
Lecture #2: Heavy hitters and the count-min sketch

1 The Heavy Hitters Problem

1.1 Finding the Majority Element

Let’s begin with a problem that many of you have seen before. It’s a common question in
technical interviews. You’re given as input an array A of length n, with the promise that it
has a majority element — a value that is repeated in strictly more than n/2 of the array’s
entries. Your task is to find the majority element.

In algorithm design, the usual “holy grail” is a linear-time algorithm. For this problem,
you may already know (e.g. from CSE 373 or CSE 421) a subroutine that gives a linear-time
solution — just compute the median of A. (Note that a majority element will be the median
element.) So let’s be more ambitious: can we compute the majority element with a single
left-to-right pass through the array? If you haven’t seen it before, here’s the solution:

• Initialize counter := 0, current := NULL.

[current stores the frontrunner for the majority element]

• For i = 1 to n:

– If counter == 0:

[In this case, there is no frontrunner.]

∗ current := A[i]

∗ counter++

– else if A[i]==current:

[In this case, our confidence in the current frontrunner goes up.]

∗ counter++

– else

[In this case, our confidence in the current frontrunner goes down.]

∗ counter- -

• Return current

1

For example, suppose the input is the array {2, 1, 1}. The first iteration of the algorithm
makes “2” the current guess of the majority element, and sets the counter to 1. The next
element decreases the counter back to 0 (since 1 6= 2). The final iteration resets the current
guess to “1” (with counter value 1), which is indeed the majority element.

More generally, the algorithm correctly computes the majority element of any array that
possesses one. We encourage you to formalize a proof of this statement (e.g., by induction
on n). The intuition is that each entry of A that contains a non-majority-value can only
“cancel out” one copy of the majority value. Since more than n/2 of the entries of A contain
the majority value, there is guaranteed to be a copy of it left standing at the end of the
algorithm.

1.2 The Heavy Hitters Problem

In the heavy hitters problem, the input is an array A of length n, and also a parameter k.
You should think of n as very large (in the hundreds of millions, or billions), and k as modest
(10, 100, or 1000). The goal is to compute the values that occur in the array at least n/k
times.1 Note that there can be at most k such values; and there might be none. The problem
of computing the majority element corresponds to the heavy hitters problem with k ≈ 2− δ
for a small value δ > 0, and with the additional promise that a majority element exists.

The heavy hitters problem has lots of applications, as you can imagine. We’ll be more
specific later when we discuss a concrete solution, but here are some high-level examples:2

1. Computing popular products. For example, A could be all of the page views of products
on amazon.com yesterday. The heavy hitters are then the most frequently viewed
products.

2. Computing frequent search queries. For example, A could be all of the searches on
Google yesterday. The heavy hitters are then searches made most often.

3. Identifying heavy TCP flows. Here, A is a list of data packets passing through a
network switch, each annotated with a source-destination pair of IP addresses. The
heavy hitters are then the flows that are sending the most traffic. This is useful for,
among other things, identifying denial-of-service attacks.

4. Identifying volatile stocks. Here, A is a list of stock trades.

It’s easy to think of more. Clearly, it would be nice to have a good algorithm for the heavy
hitters problem at your disposal for data analysis.

The problem is easy to solve efficiently if A is readily available in main memory — just
sort the array and do a linear scan over the result, outputting a value if and only if it occurs

1A similar problem is the “top-k problem,” where the goal is to output the k values that occur with the
highest frequencies. The algorithmic ideas introduced in this lecture are also relevant for the top-k problem.

2You wouldn’t expect there to be a majority element in any of these applications, but you might expect
a non-empty set of heavy hitters when k is 100, 1000, or 10000.

2

amazon.com

(consecutively) at least n/k times. After being spoiled by our slick solution for finding a
majority element, we naturally want to do better. Can we solve the heavy hitters problem
with a single pass over the array? This question isn’t posed quite correctly, since it allows us
to cheat: we could make a single pass over the array, make a local copy of it in our working
memory, and then apply the sorting-based solution to our local copy. Thus what we mean
is: can we solve the Heavy Hitters problem with a single pass over the array, using only a
small amount of auxiliary space?3

1.3 An Impossibility Result

The following fact might surprise you.

