
Chapter 3

Byzantine Broadcast and the
Dolev-Strong Protocol

3.1 Introduction

3.1.1 The Byzantine Generals’ Problem

In a seminal paper by Lamport et al. [LSP82], the problem of consensus is
illustrated with the following example.

“Imagine that several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals
can communicate with one another only by messenger. After observing the
enemy, they must decide upon a common plan of action. However, some
of the generals may be traitors, trying to prevent the loyal generals from
reaching agreement.”

Suppose that there are n generals, and one of them is called the com-
manding general. The commanding general would like to propose an order
that is either ATTACK or RETREAT to all generals, such that

1. All loyal generals reach the same decision; and

2. If the commanding general is loyal, then all loyal generals will obey the
commanding general’s order.

Lamport et al. [LSP82] named this problem the Byzantine Generals
problem; and it is also commonly referred to as Byzantine Broadcast (BB).
Note that if the commanding general is guaranteed to be loyal, then the
problem is trivial: the commanding general could send its order to all other
generals, and all other generals could simply obey (assuming that they can

9

verify that the order indeed came from the commanding general). Of course,
even the commanding general can be a traitor, and in this case, it can
propose different orders to different generals; and thus the aforementioned
näıve solution would result in inconsistent decisions.

So is it still possible for the loyal generals to agree upon an attack plan by
communicating with each other despite the influence of corrupted generals?

3.1.2 A Modern Variant

Here is a more modern variant. Suppose that during the Covid-19 pandemic,
the program committee of the Blockchain’20 conference try to decide whether
next year’s Blockchain conference will be held virtually online or in person.
The chair of the program committee is called the program chair. The program
chair would like to convey a suggestion to the entire program committee,
that is either “virtual” or “physical”. Since the program committee are all
in quarantine, they decide to reach agreement over the Internet by sending
emails back and forth to each other. We may assume that an email sent
sometime today will be received and read by the recipient at the beginning
of tomorrow.

Now, there is a problem: a subset of the program committee are unhappy
with the Blockchain’20 conference since their papers had got rejected earlier
from the conference. These unhappy committee members may be secretly
plotting to disrupt agreement and prevent the next Blockchain’20 conference
from happening. Even the program chair herself may be secretly unhappy
with the Blockchain conference. While the happy committee members will
faithfully follow the protocol rules, the unhappy members can misbehave
arbitrarily, and send arbitrary messages.

Can we devise a protocol such that

• all the happy committee members can reach a common agreement; and
moreover,

• if the program chair is happy, then every happy committee member should
output the chair’s original suggestion?

3.1.3 Analogy to Reliable Distributed Systems

The above imaginary situations serve as an analogy with a computer system
in which one or more components can fail. More precisely, the problem of
distributed consensus in a distributed system is that while some of the nodes in
the system might act in an arbitrary manner, the correctly functioning nodes

10

still need to agree on a common value among themselves. Real-life consensus
protocols (e.g., Bitcoin) typically need to repeatedly reach consensus over
time, such that nodes jointly maintain an ever-growing, linearly-ordered log of
transactions, sometimes called a blockchain. In our course, we shall start with
Byzantine Broadcast which allows nodes to reach agreement once. This is
important for understanding the foundations of distributed consensus. Later
in our course, we will indeed cover how to define and construct “blockchains”,
i.e., a repeated consensus abstraction.

3.2 Problem Definition

Let us now formalize the problem more precisely. We will henceforth refer to
the generals (or committee members) as nodes, and refer to the commanding
general (or the program chair) as the designated sender, or simply sender for
short.

Consider a distributed network of n nodes numbered 1, 2, . . . , n respec-
tively. We often use the notation [n] := {1, 2, . . . , n} to denote the set of all
nodes. Without loss of generality, we may assume that the sender is named
node 1.

