.3. Dynamics Constraints

Computing the control input u needed to achieve the desired

acceleration just described would be easy if we could simply

invert Equation 3. Unfortunately, humans and animals have

more degrees of freedom than forces to control them. Simple

inverse dynamics algorithms such as those used for robotic

arms rely on being rooted to the environment. Humans, how-

ever, are not rooted to the ground. They can use their feet
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to push, but not pull, on the ground. They must manipu-

late these unilateral contact constraints while respecting fric-

tional limits to effect their overall motion [Wie02,AdSP07].

These contact constraints are a key component of the dy-

namic model used by the predictive component.

V λ

v0

v1

λ ≥ 0

V =

| |
v0 v1

| |[ [

Figure 2: A friction cone in 2D. Legal contact forces lie

within the cone which can be represented using a linear

basis. Non-negative combinations of the basis vectors yield

forces in the cone.

Contact forces are computed using a polygonal approxi-

mation to Coulomb’s model of friction [FP03]. The model is

depicted in 2D in Figure 2. Legal contact forces lie within

a friction cone at each corner of the foot in contact with

the ground. The cone is oriented normal to the contacting

surface with a swept angle determined by the coefficient of

friction. In 3D, we use a polygonal approximation (4 facets)

to this cone which can be described with a linear basis,

V . Contact forces are equal to Vλ with λ ≥ 0. The non-
negative bound on λ insures that the ground reaction force

resides within the approximation to the friction cone and pre-

vents contacting bodies from pulling on each other. The i’th

contact force induces generalized torques on the character

which are calculated as JTi Viλi where J is the gradient of the

contact point with respect to the joint configuration of the

character. The total contact force on the character, then, is

uc = ∑i J
T
i Viλi.

For this static contact model to hold, the contact forces

must act only on contact points with zero acceleration

[Bar89]. This is known as the no-slip condition:

Jiq̈+ J̇iq̇= 0. (5)

In addition to constraints on possible contact forces,

achievable accelerations are constrained by the dynamics of

the character. Since the predictive component plans over a

short-horizon, the dynamics of the character are described

by a linear relationship between applied forces and resulting

accelerations:

q̈(t) = f (q(t), q̇(t),0)+W (u+uc) (6)

where W is the gradient of f with respect to the control in-

put. Note that the internal torques, u, are limited by bounds

on the strength of the character’s actuators, u f ∈U , further
restricting possible accelerations.

4.4. Quadratic Programming Optimization

Given all of these constraints, we can now formulate an

optimization problem that solves for the joint and external

forces, u f and J
T
i Viλi, that best achieve the desired acceler-

ation, q̈d :

min
u f ,λi

1

2
||q̈− q̈d ||2 (7a)

subject to λi ≥ 0 (7b)

u f ∈U (7c)

q̈= f (q, q̇,0)+W (u f +∑
i

J
T
i Viλi) (7d)

Jiq̈+ J̇iq̇= 0. (7e)

The predicted acceleration of the character is q̈. The objec-

tive penalizes accelerations different than the desired accel-

eration, q̈d , which was chosen to track the reference mo-

tion. This minimization problem can be solved efficiently:

it features a quadratic objective with a positive-semidefinite

Hessian, and the constraints are linear. This yields a convex

quadratic programming (QP) problem. The QP is solved at a

much slower rate than the simulation. At time steps where it

is not solved, the previously calculated forces are used.

5. Proportional-Derivative Component

Solving the QP in the predictive component is fast but not

immediate. The drawback of this latency is that the predic-

tive component cannot adapt to disturbances in between up-

dates to its control signal. We resolve this problem with a PD

control that adjusts the QP solution at each simulation step.

The PD control guides the character through contact transi-

tions and provides immediate responses to disturbances.