Fact 1.1 There is no algorithm that solves the Heavy Hitters problems in one pass while
using a sublinear amount of auxiliary space.

We next explain the intuition behind Fact 1.1. We encourage you to devise a formal
proof, which follows the same lines as the intuition.

Set k = n/2, so that our responsibility is to output any values that occur at least twice
in the input array A.4 Suppose A has the form

|x1|x2|x3| · · · |xn−1|︸ ︷︷ ︸
set S of distinct elements

y|,

where x1, . . . , xn−1 are an arbitrary set S of distinct elements (in {1, 2, . . . , n2}, say) and the
final entry y may or may not be in S. By definition, we need to output y if and only if
y ∈ S. That is, answering membership queries reduces to solving the Heavy Hitters problem.
By the “membership problem,” we mean the task of preprocessing a set S to answer queries
of the form “is y ∈ S”? (A hash table is the most common solution to this problem.) It is
intuitive that you cannot correctly answer all membership queries for a set S without storing
S (thereby using linear, rather than constant, space) — if you throw some of S out, you
might get a query asking about the part you threw out, and you won’t know the answer.
It’s not too hard to make this idea precise using the Pigeonhole Principle.5

3Rather than thinking of the array A as an input fully specified in advance, we can alternatively think
of the elements of A as a “data stream,” which are fed to a “streaming algorithm” one element at a time.
One-pass algorithms that use small auxiliary space translate to streaming algorithms that need only small
working memory. One use case for streaming algorithms is when data arrives at such a fast rate that explicitly
storing it is absurd. For example, this is often the reality in the motivating example of data packets traveling
through a network switch. A second use case is when, even though data can be stored in its entirety and
fully analyzed (perhaps as an overnight job), it’s still useful to perform lightweight analysis on the arriving
data in real time. The first two applications (popular transactions or search queries) are examples of this.

4A simple modification of this argument extends the impossibility result to all interesting values of k —
can you figure it out?

5Somewhat more detail: if you always use sublinear space to store the set S, then you need to reuse
exactly the same memory contents for two different sets S1 and S2. Your membership query answers will be
the same in both cases, and in one of these cases some of your answers will be wrong.

3

1.4 The Approximate Heavy Hitters Problem

What should we make of Fact 1.1? Should we go home with our tail between our legs? Of
course not — the applications that motivate the heavy hitters problem are not going away,
and we still want to come up with non-trivial algorithms for them. In light of Fact 1.1, the
best-case scenario would be to find a relaxation of the problem that remains relevant for the
motivating applications and also admits a good solution.

In the ε-approximate heavy hitters (ε-HH) problem, the input is an array A of length n
and user-defined parameters k and ε. The responsibility of an algorithm is to output a list
of values such that:

1. Every value that occurs at least n
k

times in A is in the list.

2. Every value in the list occurs at least n
k
− εn times in A.

What prevents us from taking ε = 0 and solving the exact version of the problem? We allow
the space used by a solution to grow as 1

ε
, so as ε ↓ 0 the space blows up (as is necessary, by

Fact 1.1).
For example, suppose we take ε = 1

2k
. Then, the algorithm outputs every value with

frequency count at least n
k
, and only values with frequency count at least n

2k
. Thinking back

to the motivating examples in Section 1.2, such an approximate solution is essentially as
useful as an exact solution. Space usage O(1

ε
) = O(k) is also totally palatable; after all, the

output of the heavy hitters or ε-HH problem already might be as large as k elements.

2 The Count-Min Sketch

2.1 Discussion

This section presents an elegant small-space data structure, the count-min sketch [5], that
can be used to solve the ε-HH problem. There are also several other good solutions to the
problem, including some natural “counter-based” algorithms that extend the algorithm in
Section 1.1 for computing a majority element [7, 6]. We focus on the count-min sketch for a
number of reasons.

