3.6 DAGs and Topological Ordering
Directed Acyclic Graphs

Def. A DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A topological order of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, ..., v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).
Superhero Strength DAG
Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.

- *Course prerequisite graph:* course \(v_i\) must be taken before \(v_j\).
- *Compilation:* module \(v_i\) must be compiled before \(v_j\). Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
- Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. ▪
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. □
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
- Base case: true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no incoming edges.
- $G - \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G - \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G - \{v\}$ in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:
- Find a node v with no incoming edges and order it first
- Delete v from G
- Recursively compute a topological ordering of $G - \{v\}$ and append this order after v
Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.

- Maintain the following information:
 - $\text{count}[w] =$ remaining number of incoming edges
 - $S =$ set of remaining nodes with no incoming edges
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}[w]$ for all edges from v to w, and add w to S if $\text{count}[w]$ hits 0
 - this is $O(1)$ per edge
Topological Ordering Algorithm: Example

Topological order:
Topological Ordering Algorithm: Example

Topological order: v_1
Topological Ordering Algorithm: Example

Topological order: v_1, v_2
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3, v_4
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3, v_4, v_5
Topological Ordering Algorithm: Example

Topological order: $v_1, v_2, v_3, v_4, v_5, v_6$
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3, v_4, v_5, v_6, v_7 \).
Some meditations on search
Depth-First Search

DepthFirstSearch (graph G, vertex v):
 count := 0;
 for each vertex w in G do
 Explored(w) = false;
 DFS(v);

procedure DFS(vertex v):
 Explored(v) = true;
 count++;
 d[v] := count;
 for each neighbor w of v do
 if !Explored(w) then
 Parent(w) = v;
 DFS(w);
Figure 12.7 Depth-first search in an undirected graph. The search begins at the vertex labelled 1, and the vertices are labelled in the order they are encountered during the search. Followed edges are drawn with heavy lines and skipped edges with light lines; the arrows on the followed edges indicate the direction in which the edge was followed. When the skipped edges are deleted, the result is a tree; if vertex 1 is taken as the root of the tree then skipped edges join only ancestrally related vertices.
Important Properties of DFS

For a given recursive call $\text{DFS}(u)$, all nodes that are marked “Explored” between the invocation and end of this recursive call are descendents of u in the DFS tree T.

Most important property of DFS on undirected graphs

Every edge is either a tree edge or an edge between an ancestor and a descendent in the tree.

Let (u,v) be an edge.

Suppose the call to $\text{DFS}(u)$ occurs before the call to $\text{DFS}(v)$. Then before $\text{DFS}(u)$ completes, v will be visited.
DFS Analysis

Running time: \(O(n+m) \)
- call DFS on each node exactly once (afterwards Explored is true)
- each edge is examined twice (once from each endpoint)

assuming adjacency list representation of graph
Network reliability -- how would you determine efficiently if there is a single point of failure in your network?
Network reliability -- how would you determine efficiently if there is a single point of failure in your network?

DepthFirstSearch (graph G, vertex v):
 count := 0;
 for each vertex w in G do
 Explored(w) = false;
 DFS(v);

procedure DFS(vertex v):
 Explored(v) = true;
 count++;
 d[v] := count;
 for each neighbor w of v do
 if !Explored(w) then
 Parent(w) = v;
 DFS(w);
Depth-First Search

DepthFirstSearch (graph G, vertex v):
 count := 0;
 for each vertex w in G do
 Explored(w) = false;
 DFS(v);

procedure DFS(vertex v):
 Explored(v) = true; count++;
 d[v] := count; low[v] := d[v];
 for each neighbor w of v do
 if !Explored(w) then
 Parent(w) = v; DFS(w); low[v] := min(low[v], low[w]);
 if low[w] >= d[v] then v is an articulation point;
 else low[v] := min(low[v], d[w]);
 count++;
Modeling the Problem

An art, but key to applying algorithm design techniques to real-world problems.

Most algorithms designed to work on rigorously defined abstract structure.
Another Problem

You need to coordinate the motion of a pair of mobile robots in a given building. Each has a radio transmitter it uses to communicate with a base station. If the two robots get closer than distance r from each other, there are problems with interference among their transmitters.

How do you plan the motion of the robots so each gets from its starting point to its intended destination as quickly as possible, but in the process, the robots don’t come close enough together to cause interference?