
CSE 422 Lecture #13: Linear and Convex
Programming, with Applications to Sparse Recovery

1 The Story So Far

Recall the setup in compressive sensing. There is an unknown signal z ∈ Rn, and we
can only glean information about z through linear measurements. We choose m linear
measurements a1, . . . , am ∈ Rn. “Nature” then chooses a signal z, and we receive the results
b1 = 〈a1, z〉, . . . , bm = 〈am, z〉 of our measurements, when applied to z. The goal is then to
recover z from b.

Last lecture culminated in the following sparse recovery guarantee for compressive sens-
ing.

Theorem 1.1 (Main Theorem) Fix a signal length n and a sparsity level k. Let A be an
m × n matrix with m = Θ(k log n

k
) rows, with each of its mn entries chosen independently

from the standard Gaussian distribution. With high probability over the choice of A, for
every k-sparse signal z,1 the unique optimal solution to the `1-minimization problem

min ‖x‖1 (1)

subject to
Ax = b (2)

is z.

Theorem 1.1 is really kind of shocking.2 We’re solving the wrong optimization problem —
`1-minimization rather than `0-minimization, which is what we really want (but NP -hard)
— and yet obtaining the right answer! How would one ever suspect that this could be true?
Perhaps unsurprisingly, this unreasonable exact recovery was first observed empirically —
by geophysicists in the late 1970s and early 1980s, and again in the early 21st century in the
context of medical imaging. Only then, in the last decade or so, was theory developed to
explain these empirical observations (beginning with [3, 6]).

Last lecture, we discussed why minimizing the `1 norm of a feasible solution promotes
sparse solutions. Geometrically, the `1 ball is the “longest” along the standard basis vectors,

1Recall z is k-sparse if it has at most k non-zeroes.
2The proof is not easy, and is beyond the scope of this course. Our focus is on interpretations, applications,

and algorithms.

1

and hence if we blow up a balloon centered at the origin in the shape of the `1 ball, its
first point of contact with a subspace of linear system solutions (an affine subspace) tends
to be relatively sparse, compared to other norms. Next, we discuss how to solve the `1-
minimization problem efficiently using linear programming.

2 Linear Programming

2.1 Context

The more general a problem, the more computationally difficult it is. For example, sufficient
generalization of a polynomial-time solvable problem often yields an NP -hard problem. If
you only remember one thing about linear programming, make it this: linear programming is
a remarkable sweet spot balancing generality and computational tractability, arguably more
so than any other problem in the entire computational landscape.

Zillions of problems, including `1-minimization, reduce to linear programming. It would
take an entire course to cover even just its most famous applications. Some of these appli-
cations are conceptually a bit boring but still very important — as early as the 1940s, the
military was using linear programming to figure out the most efficient way to ship supplies
from factories to where they were needed. Central problems in computer science that reduce
to linear programming include maximum flow and bipartite matching. Linear programming
is also useful for NP -hard problems, for which it serves as a powerful subroutine in the
design of heuristics.

Despite this generality, linear programs can be solved efficiently, both in theory (meaning
in worst-case polynomial time) and in practice (with input sizes up into the millions).

2.2 Using Linear Programming

You can think of linear programming as a restricted programming language for encoding
computational problems. The language is flexible, and sometimes figuring out the right way
to use it requires some ingenuity (as we’ll see).

At a high level, the description of a linear program specifies what’s allowed, and what
you want. Here are the ingredients:

1. Decision variables. These are real-valued variables x1, . . . , xn ∈ R. They are “free,”
in the sense that it is the job of the linear programming solver to figure out the best
joint values for these variables.

2. Constraints. Each constraint should be linear, meaning it should have the form

n∑
j=1

aijxj ≤ bi

2

or
n∑

j=1

aijxj = bi.

We didn’t bother including constraints of the form
∑n

j=1 aijxj ≥ bi, since these are
equivalent to

∑n
j=1(−aij)xj ≤ −bi. All of the aij’s and bi’s are real-valued constants,

meaning specific numbers (1, -5, 10, etc.) that are hard-coded into the linear program.

3. Objective function. Again, this should be linear, of the form

min
n∑

j=1

cjxj.

It’s fine to maximize instead of minimize: after all, max
∑n

j=1 cjxj yields the same
result as min

∑n
j=1(−cj)xj.

So what’s not allowed in a linear program? Terms like x2j , xjxk, log(1 + xj), etc. So
whenever a decision variable appears in an expression, it is alone, possibly multiplied by a
constant. These linearity requirements may seem restrictive, but many real-world problems
are well approximated by linear programs.