1. It has been implemented in real systems. For example, AT&T has used it in network
switches to perform analyses on network traffic using limited memory [4].6 At Google, a
precursor of the count-min sketch (called the “count sketch” [3]) has been implemented
on top of their MapReduce parallel processing infrastructure [8]. One of the original
motivations for this primitive was log analysis (e.g., of source code check-ins), but
presumably it is now used for lots of different analyses.

2. The data structure is based on hashing, and as such fits in well with the current course
theme.

6There is a long tradition in the Internet of designing routers that are “fast and dumb,” and many of
them have far less memory than a typical smartphone.

4

3. The data structure introduces a new theme, present in many of the next few lectures,
of “lossy compression.” The goal here is to throw out as much of your data as possible
while still being able to make accurate inferences about it. What you want to keep
depends on the type of inference you want to support. For approximately preserving
frequency counts, the count-min sketch shows that you can throw out almost all of
your data!

We’ll only discuss how to use the count-min sketch to solve the approximate heavy hitters
problem, but it is also useful for other related tasks (see [5] for a start). Another reason
for its current popularity is that its computations parallelize easily — as we discuss its
implementation, you might want to think about this point.

2.2 A Role Model: The Bloom Filter

This section briefly reviews the bloom filter data structure, which is a role model for the
count-min sketch. No worries if you haven’t seen bloom filters before; our treatment of the
count-min sketch below is self-contained. There are also review videos covering the details
of bloom filters on the course Web site.

The raison d’être of a bloom filter is to solve the membership problem. The client can
insert elements into the bloom filter and the data structure is responsible for remembering
what’s been inserted. The bloom filter doesn’t do much, but what it does it does very well.

Hash tables also offer a good solution to the membership problem, so why bother with
a bloom filter? The primary motivation is to save space — a bloom filter compresses the
stored set more than a hash table. In fact, the compression is so extreme that a bloom filter
cannot possibly answer all membership queries correctly. That’s right, it’s a data structure
that makes errors. Its errors are “one-sided,” with no false negatives (so if you inserted
an element, the bloom filter will always confirm it) but with some false positives (so there
are “phantom elements” that the data structure claims are present, even though they were
never inserted). For instance, using 8 bits per stored element — well less than the space
required for a pointer, for example — bloom filters can achieve a false positive probability
less than 2%. More generally, bloom filters offer a smooth trade-off between the space used
and the false positive probability. Both the insertion and lookup operations are super-fast
(O(1) time) in a bloom filter, and what little work there is can also be parallelized easily.

Bloom filters were invented in 1970 [1], back when space was at a premium for everything,
even spellcheckers.7 This century, bloom filters have gone viral in the computer networking
community [2]. Saving space is still a big win in many networking applications, for example
by making better use of the scarce main memory at a router or by reducing the amount of
communication required to implement a network protocol.

Bloom filters serve as a role model for the count-min sketch in two senses. First, bloom
filters offer a proof of concept that sacrificing a little correctness can yield significant space
savings. Note this is exactly the trade-off we’re after: Fact 1.1 states that exactly solving the

7The proposal was to insert all correctly spelled words into a bloom filter. A false positive is then a
misspelled word that the spellchecker doesn’t catch.

5

Figure 1: Running Inc(x) on the CMS data structure. Each row corresponds to a hash
function hi.

heavy hitters problem requires linear space, and we’re hoping that by relaxing correctness
— i.e., solving the ε-HH problem instead — we can use far less space. Second, at a technical
level, if you remember how bloom filters are implemented, you’ll recognize the count-min
sketch implementation as a bird of the same feather.

2.3 Count-Min Sketch: Implementation

The count-min-sketch supports two operations: Inc(x) and Count(x).8 The operation Count(x)
is supposed to return the frequency count of x, meaning the number of times that Inc(x) has
been invoked in the past.

