Chapter 3

Graphs

3.1 Basic Definitions and Applications

Undirected Graphs

An undirected graph, \(G = (V, E) \),
- \(V \) = nodes.
- \(E \) = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: \(n = |V| \), \(m = |E| \).

\[
\begin{align*}
V &= \{1, 2, 3, 4, 5, 6, 7, 8\} \\
E &= \{1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6\} \\
n &= 8 \\
m &= 11
\end{align*}
\]

Some Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersections</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>circuits</td>
<td>gates</td>
<td>wires</td>
</tr>
</tbody>
</table>
World Wide Web

Web graph.
- Node: web page.
- Edge: hyperlink from one page to another.

Social network graph.
- Node: people.
- Edge: relationship between two people.

Ecological Food Web

Food web graph.
- Node: species.
- Edge: from prey to predator.

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.
Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
- Two representations of each edge.
- Space proportional to \(m + n \).
- Checking if \((u, v)\) is an edge takes \(O(\text{deg}(u))\) time.
- Identifying all edges takes \((m + n)\) time.

Cycle 1:

Def. A cycle is a path \(v_1, v_2, \ldots, v_{k-1}, v_k\) in which \(v_1 = v_k\), \(k > 2\), and the first \(k-1\) nodes are all distinct.

\[
\text{cycle } C = 1-2-4-5-3-1
\]

Path 1:

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes \(u\) and \(v\), there is a path between \(u\) and \(v\).

Theorem. Let \(G\) be an undirected graph on \(n\) nodes. Any two of the following statements imply the third.
- \(G\) is connected.
- \(G\) does not contain a cycle.
- \(G\) has \(n-1\) edges.
Rooted Trees

- **Rooted tree.** Given a tree T, choose a root node r and orient each edge away from r.

- **Importance.** Models hierarchical structure.

- A tree

- The same tree, rooted at I

Phylogeny Trees

- **Phylogeny trees.** Describe evolutionary history of species.

- ![Phylogenetic tree diagram]

GUI Containment Hierarchy

- **GUI containment hierarchy.** Describe organization of GUI widgets.

- ![GUI hierarchy diagram]

3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path between s and t?

s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t?

Applications.
- Friendster
- Maze traversal
- Kevin Bacon number
- Fewest number of hops in a communication network

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency representation.

Pf.
- **Easy to prove $O(n^2)$ running time:**
 - at most n lists $L[i]$
 - each node occurs on at most one list: for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge

- **Actually runs in $O(m + n)$ time:**
 - when we consider node u, there are $\deg(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} \deg(u) = 2m$

 each edge (u, v) is counted exactly twice in sum: once in $\deg(u)$ and once in $\deg(v)$
Connected Component

Connected component. Find all nodes reachable from s.

![Graph](image)

Connected component containing node 1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}.

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.
- **Node:** pixel.
- **Edge:** two neighboring lime pixels.
- **Blob:** connected component of lime pixels.

![Flood Fill](image)

R will consist of nodes to which s has a path
Initially R = \{s\}
While there is an edge \((u, v)\) where \(u \in R\) and \(v \notin R\)
Add \(v\) to \(R\)
Endwhile

Theorem. Upon termination, \(R\) is the connected component containing \(s\).
- **BFS** = explore in order of distance from \(s\).
- **DFS** = explore in a different way.
3.4 Testing Bipartiteness

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

Bipartite Graphs

Def. An undirected graph $G = (V, E)$ is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.
- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.
Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
- Suppose no edge joins two nodes in the same layer.
- By previous lemma, this implies all edges join nodes on same level.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Pf. (ii)
- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = \text{lca}(x, y) =$ lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y,
 then path from y to z, then path from z to x.
- Its length is $1 + (j-i) + (j-i)$, which is odd.

Corollary. A graph G is bipartite iff it contain no odd length cycle.
3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. $G = (V, E)$
- Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow Follows from definition.

Pf. \Leftarrow Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path. ok if paths overlap.
Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.
- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v_i, v_j) means task v_i must precede v_j.

Def. A topological order of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

Precedence Constraints

Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_j.

Applications.
- Course prerequisite graph: course v_i must be taken before v_j.
- Compilation: module v_i must be compiled before v_j.
- Pipeline of computing jobs: output of job v_i needed to determine input of job v_j.
Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
- Suppose that G has a topological order v₁, ..., vₙ and that G also has a directed cycle C. Let’s see what happens.
- Let vᵢ be the lowest-indexed node in C, and let vⱼ be the node just before vᵢ; thus (vⱼ, vᵢ) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (vⱼ, vᵢ) is an edge and v₁, ..., vₙ is a topological order, we must have j < i, a contradiction.

Q. Does every DAG have a topological ordering?
Q. If so, how do we compute one?

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
- Suppose that G is a DAG and every node has at least one incoming edge. Let’s see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of G-{v}
and append this order after v.
Theorem. Algorithm finds a topological order in $O(m + n)$ time.

\textbf{Pf.}

- Maintain the following information:
 - $\text{count}[w] = \text{remaining number of incoming edges}$
 - $S = \text{set of remaining nodes with no incoming edges}$
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}[w]$ for all edges from v to w, and add w to S if $\text{count}[w]$ hits 0
 - this is $O(1)$ per edge