We refer to the nodes that follow the prescribed protocol throughout as
honest nodes. A subset of the nodes, however, can be corrupt. The corrupt
nodes need not follow the prescribed protocol, and they may send/transmit
arbitrary messages at arbitrary times, omit sending messages, stop or take
an incorrect step. All the corrupt nodes can form a coalition and share
information with each other, and perform a coordinated attack. For this
reason, it is often instructive to imagine that all the corrupt nodes are
controlled by a single adversary. We stress that a-priori, we do not know
which nodes are corrupt — had we known, the problem would also be
trivialized (see Exercise 4). In other words, our Byzantine Broadcast protocol
must work no matter which subset of nodes are corrupt, as long as the total
number of corruptions is upper bounded by f < n.

We assume that every pair of nodes can communicate with each other,
and moreover every node has a public and secret key pair corresponding to a
digital signature scheme, and all nodes’ public keys are common knowledge.
In the Dolev-Strong protocol below, every message will be signed by its
creator. We use the notation 〈m〉i a pair (m,σ) where σ is a valid signature
on the message m that can be verified under node i’s public key.

Remark 2. For simplicity, unless otherwise noted, we assume that the set
of corrupt nodes is chosen at the start of the protocol (but the protocol is

11

unaware of which nodes are corrupt). This model is often referred to as
the static corruption model. In the distributed systems and cryptography
literature, an alternative model, called adaptive corruption, is also extensively
studied. In the adaptive model, an adversary can decide which nodes to
corrupt in the middle of the protocol’s execution, after having observed
messages sent by honest nodes. The Dolev-Strong protocol is in fact also
secure against adaptive corruptions although we do not explicitly discuss it
in this chapter.

3.2.1 Synchronous Network

We assume that the protocol takes place in a synchronous network, i.e., when
honest nodes send messages, the honest recipients are guaranteed to receive
them within a bounded amount of time, say, one minute. No matter how
long the message delay is, we can define it as one round. Therefore, we shall
assume that the protocol execution proceeds in rounds. At the beginning
of each round, all nodes receive incoming messages from the network. They
then perform some local computation, and send out new messages. The
following is guaranteed by the network:

Synchrony assumption: If an honest node sends a message in round r to an
honest recipient, then the recipient will receive the message at the beginning
of round r + 1.

3.2.2 Definition of Byzantine Broadcast

At the beginning of a protocol, the designated sender receives an input bit
b ∈ {0, 1}. The nodes then run some protocol; at the end of the protocol,
every honest node outputs a bit. A Byzantine Broadcast (BB) protocol is
supposed to satisfy the following two requirements (no matter how corrupt
nodes behave):

• Consistency : If two honest nodes output b and b′ respectively, then
b = b′.

• Validity : If the sender is honest and receives the input bit b, then all
honest nodes should output b.

Note that consistency alone would be trivial to achieve without the validity
requirement: the protocol can simply require that every node output a canon-
ical bit 0. Therefore, the problem definition is only non-trivial/meaningful if
we required both properties simultaneously.

12

Remark 3. In this chapter, we shall assume that the signature scheme is
ideal, i.e., no signature forgery can happen. Moreover, our Dolev-Strong
protocol described below will be deterministic. Therefore, we may assume
that we want the above requirements to be satisfied deterministically. In later
chapters, we shall consider randomized protocols, in which case it may be
sufficient for the above properties to hold with all but negligible probability.

3.3 A Näıve (Flawed) Protocol

We first look at a natural but näıve approach. As mentioned earlier, it would
not work if everyone simply followed the bit heard from the designated sender:
if the designated sender is corrupt and sends different bits to different nodes,
then consistency can be violated.

What is the next most natural idea? Perhaps it would be a voting-based
approach. For convenience, we shall assume that all nodes sign all messages
before sending them, and only messages with valid signatures from purported
senders are viewed as valid. All invalid messages are discarded immediately
without being processed.

Now, imagine that the sender signs and sends its input bit to everyone
in the first round. In the second round, everyone votes on the bit they heard
from the sender. If no bit is heard or both bits are heard, they vote on
a canonical bit 0. Now, if a node hears majority nodes vote for b, then
it outputs b. We describe this simple voting-based protocol more formally
below where we use the notation 〈m〉i to denote the message m along with a
valid signature from node i ∈ [n]:

A näıve majority voting protocol

• Sender (i.e. node 1) receives the bit b as input.

• Round 1: Node 1 sends 〈b〉1 to every node (including itself).