The count-min sketch has two parameters, the number of buckets b and the number of
hash functions `. We’ll figure out how to choose these parameters in Section 2.5, but for now
you might want to think of b as in the thousands and of ` as 5.9 The point of b is to compress
the array A (since b� n). This compression leads to errors. The point of ` is to implement
a few “independent trials,” which allows us to reduce the error. What’s important, and kind
of amazing, is that these parameters are independent of the length n of the array that we
are processing (recall n might be in the billions, or even larger).

The data structure is just a ` × b 2-D array CMS of counters (initially all 0). See
Figure 1. After choosing ` hash functions h1, . . . , h`, each mapping the universe of objects

8The same data structure supports weighted increments, of the form Inc(x,∆) for ∆ ≥ 0, in exactly the
same way. With minor modifications, the data structure can even support deletions. We focus on the special
case of incrementing by 1 for simplicity, and because it is sufficient for many of the motivating applications.

9Where do we get ` hash functions from? The same way we get a single hash function. If we’re thinking
of hash functions as being drawn at random from a universal family, we just make ` independent draws from
the family. If we’re thinking about deterministic but well-crafted hash functions, in practice it’s usually
sufficient to take two good hash functions h1, h2 and use ` linear combinations of them (e.g. h1, h1 + h2,
h1 + 2h2, . . . , h1 + (` − 1)h2). Another common hack, which you’ll implement on Mini-Project #1, is to
derive each hi from a single well-crafted hash function h by defining hi(x) as something like the hash (using
h) of the string formed by x with “i” appended to it.

6

to {1, 2, . . . , b}, the code for Inc(x) is simply:

• for i = 1, 2, . . . , `:

– increment CMS[i][hi(x)]

Assuming that every hash function can be evaluated in constant time, the running time of
the operation is clearly O(`).

To motivate the implementation of Count(x), fix a row i ∈ {1, 2, . . . , `}. Every time
Inc(x) is called, the same counter CMS[i][hi(x)] in this row gets incremented. Since counters
are never decremented, we certainly have

CMS[i][hi(x)] ≥ fx, (1)

where fx denotes the frequency count of object x. If we’re lucky, then equality holds in (1).
In general, however, there will be collisions: objects y 6= x with hi(y) = hi(x). (Note with
b � n, there will be lots of collisions.) Whenever Inc(y) is called for an object y that
collides with x in row i, this will also increment the same counter CMS[i][hi(x)]. So while
CMS[i][hi(x)] cannot underestimate fx, it generally overestimates fx.

The ` rows of the count-min sketch give ` different estimates of fx. How should we
aggregate these estimates? Later in the course, we’ll see scenarios where using the mean or
the median is a good way to aggregate. Here, our estimates suffer only one-sided error — all
of them can only be bigger than the number fx we want to estimate, and so it’s a no-brainer
which estimate we should pay attention to. The smallest of the estimates is clearly the best
estimate. Thus, the code for Count(x) is simply:

• return min`i=1 CMS[i][hi(x)]

The running time is again O(`). By (1), the data structure has one-sided error — it only
returns overestimates of true frequency counts, never underestimates. The key question is
obviously: how large are typical overestimates? The answer depends on how we set the
parameters b and `. As b gets bigger, we’ll have fewer collisions and hence less error. As `
gets bigger, we’ll take the minimum over more independent estimates, resulting in tighter
estimates. Thus the question is whether or not modest values of b and ` are sufficient to
guarantee that the overestimates are small. This is a quantitative question that can only
be answered with mathematical analysis; we do this in the next section (and the answer is
yes!).