McSim’s PD component computes ub in Equation 1

at each step of the simulation. It is implemented using

a critically-damped proportional-derivative (PD) controller

[RH91]. The form of this control varies according to the par-

ticular joint. Since the root joint of the character is unactu-

ated, no feedback forces are computed for the root dof’s. Pin

joints are computed using a standard critically damped feed-

back law

ub = ks(qr−q)−2
√
ksq̇. (8)

To compute the feedback forces of a ball joint, we first

compute the composite rotational inertia of all of its child

links in world coordinates:

Ic, j = ∑
l∈c( j)∪ j

RlIlR
T
l . (9)
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The resulting feedback force is then computed as

ub = ksIcd(qr,q)+2
√
ksIc(q̇r− q̇). (10)

Note that the term
√
ksIc means taking the square root of

each element of the matrix ksIc. Multiplying by the world-

space inertia matrix insures that the feedback force is scaled

by the appropriate amount relative to the actual current dis-

tribution of mass supported by the joint. The resulting force,

ub, is added to the current predictive force u f to give the total

force at each time step.

6. Maintaining Balance

McSim maintains balance by tracking the input motion with

forces that are consistent with the current contact environ-

ment. Other works employ a similar approach by using for-

mulations specific to static contact [ZH02] or infinite friction

and planar contacts [KKI02, HMPH04, VB04]. In contrast,

McSim uses a model of contact dynamics that can account

for more general geometric and frictional properties of the

contacting surfaces [Wie02,AdSP07].

In certain cases, heuristic methods can adapt the input mo-

tion directly to improve tracking robustness. For example,

one could track a parameterized family of motions rather

than a single motion [WC06] or adapt the center of mass mo-

tion through a feedback [AdSP07]. For some of the 2D mo-

tions presented in the results section, we employed a feed-

back scheme similar to the heuristic used in the SIMBICON

system [YLvdP07]:

θd = θd0+ cdd+ cvv (11)

where θd is the desired angle of the swing hip, θd0 is the

value of the swing hip in the reference motion, d is the hor-

izontal distance between the root link and the support foot,

and v is the horizontal velocity of the root link. Contrary,

to SIMBICON’s approach, we do not change the gains, cd
and cv, with changes in contact state. They are fixed for a

particular motion.

McSim is largely insensitive to the particular choice of

the gains. Normally, McSim tracks the input motion even

when the gains are set to zero. However, adding this form

of balance feedback improved the robustness of a charac-

ter walking on a moving platform and allowed the controller

to track a run cycle indefinitely. A drawback to using this

particular form of balance feedback, however, is that it is

specific to walking and running motions. Similar methods

of adapting the input motion have been applied to other mo-

tions [Woo00].

7. Results

McSim produces life-like character motion similar to a pro-

vided input motion. In the following section we highlight re-

sults that demonstrate McSim’s ability to adapt motion cap-

ture data to new physical environments and track a variety

of input motions. We also explore the sensitivity of the ap-

proach to various modeling errors and discuss the quality of

the results. Finally, we provide implementation details.

7.1. New Environments

An exciting application of McSim is adapting motion data to

new physical environments. For example, a motion recorded

on flat ground can be adapted to walk up or down an in-

clined ground plane. In our experiments, successful walks

were created for uphill slopes as large as five degrees and

downhill slopes as large as 10 degrees. Simple kinematic

playback of the motion would walk through the ground or

into the air [dSAP08].

In a physical simulation, the environment can change dy-

namically and a character must react to maintain plausibility.

Our controller allows motion data to adapt to its environ-

ment. We present several results where the character is per-

turbed by flying balls or obstructed by blocks. The ground

too can evolve dynamically as evidenced by simulations of

the character walking over a moving platform and a see-

saw [dSAP08].

7.2. Tracking

McSim is capable of tracking a wide range of motions in

2D and 3D including walking, running, and jumping mo-

tions [dSAP08]. These motions exhibit variations and tran-

sitions between modes such as from standing to walking and

walking to standing.