• Round 2: Every node i ∈ [n] does the following: if a single bit 〈b′〉1
is received, send the vote 〈b′〉i. Else send the vote 〈0〉i.

• Round 3: If no bit or both bits received more than n/2 votes from
distinct nodes, then output 0. Else output the bit that received more
than n/2 votes from distinct nodes.

Does this protocol work? Keep in mind that corrupt nodes can behave
arbitrarily, including sending different votes to different nodes. It turns out

13

that this näıve protocol is not secure under even a single corrupt node. Below
we describe an attack in which the designated sender is the only corrupt
node, and everyone else is honest, and we show that consistency can be
violated.

The attack. Assume that n = 2k+ 1 is odd and only the sender, i.e., node
1, is corrupt. Let us divide the 2k honest nodes into two disjoint sets denoted
S0 and S1, each of size k. In the first round, the sender sends 〈0〉1 to the set
S0, and it sends 〈1〉1 to the set S1. In the second round, nodes in S0 votes
for 0, and nodes in S1 votes for 1. Now, the corrupt sender skillfully votes
for 0 to the set S0 and it votes for 1 instead to the set S1. Observe that
nodes in S0 receive majority votes for 0 whereas nodes in S1 receive majority
votes for 1, and thus they will output inconsistently.

So how can one design a secure Byzantine Broadcast protocol?

Exercise 1. Here is another simple idea. Round 1 and round 2 are the
same as the näıve majority voting protocol. In other words, in round
1, the sender signs its input bit and sends it to everyone. In round 2,
everyone votes for the bit it has heard from the sender. If no bit or both
bits were heard, vote for the canonical bit 0. In round 3, if some bit b
has gained the votes of very node, then output b; otherwise, output 0.

Does this protocol achieve Byzantine Broadcast? If so, please ex-
plain why. If not, please describe an explicit attack that either breaks
consistency or validity. In your attack, use as few corrupt nodes as
possible.

3.4 The Dolev-Strong Protocol

The celebrated Dolev-Strong protocol [DS83] solves the Byzantine Broadcast
problem.

Recall that the nodes are numbered 1, 2, . . . , n, and we will assume that
the designated sender is numbered 1. We denote the sender’s input as b.
We also assume that each node i maintains a set extri, also referred to as
the node’s “extracted set,” of the distinct valid bits that have been chosen
so far. For brevity, we will use the notation 〈b〉S to denote the message b
attached with a valid signature on b verifiable under the public keys of nodes
in S ⊆ [n]. In our protocol below, f denotes an upper bound on the number
of corrupt nodes.

14

The Dolev-Strong protocol

Initially, every node i’s extracted set extri = ∅.

• Round 0: Sender sends 〈b〉1 to every node.

• For each round r = 1 to f + 1:

For every message 〈b̃〉1,j1,j2,...,jr−1 node i receives with r signatures
from distinct nodes including the sender:

– If b̃ 6∈ extri: add b̃ to extri and send 〈b̃〉1,j1,...,jr−1,i to everyone —
note that here node i added its own signature to the set of r
signatures it received.

• At the end of round f + 1: If |extri| = 1: node i outputs the bit
in extri; else node i outputs 0.

3.4.1 Intuition

So why is f + 1 rounds necessary for the Dolev-Strong protocol?

Suppose that all nodes have to output at the end of round f instead of
f + 1. We construct an attack as follows. In round 0, the corrupt sender
sends 〈1〉1 to all honest nodes. Thus, all honest nodes will add 1 to their
extracted sets in round 1. Now, recall that there can be f corrupt nodes,
including the sender. At the beginning of round f , the corrupt nodes make
a single honest node v receive the bit 0 along with all f signatures, but does
not deliver this message to every other honest node. In this case, v will end
up with 2 bits in its extracted set whereas all other honest nodes have only 1
bit in their extracted sets in round f ; and thus v will be inconsistent with
all other honest nodes.