2.3 A Simple Example

To make linear programs more concrete and develop your intuition about them, let’s look at
a simple example. Suppose there are two decision variables x1 and x2 — so we can visualize
solutions as points (x1, x2) in the plane. See Figure 1. Let’s consider the (linear) objective
function of maximizing the sum of the decision variables:

max x1 + x2. (3)

We’ll look at four (linear) constraints:

x1 ≥ 0 (4)

x2 ≥ 0 (5)

2x1 + x2 ≤ 1 (6)

x1 + 2x2 ≤ 1. (7)

The first two inequalities restrict feasible solutions to the non-negative quadrant of the
plane. The second two inequalities further restrict feasible solutions to lie in the shaded
region depicted in Figure 1. Geometrically, the objective function asks for the feasible point
furthest in the direction of the coefficient vector (1, 1) — the “most northeastern” feasible
point. Eyeballing the feasible region, this point is (1

3
, 1
3
), for an optimal objective function

value of 2
3
.

3

Figure 1: A linear program in 2 dimensions.

2.4 Geometric Intuition

This geometric picture remains valid for general linear programs, with an arbitrary number
of dimensions and constraints: the objective function gives the optimization direction, and
the goal is to find the feasible point that is furthest in this direction. Moreover, the feasible
region of a linear program is just a higher-dimensional analog of a polygon.3

2.5 Algorithms for Linear Programming

Linear programs are not difficult to solve in two dimensions — for example, one can just
check all of the vertices (i.e., “corners”) of the feasible region. In high dimensions, linear
programs are not so easy; the number of vertices can grow exponentially with the number of
dimensions (e.g., think about hypercubes), so there’s no time to check them all. Nevertheless,
we have the following important fact.

Fact 2.1 Linear programs can be solved efficiently.

The theoretical version of Fact 2.1 states that there is a polynomial-time algorithm for linear
programming.4 The practical version of Fact 2.1 is that there are excellent commercial codes
available for solving linear programs.5 These codes routinely solve linear programs with
millions of variables and constraints. One thing to remember about linear programming is
that, for over 60 years, many people with significant resources — ranging from the military

3Called a “polyhedron;” in the common special case where the feasible region is bounded, it is called a
“polytope.”

4The earliest, from 1979, is the “ellipsoid method” [7]; this was a big enough deal at the time that it
made the New York Times [1].

5The open-source solvers are not as good, unfortunately, but are still useful for solving reasonably large
linear programs (see Homework #9).

4

to large companies — have had strong incentives to develop good codes for it. This is one
of the reasons that the best codes are so fast and robust.

We won’t discuss how the various algorithms for linear programming work. While the
key conceptual ideas are pretty natural, lots of details are required. Many professional
researchers and optimizers treat linear programming as a “black box” — a subroutine that
can be invoked at will, without knowledge of its inner details. We’ll adopt this perspective
as well in lecture and on Homework #9.

3 Linear Programming and `1-Minimization

We now show that the `1-minimization problem in Theorem 1.1 can be solved using linear
programming. The only non-trivial issue is the objective function

min ‖x‖1 =
n∑

j=1

|xj|,

which, because of the absolute values, is non-linear.
As a warm-up, suppose first that we know that the unknown signal z is component-wise

non-negative (in addition to being k-sparse). Then, the `1-minimization problem is just

min
∑
j=1

xj

subject to
Ax = b (8)

and
x ≥ 0. (9)

The objective function is clearly linear. The n non-negativity constraints in (9) — each of
the form xj ≥ 0 for some j — are linear. Each of the m equality constraints (8) has the
form

∑n
j=1 aijxj = bi, and is therefore linear. Thus, this is a linear program.

We know the unknown signal z satisfies Ax = b (by the definition of b). We’re also
assuming that z ≥ 0. Hence, z is a feasible solution to the linear program. Since x ≥ 0 for
every feasible solution, the objective function value

∑n
j=1 xj equals ‖x‖1 for every feasible

solution. We conclude that this linear program is a faithful encoding of `1-minimization for
non-negative signals.