A key feature of McSim is that there are few parame-

ters that require tuning. To generate the results, two param-

eters were tuned manually: the optimal feedback gain used

in Equation 4 and a scale factor on the intrinsic joint stiff-

ness parameters used in Equations 8 and 9. In most cases, it

was not difficult to find a satisfactory setting of these param-

eters as a large range of values led to satisfactory results as

explained in Table 1. Even across different types of motion,

identical parameter values lead to good results.

Though McSim does not satisfy any optimality criterion,

it achieves good tracking results in practice. In the absence

of large disturbances to the physical system or large errors in

the physical character model, McSim will succeed in track-

ing the input motion. The plots in Figure 3 depict the squared

tracking error (squared Euclidean distance between the ac-

tual state vector and the desired state vector) over time for

selected motions. The plots illustrate several interesting fea-

tures of the tracking system. First, the beginning of the walk

motion is a period of standing. The system has little trouble

tracking this portion of the motion. More energetic motions

lead to more error. The spikes in the error curves coincide

with changes in contact state suggesting that the predictive

model could be improved by accounting for mismatches in

the current contact state and the contact state in the reference

motion.
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Motion k kos

2D Punchy 0.02 1000

Downhill 0.02 300

Walk Wave 0.02 1000

Sneaky* 0.005 500

2D Jump 0.05 1000

Run 0.2 600

Backwards 0.05 1000

Soldier 0.01 600

March 0.05 1000

Limp 0.08 1000

Table 1: This table lists the relevant parameters used to

generate selected results. k is a scale factor that multiplies

the intrinsic joint stiffness parameters of the character listed

in Tables 2 and 3 which are then used in the PD feedback

component of the system. kos is a gain used to calculate a

modification to the acceleration from the input motion as in

Equation 4. These two parameters were tuned manually to

achieve a desired tracking result but reasonable results are

achieved for a range of settings. For most 2Dmotions, values

of k in the range between 0.005 and 0.5 worked. The setting

of kos is also flexible. Values in the range of 300 to 2000

typically work for this parameter. In many cases, the same

settings achieved good results for many different motions.

Starred motions were simulated using stiff springs at con-

tacts. Despite using a different contact model, McSim tracks

these motions well.

7.3. Modeling Errors

The tracking quality ofMcSim is adversely effected by phys-

ical mismatches between the character model and the cap-

ture subject. To explore the effect of modeling errors we in-

troduce various modeling changes and measure the change

in tracking performance.

One potential source of error in tracking motion capture

data is an incorrect physical model of the subject. The mass

distribution and inertial properties are often based on statisti-

cal models that are often quite different than the actual prop-

erties of the recorded subject. This mismatch can make an

input motion physically infeasible for the character. To illus-

trate the sensitivity to errors in mass distribution, we plot the

squared error for different versions of the 2D model for the

walking motion in Figure 4. The mass of the character was

redistributed to create three new versions of the original. One

version of the character has a left leg that is twice as heavy

as the right leg. In the next version, the upper body’s mass is

doubled while the lower body mass is cut in half. Finally, we

double the mass of both legs. For walking motions, McSim

is more sensitive to errors in the mass properties of the legs.

Contact geometry was modeled using four small spheres

placed at the corners of each foot. The controller is some-

what insensitive to the simulator’s contact dynamics. To il-
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Figure 3: Shown are plots of squared error over time for

four selected motions. The plots illustrate several interest-

ing features of the tracking system. First, the beginning of

the walk motion is a period of standing. The system has little

trouble tracking this portion of the motion. More energetic

motions lead to more error. The spikes in the error curves

coincide with changes in contact state suggesting that the

predictive model could be improved by accounting for mis-

matches in the current contact state and the contact state in

the reference motion.
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Figure 4: Shown are plots of squared error over time for four

versions of the 2D model tracking the walking motion. The

modifications are described in the legend. McSim is more

sensitive to errors in the mass properties of the legs.

lustrate this, we compared the performance of the controller

on a walking motion with varying coefficients of friction in

5. Tracking performance was not greatly effected. Contact

dynamics were approximated using a friction cone model

with a coefficient of friction ranging from 0.75 to 2.0 or stiff

springs as in [SKL07].