The above attack is not possible if the algorithm is run for one more
round, i.e., if the nodes output at the end of round f + 1 instead. Intuitively,
this is because a bit b tagged with f + 1 signatures must have been signed
by at least 1 honest node, say, node i. However, when the honest node i
signed the bit b earlier, say, in round r < f + 1, it must have propagated a
batch of r + 1 signatures on b (including its own) to all other honest nodes,
and therefore all other honest nodes will have received b along with r + 1
signatures by the beginning of round r + 1 ≤ f + 1, and will have added the
bit b to their extracted sets (if not earlier).

15

3.4.2 Analysis

Equipped with the above intuition, we now formally prove that the Dolev-
Strong protocol satisfies both consistency and validity.

Lemma 1. Let r ≤ f . If by the end of round r, some honest node i has b̃ in
extri, then by the end of round r + 1 every honest node has b̃ in its extracted
set.

Proof. We know that node i has the bit b̃ in extri by the end of round r.
This bit b̃ must have been added to extri in some earlier round. Suppose
t ≤ r ≤ f is the round in which the bit b̃ first got added to extri. According
to the protocol, it must be that in round t, node i received 〈b̃〉1,j1,...,jt−1 with
t distinct signatures including one from the sender. Moreover, none of these
signatures must come from node i itself because if i had signed b̃ earlier,
it would have added b̃ to extri earlier. Therefore, node i then must have
sent 〈b̃〉1,j1,...,jt−1,i to every other node in round t. Now, by our synchrony
assumption, all other honest nodes will receive this message with t+1 distinct
signatures at the beginning of round t+ 1 ≤ f + 1 and will, therefore, add b̃
to their extracted sets in round t+ 1 (if it has not already been added).

The above lemma says that if some honest node has included some bit b̃
in round r < f + 1, then all honest nodes will have included the same bit
in the immediate next round. To prove consistency, we need to show that
if some honest node has included a bit b̃ in the final round f + 1, then all
honest nodes must have included it in the same round. The last round, i.e.,
round f + 1, is where the magic happens such that common knowledge is
reached.

Lemma 2. If some honest node i has b̃ in extri by the end of round f + 1,
then every honest node has b̃ in its extracted set by the end of round f + 1.

Proof. We consider the following two cases:

1. Case 1 (Node i first added b̃ to its extracted set in round
r < f + 1): By Lemma 1, once b̃ is in extri at the end of round
r, then every honest node will have b̃ in its extracted set by round
r + 1 ≤ f + 1.

2. Case 2 (Node i first added b̃ to its extracted set in round
f + 1): For this case to happen, node i must have received f + 1

16

distinct other nodes’ signatures on b̃ at the beginning of round f + 1.
Since at most f nodes are corrupt, at least one honest node must have
signed b̃ in an earlier round r < f +1. Thus, by Lemma 1, every honest
node, including node i, would have added b̃ to its extracted set by the
end of round r + 1 ≤ f + 1.

Using the two lemmas above, we now state the theorems that establish
the desired properties for the Dolev-Strong protocol.

Exercise 2. Prove that the Dolev-Strong protocol satisfies validity, that
is, if the sender is honest, then every honest node would output the
sender’s input bit.

Theorem 2 (The Dolev-Strong protocol [DS83]). The Dolev-Strong protocol
achieves Byzantine Broadcast in the presence of up to f ≤ n corrupt nodes.

Proof. By Lemma 2, all honest nodes must have the same extracted set at
the end of round f + 1, and thus consistency is achieved. Proving validity is
left as a homework exercise (see Exercise 2).

3.4.3 Further Discussions

Dolev and Strong [DS83] also proved that any deterministic protocol solving
Byzantine Broadcast (allowing ideal signatures) must incur at least f + 1
rounds. In practice, f + 1 rounds may be too expensive for large-scale
applications. Fortunately, this f + 1 round complexity lower bound can be
circumvented by using randomness in the protocol design. We will explore
randomized protocols later in the course.

3.5 The Muddy Children Puzzle

There is a cute puzzle called the “muddy children puzzle” that bears a remote
resemblance to the Dolev-Strong protocol.

There are n children playing in the playground, and k ≤ n of them acquire
mud on their forehead. After playing, the teacher gathers the children, and
declares, “one or more of you have mud on your forehead”. Every one can
see if others have mud on their forehead, but they cannot tell for themselves.