Remark 2.1 (Comparison to Bloom Filters) The implementation details of the count-
min sketch are very similar to those of a bloom filter. The latter structure only uses bits,
rather than integer-valued counters. When an object is inserted into a bloom filter, ` hash
functions indicate ` bits that should be set to 1 (whether or not they were previously 0 or
1). The count-min sketch, which is responsible for keeping counts rather than just tracking
membership, instead increments ` counters. Looking up an object in a bloom filter just
involves checking the ` bits corresponding to that object — if any of them are still 0, then

7

the object has not been previously inserted. Thus Lookup in a bloom filter can be thought
of as taking the minimum of ` bits, which exactly parallels the Count operation of a count-
min-sketch. That the count-min sketch only overestimates frequency counts corresponds to
the bloom filter’s property that it only suffers from false positives.

2.4 Count-Min Sketch: Heuristic Error Analysis

The goal of this section is to analyze how much a count-min sketch overestimates frequency
counts, as a function of the parameters b and `. Once we understand the relationship between
the error and these parameters, we can set the parameters to guarantee simultaneously small
space and low error.

Fix an object x. Let’s first think about a single row i of the count-min sketch; we’ll worry
about taking the minimum over rows later. After a bunch of Inc(x) operations have been
executed, what’s the final value of CMS[i][hi(x)], row i’s estimate for the frequency count
of x?

If we’re lucky and no other objects collide with x in the ith row, then CMS[i][hi(x)] is
just the true frequency count fx of x. If we’re unlucky and some object y collides with x in
the ith row, then y contributes its own frequency count fy to CMS[i][hi(x)]. More generally,
CMS[i][hi(x)] is the sum of the contributions to this counter by x and all other objects that
collide with it:

CMS[i][hi(x)] = fx +
∑
y∈S

fy, (2)

where S = {y 6= x : hi(y) = hi(x)} denotes the objects that collide with x in the ith row.
In (2), fx and the fy’s are fixed constants (independent of the choice of hi), while the set S
will be different for different choices of the hash function hi.

Recall that a good hash function spreads out a data set as well as if it were a random
function. With b buckets and a good hash function hi, we expect x to collide with a roughly
1/b fraction of the other elements y 6= x under hi. Thus we expect

CMS[i][hi(x)] = fx +
1

b

∑
y 6=x

fy ≤ fx +
n

b
, (3)

where in the inequality we use that the sum of the frequency counts is exactly the total
number n of increments (each increment adds 1 to exactly one frequency count). See also
Section 2.5 for a formal (non-heuristic) derivation of (3).

We should be pleased with (3). Recall the definition of the ε-approximate heavy hitters
problem (Section 1.4): the goal is to identify objects with frequency count at least n

k
, without

being fooled by any objects with frequency count less than n
k
− εn. This means we just need

to estimate the frequency count of an object up to additive one-sided error εn. If we take
the number of buckets b in the count-min sketch to be equal to 1

ε
, then (3) says the expected

overestimate of a given object is at most εn. Note that the value of b, and hence the number
of counters used by the data structure, is completely independent of n! If you think of
ε = .001 and n as in the billions, then this is pretty great.

8

So why aren’t we done? We’d like to say that, in addition to the expected overestimate
of a frequency count being small, with very large probability the overestimate of a frequency
count is small. (For a role model, recall that typical bloom filters guarantee a false positive
probability of 1-2%.) This requires translating our bound on an expectation to a bound on
a probability.

Next, we observe that (3) implies that the probability that a row’s overestimate of x is
more than 2n

b
is less than 50%. (If not, the expected overestimate would be greater than

1
2
· 2n
b

= n
b
, contradicting (3).) This argument is a special case of “Markov’s inequality;” see

Section 2.5 for details.
A possibly confusing point in this heuristic analysis is: in the observation above, what

is the probability over, exactly? I.e., where is the randomness? There are two morally
equivalent interpretations of the analysis in this section. The first, which is carried out
formally and in detail in Section 2.5, is to assume that the hash function hi is chosen
uniformly at random from a universal family of hash functions. The second is to assume
that the hash function hi is fixed and that the data is random. If hi is a well-crafted hash
function, then your particular data set will almost always behave like random data.10

Remember that everything we’ve done so far is just for a single row i of the hash table.
The output of Count(x) exceeds fx by more than εn only if every row’s estimate is too big.
Assuming that the hash functions hi are independent,11 we have

Pr

[
`

min
i=1

CMS[i][hi(x)] > fx +
2n

b

]
=
∏̀
i=1

Pr

[
CMS[i][hi(x)] > fx +

2n

b

]
≤
(

1

2

)`
.