The feet present another difficulty when tracking motion

capture data. Our motion capture data for the ankle is fairly
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Figure 5: In these plots, the squared error is shown for a

walking motion where the coefficient of friction in the pre-

dictive component is varied from 0.5 to 1.5. The simulator’s

coefficient of friction was fixed at 1. For walking motions, the

error is not greatly effected by the coefficient of friction used

in the model. When the predictive model’s coefficient of fric-

tion exceeds the actual coefficient of friction, performance is

worse, but only slightly.

inaccurate. We offset the ankle angle by a constant so that

the character’s contact points are flush with the ground while

standing. To get a feel for how sensitive McSim is to varia-

tions in foot geometry, we varied the foot size of the 2D

model and plotted the results in Figure 6. The big feet were

4 centimeters larger than the standard feet used in most of

the results in this paper. The small feet were 4 centimeters

shorter than the standard while the smallest feet were 8 cen-

timeters shorter. The results indicate that McSim is robust to

small discrepancies in foot size.

7.4. Motion Quality

The results of McSim’s tracking often look robotic and

abrupt. For example, the 3D marching motion makes hard

contacts with the ground that are not present in the reference

motion. The 2D walk uphill sways a bit unnaturally as well.

There are a couple of factors that affect the quality of the

results. The first is that the short-horizon approach to track-

ing is a greedy approach. It applies large torques to try and

immediately cancel any errors. These large forces can lead

to unnatural accelerations and motion. The other factor ef-

fecting quality is the fact that gain parameters are manually

set by hand. This was more of an issue for the 3D examples

which were more sensitive to the gain parameter settings.

7.5. Experimental Setup

The motion data for this work came from two sources. The

2D examples were downloaded from http://mrl.snu.ac.

kr/research/ProjectSimulBiped/SimulBiped.html.
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Figure 6: Shown are plots of squared error over time for

versions of the 2D model with different sized feet. The big

feet were 4 centimeters larger than the standard feet. The

small feet are 4 centimeters smaller than the standard while

the smallest feet are 8 centimeters smaller. These plots show

that, at least for walking, slightly better results can be

achieved by shrinking the foot. This might suggest that the

actor performing the motion had slightly smaller feet. How-

ever, the results indicate that McSim is robust to small dis-

crepancies in foot size.

Link ks Mass Inertia

head 3000 3 0.011

upper arm 4000 2 0.022

lower arm 3000 1 0.009

torso N/A 10 0.176

thigh 4000 7 0.121

shin 4000 5 0.077

foot 4000 4 0.019

Table 2: This table lists the inertial properties of each link in

the 2D model and the stiffness of the associated joint. Note

that there is no stiffness for the unactuated root joint. It is

also important to note that the stiffnesses listed here are not

directly used by the PD feedback component. They are first

scaled by a single scale parameter that is typically much less

than one. This scaled value is used to calculate a critical

damping gain. The units are as follows: newtons per radian

for the gains, kilograms for the mass, and kilogram meters

cubed for the inertias.

This data was converted to 2D from motion capture data

as described in [SKL07]. The 3D data was captured and

processed using a standard motion capture system.

A prerequisite of simulating character motion is a physi-

cal model of the inertial and stiffness properties of the char-

acter’s limbs and joints. A good model is important as sig-

nificant errors make the input motion physically infeasible

for the model. For the 2D examples, the physical model
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Figure 7: The models. A free joint has six degrees of freedom and is represented by a position and a quaternion. A pin joint has

one degree of freedom and is represented by an angle of rotation. The center of mass of each link is located at the center of the

link. Inertial and joint stiffness properties are listed in Table 2 and 3.