17

The teacher says, “at this moment, if you know you have mud on your
forehead, please step forward”. The teacher waits for a minute and no one
steps forward. The teacher says again, “second call: at this momement, if
you know that you have mud on your forehead, please step forward.”. This
goes on for multiple rounds until some children step forward. In each round,
the teacher calls for those who know that they have mud on their forehead
to step forward.

Question: in which round will some children step forward? Note that
the children do not communicate with each other. They know that at least
one of them has mud on their forehead, and they know the current round
number.

The puzzle can be solved by induction. The case k = 1 is easy. If Alice
is the only kid with mud, then she would step forward in the first round:
she sees that no one else has mud, so it must be herself. Now, consider the
case k = 2. Say, Alice and Bob are the two kids with mud. In this case, no
one steps forward in the first round, because Alice sees that Bob has mud,
and she cannot be sure if she has mud too; and the same reasoning applies
to Bob. However, knowing that no one stepped forward in the first round,
Alice and Bob now know that at least two kids have mud (otherwise the only
kid with mud would have stepped forward in the first round). Now, in the
second round, Alice sees only one other kid with mud, so she knows that she
must be the other. The same reasoning applies to Bob. Therefore, in the
second round, both Alice and Bob step forward.

This argument can be carried out inductively, and one can show that if k
kids have mud, then all k muddy kids will step forward in round exactly k.

In this puzzle, common knowledge is reached in round k. Therefore,
it is somewhat reminicient of the Dolev-Strong protocol in which common
knowledge is reached in round f + 1.

3.6 Additional Exercises

Exercise 3. In our lecture, we defined a one-bit version of Byzantine Broad-
cast, where the sender wants to distribute a single bit. We may considered
a multi-valued variant (called Multi-Valued Byzantine Broadcast) in which
the sender receives an `-bit value m ∈ {0, 1}`, and it wants to propagate this
value to every one else. Consistency requires that all honest nodes output
the same value; and validity requires that if the sender is honest, all honest
nodes output the sender’s input value m.

Please design a protocol for achieving Multi-Valued Byzantine Broadcast,

18

Chapter 6

Blockchain and State
Machine Replication

So far in our lectures, we have considered single-shot consensus. In practice,
however, more often than not, it is not enough to reach consensus just
once. Practical applications of consensus often require reaching consensus
repeatedly over time. For example, in modern cryptocurrency systems such
as Bitcoin and Ethereum, the underlying core abstraction is for a distributed
set of nodes to maintain an ever-growing public ledger which records the
sequence of all transactions that have taken place so far.

In this section, we will define a repeated consensus abstraction called a
blockchain. The notion of a blockchain was classically called state machine
replication in the long line of work in the distributed systems literature. In
fact, before Bitcoin and Ethereum, state machine replication (or blockchain)
protocols have been deployed by companies like Google and Facebook for
more than a decade to replicate their computing infrastructue. The modern
name “blockchain” was born together with Bitcoin and became popularized
soon after.

6.1 Modeling Network Delay More Generally

So far in our textbook we have considered a “strongly” synchronous network
model, where honest nodes’ messages are delivered to honest recipients in
the immediate next round. Starting in this section, we often adopt a more
relaxed (i.e., general) model, where we assume that honest nodes’ messages
can take at most ∆ rounds to be delivered to an honest recipient. The
parameter ∆ is often called the (maximum) network delay. More precisely, if

33

an honest node sends a message m to an honest recipient in round r, then
the recipient will have received the message by the beginning of round r + ∆
if not earlier1.

Defining this more general network model will lend to our discussions
of various network timing assumptions in subsequent chapters. Note that
the protocols we learned so far in this course, such as Dolev-Strong [DS83],
are strongly synchronous protocols: essentially every ∆ delay is renamed to
be one round, and nodes only perform actions every ∆ amount of time. Of
course, not all consensus protocol must abide by this strongly synchronous
restriction, even in the case when ∆ is a-priori known.

