
Lecture #6: Regularization

1 The Context and Intuition behind Regularization

Given a dataset, and some class of models that you are trying to fit (e.g. linear classifiers,
linear regressions, neural networks, etc.), regularization is a general technique whereby you
form some set of preferences among the models/hypotheses in the chosen class, and end
up returning a model that takes into account both the extent to which the model fits the
data, as well as how “preferred” the model is. To give a concrete example, which we will
revisit, suppose we have n datapoints x1, . . . , xn ∈ Rd, and corresponding real-valued labels
y1, . . . , yn ∈ R and wish to fit a linear regression. The following is the `2 regularized least-
squares objective function corresponding to a model a ∈ Rd:

f(a) =
n∑

i=1

(〈a, xi〉 − yi)2 + λ‖a‖22,

where ‖z‖22 denotes the squared Euclidean length of the vector z, and the parameter λ
dictates how much the models with small `2 norm should be prioritized. Note that in the
case that λ is set to 0, this objective is simply the usual least-squares objective function,
and as λ inceases, models a with small length will be heavily prioritized.

Many of the most common forms of regularization can be viewed as prioritizing differ-
ent notions of “simple” models. As we discuss below, `2 regularization—preferring models
proportionately to the sum of the squares of the coefficients of the model, as well as sparsity-
inducing models that favor sparse sets of coefficients (e.g. learning a linear model where most
of the coefficients are 0), are very common and effective forms of regularization. In these
notes, we will discuss explicit regularizers where we add some specific regularization term
(such as the `2 term above) to an objective function, capturing both how well the model
fits the data as well as how preferred the model is. On the homework, you will explore an
implicit regularizer—where the algorithm you use to find a model that fits the data (e.g.
stochastic gradient descent) implicitly prefers some hypotheses over others. In general, we
are just beginning to understand implicit regularizers. This is currently a very active area
of research in the machine learning and theory communities.

Why Regularize? What is wrong with always returning the empirical risk minimizer
(ERM) discussed in last lecture? [This is the model that fits the data the best—in the case
of least-squares regression, it will minimize the squared error over your training set.] If your
dataset is extremely large in relation to the expressivity of the model class you are fitting,
then the (ERM) will likely be extremely good. The interesting case is where you are flirting

1

with a data-limitation—when you are trying to fit an expressive model class using an amount
of data that seems close to, or below the amount of data that you would need for the ERM
to generalize. In such cases, it is intuitively clear that the ERM will be overfitting to the
training data. The idea of regularization is that if you have any additional information, or
preferences about the form of the true underlying model, these can be applied as ‘regularizers’
and might ameliorate this overfitting.

2 Increasing Dimensionality: the Polynomial Embed-

ding and Random Non-Linear Features

At this point, it might seem like the best path is to always ensure that the model class you
are considering is sufficiently simple in relation to the size of your dataset, so as to guarantee
that the ERM generalizes. From last lecture, in the case of learning a linear separator, this
would mean that if you have n datapoints, you would only try to learn a linear model on
< n features. Additionally, you might be wondering how useful regularization actually is, if
it is only useful in the narrow regime where the number of features is near the threshold of
where generalization might cease to hold. (Given all of this data that we have today, surely
in most cases we have more than enough data to guarantee generalization for the models we
might train, no?)

One viewpoint is that you always want to be flirting with this dangerous line between
overfitting and generalization. If you are not near this line, then you should consider a
larger, more expressive class of models. For example if you want to learn a linear model
using a dataset with n datapoints, with each point consisting of d features, if n � d, then
you should add features until the new dimensionality, d′ is close to n. The intuition behind
this “more-is-better” philosophy stems from the view that in most settings, there is a very-
complex model underlying the data. Given this view, if you have enough data to learn a
very expressive model class, but instead only try to learn a simpler class of models, then you
are leaving something on the table. Of course, for some problems, you might know that the
true model is likely extremely simple, in which case there is no need to have much data. . . .