For the general case of real-valued signals z, the key trick is to add additional variables
that allow us to “linearize” the non-linear objective function in (1). In addition to the
previous decision variables x1, . . . , xn, our linear program will include auxiliary decision
variables y1, . . . , yn. The intent is for yj to represent |xj|. We use the objective function

min
n∑

j=1

yj, (10)

5

which is clearly linear. We also add 2n linear inequalities, of the form

yj − xj ≥ 0 (11)

and
yj + xj ≥ 0 (12)

for every j = 1, 2, . . . , n. Finally, we have the usual m linear consistency constraints

Ax = b. (13)

Every feasible solution of this linear program satisfies all of the constraints, and in par-
ticular (11) and (12) imply that yj ≥ max{xj,−xj} = |xj| for every j = 1, 2, . . . , n. Observe
further that at an optimal solution, equality must hold for every j: given a feasible solution
with yj > xj and yj > −xj for some j, one can decrease yj slightly to produce a new solution
that is still feasible and that has slightly better (i.e., smaller) objective function value (10).
It follows that the values of the variables x in an optimal solution to the linear program
given by (10)–(13) is the optimal solution to the `1-minimization problem given in (1)–(2).

To further showcase the power and flexibility of linear programming, suppose that the
results of the linear measurements are corrupted by noise. Concretely, assume that instead
of receiving bi = 〈ai, z〉 for each measurement i = 1, 2, . . . ,m, we receive a value bi ∈
[〈ai, z〉− ε, 〈ai, z〉+ ε], where ε > 0 is a bound on the magnitude of the noise. Now, the linear
system Ax = b might well be infeasible — z is now only an approximately feasible solution.
The linear program (10)–(13) is easily modified to accommodate noise — just replace the
equality constraints (13) by two sets of inequality constraints,

n∑
j=1

aijxj ≤ bi + ε

and
n∑

j=1

aijxj ≥ bi − ε

for each i = 1, 2, . . . ,m. The guarantee in Theorem 1.1 can also be extended, with significant
work, to handle noise [4].

Remark 3.1 (Keep Linear Programming in Your Toolbox) This concludes our brief
discussion of linear programming. While compressive sensing is a convenient excuse to discuss
this powerful tool, don’t forget that linear programming is useful for solving or approximating
a huge range of applications drawn from many different domains. It’s quite likely that one
or more problems arising in your future work will be solvable using linear programming. The
classic book [5] remains an excellent introduction to some of the applications.

6

Figure 2: Examples of convex and non-convex sets.

4 Beyond Linear Programs: Convexity

We next discuss a generalization of linear programming that captures still more applications,
without sacrificing too much computational efficiency. After describing this generalization,
we give in Section 5 a representative application, the matrix completion problem.

4.1 Convex Sets

In Week 3 we mentioned that a good rule of thumb is to equate “convex” with “nice” and
“non-convex” with “nasty,” especially when optimization is concerned. Back then, we were
discussing gradient descent, which has much nicer properties for minimizing convex functions
than for non-convex functions (in the latter case, the ending point depends on the starting
point and might only be a local minimum). Here, convexity is in large part what’s driving
the computational tractability of linear programming.

Convexity is relevant for both sets and for functions. Intuitively, a subset C ⊆ Rn is
convex if it is “filled in,” meaning that it contains all line segments between its points.
See Figure 2 for examples. Formally, C is convex if for every x,y ∈ C and λ ∈ [0, 1],
λx + (1− λ)y ∈ C. (As λ ranges from 0 to 1, it traces out the line segment from y to x.)

For example, the feasible region of every linear program is convex. To see this, first
suppose there is only one constraint, which is an inequality. Then the feasible region is just
a half-space, which is clearly convex. The feasible region of a linear program is an intersection
of such half-spaces. (Note that an equality constraint is equivalent to the combination of
two inequality constraints.) The intersection of convex sets C1, C2 is again convex — if x
and y are in both C1 and C2, then the line segment between x and y lies inside both C1 and
C2 (since each is convex), so this line segment also lies in their intersection. We conclude
that every linear program has a convex feasible region.

For a relevant example that is more general than the finite intersection of half-spaces and
subspaces, take C to be the set of n×n symmetric and positive semidefinite (PSD) matrices,
viewed as a subset of Rn2

.6 It is clear that the set of symmetric matrices is convex — the
average of symmetric matrices is again symmetric. It is true but less obvious that the set

6There are many equivalent definitions of PSD matrices. One of the simplest is as the matrices of the
form ATA, like the covariance matrices we were looking at during our PCA discussions in Lectures #7–9.

7

Figure 3: Examples of convex and non-convex functions.

remains convex under the extra PSD constraint.7

4.2 Convex Functions

Who had the nerve to use the same word “convex” for two totally different things, sets
and functions? The overloaded terminology becomes more forgivable if we define a function
f : Rn → R to be convex if and only if the region above its graph is a convex set. See
Figure 3 for some examples.