6.2 Defining a Blockchain Protocol

In a blockchain protocol, a set of distributed nodes aim to agree on an
ever-growing, linearly-ordered log of transactions. Rather than agreeing
on one transaction at a time, often times the protocol would want to use
batching to improve throughput — a block is exactly a batch of transactions
(possibly attached with protocol metadata) and therefore a chain of blocks
would be called a blockchain.

Roughly speaking, a blockchain protocol must satisfy two important
security properties, consistency and liveness. Consistency requires that all
nodes have the same view of the linearly ordered log — but since their
network speeds may differ, we shall allow some nodes’ logs to potentially
grow a little faster than others. More specifically, in our formal definition
below, we shall require that honest nodes’ logs be prefixes of each other; but
we do not require that all honest nodes’ logs are exactly the same length in
the same round. Liveness requires that if some honest node receives some
transaction tx in some round r, then tx will appear in every honest node’s
“finalized log” by the end of round r + Tconf where Tconf is often called the
“confirmation time”2. Whenever a transaction appears in a node’s finalized
log, it is treated as having been confirmed, i.e., the transaction cannot be
undone later. Below we define a blockchain abstraction more formally.

We assume that there are in total n nodes. The nodes receive transactions
from an external environment, where transactions are represented as bit-
strings that possibly need to abide by certain validity rules (e.g., with valid

1Alternatively, one can also model time as continuous rather than consisting of discrete
rounds, this modeling choice is non-essential in understanding the results we shall present.

2tx ∈ {0, 1}∗ is a payload string. In some applications, there may be some validity or
well-formedness rule on tx.

34

signatures from the coin’s owner). The nodes each maintain a growing
linearly ordered log of transactions. Henceforth let LOGri denote node i’s
log in round r — LOGri is also called a finalized log, i.e., every transaction
or event contained in LOGri cannot be undone later. A blockchain protocol
must satisfy the following two requirements:

• Consistency: for any honest nodes i and j, and for any round numbers t
and r, it must be that LOGti � LOGrj or LOGti � LOGrj . Here LOG � LOG′

means that the former log is a prefix of the latter or they are the same.

• Tconf-liveness: If an honest node receives some transaction tx as input in
some round r, then by the end of round r + Tconf , all honest nodes’ local
logs must include tx.

Clarifications on the definition. We make some further clarifications
regarding the above definition:

• In the above consistency definition, the two honest nodes i and j
are allowed to be the same, or different; and consistency must hold
regardless.

• As we stipulated earlier, each (honest) node’s local log is growing over
time and can never shrink — this requirement is baked into the syntax
and not reflected in the above consistency or liveness notions.

• The confirmation time Tconf can be a function of the number of nodes
n, the maximum network delay ∆, and possibly other parameters. It
is straightforward why Tconf might be a function of ∆ since this is the
maximum delay it takes for honest nodes to deliver messages to each
other. Why can Tconf also depend on n? For example, jumping slightly
ahead, we shall see how to construct a blockchain protocol through
sequential composition of one-shot Byzantine Broadcast (BB) — in
this case, if we instantiate the BB protocol with Dolev-Strong, then,
as we have learned, the number of rounds will depend on n.

• If the blockchain protocol is deterministic (possibly in the ideal signa-
ture model), we would require that the above consistency and liveness
properties hold deterministically. However, we will encounter random-
ized blockchain constructions later. If the protocol is randomized, we
often require that regardless of corrupt nodes’ strategy, the consistency
and liveness properties must hold with probability 1− δ over the choice

35

of the randomized execution. The term δ ∈ (0, 1) is often referred to
as the failure probability, and we typically want δ to be tiny.

• Note that the blockchain definition itself does not specify how the
application-layer should process the messages included in the blockchain.
The application layer can specify application-dependent validity rules
for the format of the message to be included in each block: for example,
a typical rule is that the message needs to be a set of transactions with
valid signatures.

Rules for dealing with double-spending are also application-specific
decisions and therefore we do not include them in the blockchain
abstraction. For example, if two or more transactions spending the
same coin both appear in a node’s finalized log, the application level
can say, only the first one of them will be treated as valid, and the later
ones will be discarded by the application semantics. In this case, when
is it safe for a merchant to ship the goods to a buyer? The merchant
should make sure that the corresponding transaction tx∗ appears in
the finalized log; and morever, there is no transaction before tx∗ in the
finalized log that spends the same coin.