Given n datapoints in Rd for d � n, one general approach to formulating an expres-
sive/large model class is to increase the dimensionality of each datapoint, and then just
learn a linear classifier or regression in this larger-dimensional space. This embedding of
the data into a higher dimensional space can be thought of as adding additional “features”.
Below we outline two common types of such embeddings, the polynomial embedding, and a
random non-linear embedding.

2.1 The Polynomial Embedding

One way to increase the dimensionality of a datapoint x = (x1, . . . , xd) is to add a number
of “polynomial features”. For example, we could add

(
d
2

)
coordinates, corresponding to the(

d
2

)
products of pairs of coordinates of the original data—this is the quadratic embedding.

2

Specifically, this embedding, f : Rd → Rd+d(d+1)/2 is defined as

f(x) = (x1, . . . , xd, x
2
1, x1x2, x1x3, . . . , xdxd−1, x

2
d).

It should be intuitively clear that a linear function in this quadratic space is more expressive
than a linear function in the original space. In the case of the quadratic embedding, a linear
function corresponds exactly to a quadratic function in the original space. For example, a
linear function in this new space would be capable of modeling functions g(x) = (x1 + x2 +
x17)

2.
How do you train linear classifiers in these polynomial spaces? One option is to actually

map your data into this new space, and then proceed as usual for learning a linear model.
Perhaps surprisingly, it is actually possible to do this polynomial embedding (and others)
implicitly without actually writing out this higher-dimensional embedding of your data. This
is sometimes extremely useful—-imagine if your initial data was 1000 dimensional, you would
rather not write out the 500,000 dimensional quadratic embedding of the data if you didn’t
need to. This ability to train on such embeddings implicitly is known as kernelization and
is covered in the context of Support Vector Machines in most ML classes.

2.2 A Random Projection plus Nonlinearity

A different method for increasing the dimensionality of data is motivated by the Johnson-
Lindenstrauss transformation that we saw last week. Consider the mapping f : Rd →
Rd′ defined by choosing a d′ × d matrix M by selecting each index independently from a
standard Gaussian [Normal distribution], and then defining f(x) = Mx. This is exactly the
Johnson-Lindenstrauss dimension reduction transformation, only now we are choosing the
new dimensionality, d′ > d.

This embedding increases the dimension of the data. Nevertheless, if we learn a linear
function h : Rd′ → R in this d′-dimensional space, and apply it by first mapping a point x to
Mx then applying h to Mx, the linear functions compose, and we have done nothing more
than apply a linear function in the original d-dimensional space!!! [Think about this for a
minute—imagine d = 1, and d′ = 2, suppose we map x→ (3x, 7x), and then apply a linear
function in the 2-dimensional space—-this is just a linear function of the original space!]

In order for linear functions in this higher-dimensional space to have any additional
expressivity, we must perform a non-linear operation. It turns out, almost any non-linear
function, applied to each coordinate of Mx, will suffice, and often performs well in practice.
(For example, square each coordinate, take the absolute value, take the square-root, apply
a sigmoid function, etc.)

One motivation for this linear projection to a higher-dimensional space, followed by a
nonlinear operation, is that this is exactly the computation performed by the bottom layer
of a neural network. The linear projection (the matrix M above) is the way the first hidden
layer is computed from the inputs, and then an element-wise nonlinear function is applied
to each of the resulting internal nodes.

3

2.3 Comparing Polynomial Embedding vs Random Projection +
Nonlinearity

For a given domain, the question of whether to use a polynomial embedding versus the
random projection followed by nonlinearity largely comes down to whether you wish to have
a basis-dependent embedding or not. If the features of your input space are meaningful, then
the polynomial embedding might make most sense. For example, if you are trying to learn
physical laws based on data, and your features represent actual quantities, mass, velocity,
time, etc, it seems most reasonable to preserve the interpretability of the new features, e.g.
a new feature that is the product of mass and velocity. On the other hand, if your features
are not all that distinct, or the coordinate basis was chosen arbitrarily, then the rotationally
invariant random projection approach might make more sense.