To get an overestimate threshold of εn, we can set b = 2
ε

(so e.g., 200 when ε = .01).
To drive the error probability — that is, the probability of an overestimate larger than this
threshold — down to the user-specified value δ, we set(

1

2

)`
= δ

and solve to obtain ` = log2
1
δ
. (This is between 6 and 7 when δ = .01.) Thus the total

number of counters required when δ = ε = .01 is barely over a thousand (no matter how long

10In an implementation that chooses hi deterministically as a well-crafted hash function, the error analysis
below does not actually hold for an arbitrary data set. (Recall that for every fixed hash function there
is a pathological data set where everything collides.) So instead we say that the analysis is “heuristic” in
this case, meaning that while not literally true, we nevertheless expect reality to conform to its predictions
(because we expect the data to be non-pathological). Whenever you do a heuristic analysis to predict the
performance of an implementation, you should always measure the implementation’s performance to double-
check that it’s working as expected. (Of course, you should do this even when you’ve proved performance
bounds rigorously — there can always be unmodeled effects (cache performance, etc.) that cause reality to
diverge from your theoretical predictions for it.)

11Don’t forget that probabilities factor only for independent events. There are again two interpretations
of this step: in the first, we assume that each hi is chosen independently and randomly from a universal
family of hash functions; in the second, we assume that the hi’s are sufficiently well crafted that they almost
always behave as if they were independent on real data.

9

the array is!). See Section 2.6 for a detailed recap of all of the count-min sketch’s properties,
and Section 2.5 for a rigorous and optimized version of the heuristic analysis in this section.

2.5 Count-Min Sketch: Rigorous Error Analysis

This section carries out a rigorous version of the heuristic error analysis in Section 2.4. Let
fx denote the true frequency count of x, and Zi the (over)estimate CMS[i][hi(x)]. Zi is a
random variable over the state space equal to the set of all possible hash functions hi. (I.e.,
given an hi, Zi is fully determined.)

If we’re lucky and no other objects collide with x in the ith row, then Zi = fx. If we’re
unlucky and some object y collides with x in the ith row, then y contributes its own frequency
count fy to Zi. As in (2), we can write

Zi = fx +
∑
y∈S

fy, (4)

where S = {y 6= x : hi(y) = hi(x)} denotes the objects that collide with x in the ith row.
In (4), fx and the fy’s are fixed constants (independent of the choice of hi), while the set S
is random (i.e., different for different choices of hi).

To continue the error analysis, we make the following assumption:

(*) For every pair x, y of distinct objects, Pr[hi(y) = hi(x)] ≤ 1
b
.

Assumption (*) basically says that, after conditioning on the bucket to which hi assigns an
object x, the bucket hi assigns to some other object y is uniformly random. For example,
the assumption would certainly be satisfied if hi is a completely random function. It is also
satisfied if hi is chosen uniformly at random from a universal family — it is precisely the
definition of such a family.

Before using assumption (*) to analyze (4), we recall linearity of expectation: for any
real-valued random variables X1, . . . , Xm defined on the same probability space,

E

[
m∑
j=1

Xj

]
=

m∑
j=1

E[Xj] . (5)

That is, the expectation of a sum is just the sum of the expectations, even if the random
variables are not independent.12 The statement is trivial to prove — just expand the expec-
tations and reverse the order of summation — and insanely useful.

To put the pieces together, we first rewrite (4) as

Zi = fx +
∑
y 6=x

fy1y, (6)

12Note the analogous statement for products is false if the Xj ’s are not independent. For example, suppose
X1 ∈ {0, 1} is uniform while X2 = 1−X1. Then E[X1 ·X2] = 0 while E[X1] ·E[X2] = 1

4 .