Equivalently, a convex function is one where all “chords” of its graph lie above the graph.
Mathematically, this translates to

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for every x,y ∈ C and λ ∈ [0, 1]. That is, for points x and y, if you take the average of x
and y and then apply f , you’ll get a smaller number than if you first apply f to x and y
and then average the results. It’s not always easy to check whether or not a given function
is convex, but there is a mature analytical toolbox for this purpose (taught in EE364, for
example).

4.3 Convex Programs

Convexity leads to computational tractability. For example, in theory, it is possible to min-
imize an essentially arbitrary convex function over an essentially arbitrary convex feasible
region. (There’s a bit of fine print, but the conditions are quite mild.) This is fantastic news:
in principle, we should be able to develop fast and robust algorithms for all of the convex
optimization problems that we want to solve.

Practice is in the process of catching up with what the theory predicts. To oversimplify
the current state-of-the-art, there are currently solvers that can handle medium-size and

7Another definition of PSD matrices is as the matrices A for which the corresponding quadratic form
xTAx is nonnegative for every x ∈ Rn. Using linearity, it is easy to see that the average of two matrices
that satisfy this condition yields another matrix that satisfies the condition.

8

Figure 4: Non-convexity and local optima. (Left) A linear (i.e. convex) objective function
with a non-convex feasible region. (Right) A non-convex objective function over a convex
feasible region (the real line).

sufficiently nice convex optimization problems. The first piece of good news is that this is
already enough to solve many problems that we’re interested in; see Homework #9 for a
couple of examples. The second piece of good news is that, as we speak, many smart people
are working hard to close the gap in computational efficiency between linear and convex
programming solvers — we expect major progress on convex solvers over the next 5 or so
years.

Summarizing: convex programming is even more general than linear programming and
captures some extra interesting applications. It is relatively computationally tractable, al-
though the biggest instance sizes that can be solved are generally one or two orders of
magnitude smaller than with linear programming (e.g., tens of thousands instead of mil-
lions).

Remark 4.1 (Why Convexity Helps) For intuition about why convexity leads to tractabil-
ity, consider the case where the feasible region or the objective function is not convex. With
a non-convex feasible region, there can be “locally optimal” feasible points that are not
globally optimal, even with a linear objective function (Figure 4(left)). The same problem
arises with a non-convex objective function, even when the feasible region is just the real
line (Figure 4(right)). When both the objective function and feasible region are convex, this
can’t happen — all local optima are also global optima. As you might expect, this makes
optimization much easier.

5 Application: Matrix Completion

5.1 Setup and Motivation

We conclude the lecture with a case study of convex programming, in the context of another
central problem in sparse recovery with incomplete information: matrix completion. You

9

saw this problem in Week #5, where we approached it using SVD-based techniques. Here,
we’ll obtain better results using convex optimization.

Recall the setup: there is an unknown “ground truth” matrix M, analogous to the
unknown sparse signal z in compressive sensing. The input is a matrix M̂, derived from M
by erasing some of its entries — the erased values are unknown, and the remaining values
are known. The goal is to recover the matrix M from M̂.

An example of matrix completion that received a lot of hype is the “Netflix challenge.”
Netflix was interested in the matrix M where rows are customers, columns are movies, and an
entry of the matrix describes how much a customer would like a given movie. If a customer
has rated a movie, then that entry is known; otherwise, it is unknown. Thus, most of the
entries of M are missing in M̂. Recovering M from M̂, even approximately, would obviously
be very useful to Netflix in designing a recommendation system.

Without any assumptions on the ground truth matrix M, there is no way to recover its
missing entries from M̂ — they could be anything, and an algorithm would have no clue
about what they are. A similar issue came up in compressive sensing, when we realized
that there was no way to recover arbitrary unknown signals of length n while using fewer
than n linear measurements. In compressive sensing, we made progress by assuming that
the unknown signal was sparse. So what kind of assumption can play the role of sparsity in
matrix completion? We could just assume that M is mostly zeroes, but then we get a stupid
problem — presumably the best guess of M given M̂ would just fill in all the missing entries
with zeroes. This hack is unhelpful for the Netflix application, for example.

The key assumption we’ll make is that the unknown matrix M has low rank. (One can
also extend the following results to the case of matrices that are approximately low-rank.)
For an extreme example, imagine that we knew that M was rank one, with all rows multiples
of each other. In this case, as we saw in Lecture #9, we can sometimes recover M from M̂
even when M̂ has very few known entries.

5.2 Rank Minimization

Given that all we know about the unknown matrix M is that it agrees with M̂ on the known
entries and that it has low rank, we might try to recover M from M̂ by solving the following
optimization problem:

min rank(M) (14)

subject to
M agrees with M̂ on its known entries. (15)

This optimization problem has one real-valued decision variable for each unknown entry in
M̂; the known entries can be treated as constants.