3 Regularization: The Bayesian and Frequentist view-

points

There are two general ways of formalizing why regularization makes sense: the “Bayesian
view”, and the “frequentist view”.

3.1 The Bayesian View and `2 Regularization

In the Bayesian view, we assume that the true model underlying the data is drawn from some
known prior distribution. Given such a distributional view you can evaluate the likelihood of
a given model, and may be justified in trying to output the model with maximum likelihood.

To illustrate, suppose x1, . . . , xn ∈ Rd are fixed, and we assume that the universe has
generated labels y1, . . . , yn by first picking a vector a∗ ∈ Rd of coefficients by choosing each
coordinate independently from a Gaussian of mean 0 and variance σ2, N(0, σ2), and then
assigns labels yi = 〈xi, a∗〉+zi, where zi is some noise that has also been chosen independently
from a standard Gaussian. (This is referred to as assuming a Gaussian “prior” distribution
over the model, a.)

Given x1, . . . , xn and y1, . . . , yn, the likelihood of a linear model, a, is simply the product
Pr[a] · Pr[data|a]. Plugging in our distributional assumptions about the likelihood of a and
the probability of the data given a, we obtain the following:

Likelihood(a) =
d∏

i=1

e−
a(i)2

2σ2

n∏
i=1

e−
(〈a,xi〉−yi)

2

2 = e−(1/2)
∑n
i=1(〈a,xi〉−yi)2−

1
2σ2
‖a‖22 .

Hence the maximum likelihood model a is precisely the minimizer of the exponent, which is
the `2 regularized least-squares objective (with λ = 1/σ2).

Of course, the big caveat with the Bayesian view is that it is often unclear the extent to
which such Bayesian priors actually hold. [And, it is worth noting that different priors on
the model, a, will give rise to rather different regularizers.]

4

3.2 The Frequentist View and `0 Regularization

In contrast to the Bayesian viewpoint where one typically posits a distribution from which
the true model is drawn, the “Frequentist” approach to justifying regularization is to argue
that if the true model has a specific property, then regularization will allow you to recover a
good approximation to the true model. One frequently encountered type of structure that a
linear model might possess is sparsity—perhaps the d-dimensional vector of coefficients, a,
only has s � d nonzero coordinates. One hope is to design a regularizer that will “prefer”
sparse models, thereby allowing us to accurately recover sparse models even when the amount
of available data is significantly less than what would be required to learn a general (dense)
linear model.

Example 3.1 Suppose we have a bunch of data taken from observing some physical experiment—
for example data of a ball’s trajectory as it is repeatedly thrown. If our features capture
natural quantities, e.g. mass, velocity, temperature, acceleration, etc., it is likely that the
true underlying model might be sparse.

Example 3.2 Suppose we have a bunch of social, climate, geographic, and economic data
for each county in the US, and are trying to learn a model to predict the frequency of certain
disease outbreaks. It is possible that the “true” underlying model is dense; nevertheless,
there is likely to be a relatively sparse model that is fairly accurate. From the perspective
of trying to guide policy decisions, or recommend measures that could be taken to reduce
the risk of such outbreaks, it is often more helpful to learn sparse models, than more opaque
and uninterpretable dense models. (Of course, there is still the hairy issue of correlation vs.
causation, but at least in a sparse model there are fewer factors to disentangle.)

3.3 `0 regularization

If we know that we are looking for a sparse model, perhaps the most natural regularizer is
simply to penalize vectors in proportion to how (non)-sparse they are. This is referred to
as an `0-regularizer (since the `0 norm of a vector is the number of nonzero entries). The `0
regularized least squares objective function would be:

f(a) =
n∑

i=1

(〈a, xi〉 − yi)2 + λ‖a‖0. (1)

From an information theoretic standpoint, this objective function is great! Recall from
last lecture that, in d dimensional space, any linear classifier can be approximated by an
element of some finite set of exp(d) linear functions. If, however, we know that we are
looking for a linear classifier, a ∈ Rd in d dimensional that has sparsity level s, that is
‖a‖0 = s, then the size of the set of functions that represent such functions will “only”
be O

((
d
s

)
exp(s)

)
. If s � d, this is much smaller than exp(d). Hence by the union-bound

argument of the previous lecture, it will suffice to only have an amount of data that scales
as log

((
d
s

)
exp(s)

)
= O(s log d), as opposed to scaling linearly with the dimension, d.