10

where 1y is the indicator random variable that indicates whether or not y collides with x
under hi:

1y =

{
1 if hi(y) = hi(x)
0 otherwise.

Recalling that fx and the fy’s are constants, we can apply linearity of expectation to (6) to
obtain

E[Zi] = fx +
∑
y 6=x

fy · E[1y] . (7)

As indicator random variables, the 1y’s have very simple expectations:

E[1y] = 1 · Pr[1y = 1]︸ ︷︷ ︸
=Pr[hi(y)=hi(x)]

+ 0 ·Pr[1y = 0]︸ ︷︷ ︸
=0

= Pr[hi(y) = hi(x)]
(∗)
≤ 1

b
. (8)

Combining (7) and (8) gives

E[Zi] ≤ fx +
1

b

∑
y 6=x

fy ≤ fx +
n

b
. (9)

Next we translate this bound on an expectation to a bound on a probability. A simple
and standard way to do this is via Markov’s inequality.

Proposition 2.2 (Markov’s Inequality) If X is a nonnegative random variable and c >
1 is a constant, then

Pr[X > c · E[X]] ≤ 1

c
.

The proof of Markov’s inequality is simple. For example, suppose you have a nonnegative
random variable X with expected value 10. How frequently could it take on a value greater
than 100? (So c = 10.) In principle, it is possible that X has value exactly 100 10% of the
time (if it has value 0 the rest of the time). But it can’t have value strictly greater than 100
10% or more of the time — if it did, its expectation would be strictly greater than 10. An
analogous argument applies to nonnegative random variables with any expectation and for
any value of c.

Let’s return to our error analysis, for a fixed object x and row i. Define

X = Zi − fx ≥ 0

as the amount by which the ith row of the count-min sketch overestimates x’s frequency
count fx. By (9), with b = e

ε
, the expected value of X is at most εn

e
.13 Since this overestimate

is always nonnegative, we can apply Markov’s inequality (Proposition 2.2) with E[X] = εn
e

and c = e to obtain

Pr
[
X > e · εn

e

]
≤ 1

e

13Here e = 2.718 . . ., which gives slightly better constant factors than the choice of 2 in Section 2.4.

11

and hence

Pr[Zi > fx + εn] ≤ 1

e
.

Assuming that the hash functions are chosen independently, we have

Pr

[
`

min
i=1

Zi > fx + εn

]
=
∏̀
i=1

Pr[Zi > fx + εn] ≤ 1

e`
. (10)

To achieve a target error probability of δ, we just solve for ` in (10) and find that ` ≥ ln 1
δ

rows are sufficient. For δ around 1%, ` = 5 is good enough.

2.6 Count-Min Sketch: Final Report Card

• The space required is that for e
ε

ln 1
δ

counters. Recall from Section 1.4 that for the
ε-HH problem, ε = 1

2k
is a sensible choice. For k = 100 and δ = .01 this is in the

low thousands. For larger values of k, the number of counters needed scales linearly.14

In any case, the number of counters is totally independent of n (which could be in
billions)! This is the magic of the count-min sketch — you can throw out almost all
of your data set and still maintain approximate frequency counts. Contrast this with
bloom filters, and pretty much every other data structure that you’ve seen, where the
space grows linearly with the number of processed elements.15

• Assuming the hash functions take constant time to evaluate, the Inc and Count opera-
tions run in O(ln 1

δ
) time.

• The count-min sketch guarantees 1-sided error: no matter how the hash functions
h1, . . . , h` are chosen, for every object x with frequency count fx, the count-min sketch
returns an estimate Count(x) that is at least fx.

• Assuming that each hash function h1, . . . , h` is chosen uniformly from a universal
family, for every object x with frequency count fx, the probability that the estimate
Count(x) output by the count-min sketch is greater than fx + εn is at most δ. One
would expect comparable performance for fixed well-crafted hash functions h1, . . . , h`
on pretty much any data set that you might encounter.