Unfortunately, this rank-minimization problem is NP -hard, and no good general-purpose
heuristic algorithms are known.8 We confronted a similar issue in compressive sensing, where

8Relatedly, its objective function is non-convex (i.e., “nasty”). For example, the average of rank-1 matrices
need not be a rank-1 matrix (why?).

10

directly minimizing the sparsity of a solution to a linear system was an NP -hard prob-
lem. Our approach there was to relax the `0-minimization problem to the computationally
tractable `1-minimization problem. Is there some way we can view matrix rank-minimization
as an `0-minimization problem, and then switch to the `1 norm instead?

The singular value decomposition (SVD) provides an affirmative answer. Specifically,
suppose the unknown m× n matrix M has the SVD

M = USVT ,

where U is an m×m orthogonal matrix, S is an m× n diagonal matrix, and V is an n× n
orthogonal matrix. Then, the rank of M is precisely the number r of non-zero singular
values (i.e., entries of S), with every row of M a linear combination of its top r right singular
vectors, and every column of M a linear combination of its top r left singular vectors.

Writing Σ(M) for the set of singular values of a matrix M, we can therefore rephrase the
optimization problem (14)–(15) as

min |supp(Σ(M))| (a.k.a. ‖Σ(M)‖0) (16)

subject to
M agrees with M̂ on its known entries, (17)

which we can view as a `0-minimization problem.

5.3 Nuclear Norm Minimization

Following in our compressive sensing footsteps, we now consider the analogous `1-minimization
problem, where we just change the 0-norm to the 1-norm:

min ‖Σ(M)‖1 (18)

subject to
M agrees with M̂ on its known entries. (19)

This optimization problem is called nuclear norm minimization.9 It minimizes the sum of the
singular values subject to consistency with the known information. Since `1-minimization
promotes sparse solutions, we might hope that solving the problem (18)–(19) leads, under
reasonable conditions, to the sparsest (i.e., minimum-rank) solution.

The following fact is non-obvious but can be proved using the convexity toolbox (e.g. from
EE364) mentioned earlier.

Fact 5.1 The objective function (18) is convex.

Fact 5.1 implies that the optimization problem (18)–(19) is convex and hence can be solved
relatively efficiently.

Since 2008 [2], there has been significant progress on identifying sufficient conditions on
the matrix M and the number of known entries such that the optimization problem (18)–(19)
successfully recovers M. A typical guarantee is the following.

9One also hears about trace minimization, a closely related optimization problem.

11

Theorem 5.2 ([9]) Assume that:

1. The unknown matrix M has rank r.

2. The matrix M̂ includes at least Ω(r(m+n) log2(m+n)) known entries, chosen uniformly
at random from M.

3. M is sufficiently dense and non-pathological.10

It is clear that some version of the second condition is needed — with too few known entries,
there’s no way to recover M from M̂. For low-rank matrices M, the required number of
known entries is impressively small — sublinear in the number mn of M’s entries. Given
the small number of known entries, it is also clear that some version of the third condition
is needed. If M is too sparse, like a diagonal matrix, then the randomly sampled known
entries will likely all be zeroes.

References

[1] M. W. Browne. A Soviet discovery rocks world of mathematics. New York Times,
November 7 1979.

[2] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational Mathematics, 9(6):717–772, 2009.

[3] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489–509, 2006.

[4] E. J. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inac-
curate measurements. Communications on Pure and Applied Mathematics, 59(8):1207–
1223, 2006.

[5] G. W. Dantzig. Linear Programming and Extensions. Princeton, 1963.

[6] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[7] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20(1):191–194, 1979.

[8] J. Matousek and B. Gärtner. Understanding and Using Linear Programming. Springer,
2006.

[9] B. Recht. A simpler approach to matrix completion. Journal of Machine Learning
Research, 12:3413–3430, 2011.

10The formal term is “incoherent,” which roughly means that the rows of M are not well-aligned with the
standard basis vectors. This is similar to the assumption on the measurement matrix in Theorem 1.1.

12

	The Story So Far
	Linear Programming
	Context
	Using Linear Programming
	A Simple Example
	Geometric Intuition
	Algorithms for Linear Programming

	Linear Programming and 1-Minimization
	Beyond Linear Programs: Convexity
	Convex Sets
	Convex Functions
	Convex Programs

	Application: Matrix Completion
	Setup and Motivation
	Rank Minimization
	Nuclear Norm Minimization