5

The main issue with directly trying to find a sparse model is that the the `0 norm is
highly discontinuous; perturbing a coordinate of a by some infinitesimally small amount can
change ‖a‖0 by ±1. For this reason, it is computationally intractable to work directly with
the `0 norm, and usual optimization approaches, such as gradient descent, will generally fail
to optimize objective functions such as that of Equation 1.

3.4 `1 as a computationally tractable proxy for `0

Both in theory, and in practice, one can often use the `1 norm as a proxy for the `0 norm. The
`1 norm of a vector is simply the sum of the absolute values of the coordinates, and hence it
is continuous (and linear). The `1-regularized least-squares objective function, which is the
`1 analog of Equation 1 is:

f(a) =
n∑

i=1

(〈a, xi〉 − yi)2 + λ‖a‖1. (2)

From a computational standpoint, `1 regularization does not have the pitfalls of `0-
regularization. Even though the `1 norm is not differentiable everywhere (because of the
absolute values, it is not differentiable at points where any of the coordinates are 0), it is
still amenable to gradient-descent, and other optimization approaches. As we will discuss
towards the end of the course, it can also be represented as the objective function of a “linear
program”, and hence can be optimized in polynomial time.

Perhaps surprisingly, from an information theoretic perspective, `1 regularized regression,
and linear classification, enjoys many of the properties of (the computationally intractable)
`0 regularization. The following proposition, which we will return to towards the end of the
class, provides one such example:

Proposition 3.3 (e.g. Theorem 1 of [1]) Given n independent Gaussian vectors x1, . . . , xn ∈
Rd, and consider labels yi = 〈a, xi〉 for some vector a with ‖a‖0 = s. Then the minimizer of
the `1 regularized objective function, Equation 2, will be the vector a, with high probability,
provided that n > c · s log d, for some absolute constant c.

4 Recap of Key Points

1. Regularization provides one method for combatting over-fitting in the data-poor regime,
by specifying (either implicitly or explicitly) a set of “preferences” over the hypotheses.

2. Regularization is often quite effective, and theoretical explanations for this generally
come in two flavors: “Bayesian” arguments in which we make an assumption about
the distribution from which the universe picks the model in question, and “frequen-
tist” arguments in which we assume that the true model satisfies some property (e.g.
sparsity), and argue that we will recover such a model (possibly with high probability,
given some assumptions about the data).

6

3. Explicit regularization can be accomplished by adding an extra regularization term
to, say, a least-squares objective function. Typical types of regularization include `2
penalties, and `1 penalties.

4. `1 regularization should be thought of as a computationally tractable proxy for `0 reg-
ularization, which will favor sparse solutions. When trying to recover a s-sparse model
over d dimensional data, the amount of data required to avoid overfitting typically
scales as O(s log d), rather than O(d), as would be the case for fitting linear models
without any sparsity or regularization.

References

[1] E. Candes, M. Wakin. An introduction to compressive sampling. IEEE signal processing
magazine, 25.2 (2008): 21-30.

7

	The Context and Intuition behind Regularization
	Increasing Dimensionality: the Polynomial Embedding and Random Non-Linear Features
	The Polynomial Embedding
	A Random Projection plus Nonlinearity
	Comparing Polynomial Embedding vs Random Projection + Nonlinearity

	Regularization: The Bayesian and Frequentist viewpoints
	The Bayesian View and 2 Regularization
	The Frequentist View and 0 Regularization
	0 regularization
	1 as a computationally tractable proxy for 0

	Recap of Key Points