14Note that the challenging case, and the case that often occurs in our motivating applications, is an
array A that simultaneously has lots of different elements but also a few elements that occur many times. If
there are few distinct elements, one can maintain the frequency counts exactly using one counter per distinct
element. If no elements occur frequently, then there’s nothing to do.

15How is this possible? Intuitively, with an error of εn allowed, only the elements with with large (> εn)
frequency counts matter, and there can be at most 1

ε such elements (why?). Thus it is plausible that space
proportional to 1

ε might be enough. Of course, there’s still the issue of not knowing in advance which ≈ 1
ε

elements are the important ones!

12

2.7 Solving the ε-Heavy Hitters Problem

The count-min sketch can be used to solve the ε-HH problem from Section 1.4. If the total
number n of array elements is known in advance, this is easy: set ε = 1

2k
, process the

array elements using a count-min sketch in a single pass, and remember an element once its
estimated frequency (according to the count-min sketch) is at least n

k
.

When n is not known a priori, here is one way to solve the problem. Assume that ε = 1
2k

and so the number of counters is O(k ln 1
δ
). In a single left-to-right pass over the array A,

maintain the number m of array entries processed thus far. We store potential heavy hitters
in a heap data structure. When processing the next object x of the array, we invoke Inc(x)
followed by Count(x). If Count(x) ≥ m

k
, then we store x in the heap, using the key Count(x).

(If x was already in the heap, we delete it before re-inserting it with its new key value.) This
requires one insertion and at most one deletion from the heap. Also, whenever m grows to
the point that some object x stored in the heap has a key less than m/k (checkable in O(1)
time via Find-Min), we delete x from the heap (via Extract-Min). After finishing the pass,
we output all of the objects in the heap.

Assume for simplicity that the count-min sketch makes no large errors, with Count(x) ∈
[fx, fx+εn] for all x. Every object x with fx ≥ n

k
is in the heap at the end of the pass. (To see

this, consider what happens the last time that x occurs.) The “no large errors” assumption
implies an approximate converse: every object x in the heap has true frequency count at least
n
k
− εn = n

2k
(other objects would be deleted from the heap by the end of the pass). These

are exactly the two properties we ask of a solution to the ε-HH problem. If the count-min
sketch makes large errors on a few objects, then these objects might erroneously appear in
the final output as well. Ignoring the objects with large errors, the heap contains at most 2k
objects at all times (why?), so maintaining the heap requires an extra O(log k) = O(log 1

ε
)

amount of work per array entry.

References

[1] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM, 13(7):422–426, 1970.

[2] A. Broder and M. Mitzenmacher. Network applications of Bloom filters: A survey.
Internet Mathematics, 1(4):485–509, 2005.

[3] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
Theoretical Computer Science, 312(1):3–15, 2004.

[4] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck, and D. Srivas-
tava. Holistic UDAFs at streaming speeds. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 35–46, 2004.

[5] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

13

[6] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent and
top-k elements in data streams. In Proceedings of the 10th International Conference on
Database Theory (ICDT), pages 398–412, 2005.

[7] J. Misra and D. Gries. Finding repeated elements. Science of Computer Programming,
2:143–152, 1982.

[8] R. Pike, S. Dorward an R. Griesemer, and S. Quinlan. Interpreting the data: Parallel
analysis with Sawzall. Dynamic Grids and Worldwide Computing, 13(4):277–298, 2005.

14

	The Heavy Hitters Problem
	Finding the Majority Element
	The Heavy Hitters Problem
	An Impossibility Result
	The Approximate Heavy Hitters Problem

	The Count-Min Sketch
	Discussion
	A Role Model: The Bloom Filter
	Count-Min Sketch: Implementation
	Count-Min Sketch: Heuristic Error Analysis
	Count-Min Sketch: Rigorous Error Analysis
	Count-Min Sketch: Final Report Card
	Solving the -Heavy Hitters Problem