6.3 Construction of a Blockchain Protocol from
Byzantine Broadcast

In the remainder, we will show that assuming the existence of a PKI and
digital signatures, we can construct a blockchain protocol by sequential
composition of Byzantine Broadcast (BB). For convenience, we shall assume
that the n nodes are numbered 0, 1, . . . , n − 1. Here we will rely on the
Multi-Valued variant of BB (see Exercise 3 of Chapter 3), and we assume
that each BB instance runs in R number of rounds.

The blockchain construction is described below, where a new instance of
BB is run every r rounds. Each instance of BB agrees on a block, and all
blocks are sequentially concatenated to form a log.

Blockchain from sequential composition of BB

• In every round kR that is a multiple of R, i.e., where k = 0, 1, 2, . . .,
spawn a new BB protocol whose designated sender is defined to be
Lk := (k mod n). Henceforth, the BB protocol spawned in round
kR is denoted BBk.

36

The designated sender Lk := (k mod n) of BBk collects every trans-
action tx it has received as input, but that have not been included in
its current log, i.e., tx /∈ LOGkRLk , and inputs the concatenation of all
such transactions into BBk.

• At any time, suppose BB0,BB1, . . . ,BBk′ have finished and their out-
puts are m1,m2, . . . ,mk′ respectively. The node’s current output log
is defined as the concatenation m1||m2|| . . . ||mk′ where “||” denotes
concatenation.

Theorem 6. Suppose that the BB protocol adopted realizes Multi-Valued
Byzantine Broadcast for a network of n nodes and tolerating up to f cor-
ruptions, then the above blockchain construction satisfies consistency and
O(Rn)-liveness also for the same n and f , where R denotes the round
complexity of BB.

Proof. Consistency of the blockchain is guaranteed due to consistency of
the BB protocol. For liveness, observe that if a transaction tx is input to
some honest node i in round r, then, it takes at most (n+ 1) additional BB
instances till the i becomes the designated sender again (note that the extra
+1 is because in the worse case, the current BB instance has already started
and i is the sender of the current BB instance). The next time i becomes
the designated sender again in a BB instance, either tx is already included
in i’s log, or i will input tx (along with other transactions) into the BB, and
by validity of the BB, every honest node’s output in this BB will include tx.

What is the confirmation time of the above blockchain protocol?

Answer: in the above, since it takes at most O(n) instances till the honest
node i becomes the designated sender again in a BB instance, and every
honest node’s log includes tx after that BB instance, it is easy to see that
the confirmation time is O(Rn).

Obviously, this is not the best approach to construct a blockchain proto-
col. However, it helps us to understand the relationship between BB and
blockchains from a feasibility (but not necessarily efficiency) perspective.

Remark 8. The above construction of a blockchain protocol from BB does
not require introducing any additional assumptions beyond those already
used by the BB. That is, if the underlying BB requires a PKI and signatures,
then the blockchain would require the same. If the underlying BB does not
rely on setup assumptions, the blockchain protocol would need no setup

37

too. However, in the next section, our construction of BB from blockchain
requires the existence of a PKI and digital signatures.

6.4 Discussions

If blockchain is implied by BB from a feasibility perspective in the PKI setting,
do we really need blockchain as a separate abstraction?

The answer is yes, and there are many reasons we care about blockchain as
a separate abstraction. First, in practice, it is rarely a good idea to implement
blockchains by sequentially composing BB. Although there are indeed better
ways to sequentially compose BB than what’s described above, the sequential
composition approach makes it difficult to perform cross-instance pipelining,
thereby making it difficult for performance optimizations. Not surprisingly,
almost all blockchain protocols that have been deployed in practice (e.g.,
variants of PBFT [CL99] and Paxos [Lam98], and Bitcoin [Nak08,GKL15])
are “direct blockchain constructions” where there is no clear boundary that
separates the blockchain into independent one-shot instances.

Besides performance concerns, the blockchain abstraction also seems
useful for defining additional properties such as fairness and incentive com-
patibility [PS17a].

38