Link ks Mass

trunk N/A 12.92

thigh 4000 9.0853

shin 4000 3.944

foot 1000 1

toes 4000 0.3

thorax 3000 17.155

clavicle 4000 2.535

upper arm 4000 1.435

lower arm 3000 0.575

hand 3000 0.5

Table 3: This table lists the inertial properties of each link in

the 3D model and the stiffness of the associated joint. Again,

there is no stiffness for the unactuated root joint.

(see Figure 7) has the same properties as the one used in

[SKL07]. The root link, however, is three dimensional. Its

state is represented with a position vector, an orientation

quaternion, and linear and angular velocity. The resulting

model has 18 dofs. The inertial properties and joint stiffness

parameters are presented in Table 2. These stiffness parame-

ters are first scaled uniformly by a gain factor that is smaller

than one and then used as the PD gains in 8 and 9. The 3D

model has 57 dofs. The parameters for the 3D model are pre-

sented in Table 3.

The simulations were executed in DANCE [SFNTH05]

using the Open Dynamics Engine (ODE) as the simulator.

The step size was 1 ms for the 2D examples and 0.1ms for

the 3D examples. We use a smaller step size for 3D exam-

ples as ODE was unstable with larger step sizes. A simulator

using an implicit or semi-implicit integration scheme could

presumably use a larger step size.

Num. Vars. QP Solve Time (secs)

36 0.0013

44 0.0015

52 0.0023

68 0.003

150 0.007

154 0.0075

158 0.0097

Table 4: Timing results for the QP solver as a function of

the number of variables in the QP. The number of variables

is a function of the number of degrees of freedom in the char-

acter and the current contact state. Note that, for ease of im-

plementation, we used dummy variables for the acceleration

of each degree of freedom. This is not strictly necessary and

would result in a much smaller QP problem.

The controller implementation sets up the QP problem

described in section 4 using the current contact state from

the simulation. It uses our C++ implementation of recursive

dynamics equations [FO00] to compute various dynamical

quantities needed for the optimization such as the inertial

matrix of the system and gravitational and centrifugal forces

on the system. The QP is solved using SQOPT [GMS97].

Timings for the QP solver on a Pentium 4 2.8 Ghz proces-

sor are presented in Table 4. The code for the PD component

took roughly 0.4 ms on the 3D character and 0.05 ms on the

2D character.

8. Conclusions

Motion data is an intuitive way to direct the actions of

a physically simulated character. Determining the forces

that track the motion faithfully while respecting physical
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and environmental constraints is a difficult problem. McSim

finds these forces at interactive rates making it suitable for

the control of characters in interactive applications such as

games.

McSim sacrifices optimality for computational perfor-

mance. This sacrifice impacts the quality of the resulting mo-

tions. Quality was also impacted by the manually set param-

eters of the controller: the gain on desired acceleration and

the PD gain. For some 3D motions, it was more difficult to

find parameters that produced nice results. Also, there were

certain motions that we could not track well such as turning

motions. An interesting area of future work would be to ap-

ply optimization techniques that automatically tune the man-

ually set parameters. In addition to reducing dimensionality,

parameterizing control with our approach may help smooth

the energy landscape, making it easier to find solutions.

Tracking a single input motion is not a good strategy for

robust and stable control of a physically simulated charac-

ter. In this paper, we experimented with a simple heuristic

that adjusts the desired angle of the swing hip to help sta-

bilize walking and running. In the future, we would like to

incorporate long range planning to improve the quality of

the output motion and improve the stability of the controller.

This would require a good understanding of which aspects

of the motion are crucial for stability versus those aspects

that can vary.
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performed ballistic motion. ACM Transactions on Graph-

ics 24, 1 (Jan. 2005), 165–179.

[SvdP05] SHARON D., VAN DE PANNE M.: Synthesis of

controllers for sylized planar bipedal walking. In Inter-

national Conference on Robotics and Automation (ICRA)

(2005), pp. 2387–2392.

[TLP06] TREUILLE A., LEWIS A., POPOVIĆ Z.: Model
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