
CSE 422 Lecture #10:
Tensors and low-rank tensor recovery

Last lecture discussed singular value decomposition (SVD), and we saw how such decom-
positions reveal structure about the matrix in question, allowing us to possibly de-noise the
matrix, compress the matrix, fill in missing entries, etc. This lecture is about tensors.

1 Introduction to tensors

Tensor methods are relatively new, and are at the forefront of research in machine learning
and data sciences. A tensor is just like a matrix, but with more dimensions:

Definition 1.1 A n1× n2× . . .× nk k-tensor is a set of n1 · n2 · . . . · nk numbers, which one
interprets as being arranged in a k-dimensional hypercube. Given such a k-tensor, A, we
can refer to a specific element via Ai1,i2,...,ik .

A 2-tensor is simply a matrix, with Ai,j referring to the i, jth entry. You should think of
a n1×n2×n3 3-tensor as simply a stack of n3 matrices, where each matrix has size n1×n2.
The entry Ai,j,k of such a 3-tensor will refer to the i, jth entry of the kth matrix in the stack.

Remark 1.2 For our purposes (and in most computer science applications involving data),
the above definition of tensors suffices. Tensors are very useful in physics, in which case they
are viewed as more geometric objects, and are endowed with some geometric notion of what
it means to change the coordinate system. We won’t worry about this, though be aware that
you might come across a significantly more confusing definition of a tensor at some point.

1.1 Examples of Tensors

We have all seen plenty of 2-tensors (i.e. matrices). Below we list a few examples of higher
order tensors that you might encounter.

Example 1.3 (k-grams) Given a body of text, and some ordering of the set of words (for
example, just alphabetical ordering, w1, . . . , wn, we can associate a k-tensor, A, defined by
setting entry Ai1,...,ik equal to the number of times the sequence of words wi1 , wi2 , . . . , wik

occurs in the text. For example, if we have n distinct words, we could extract an n× n× n

1



3-tensor from a corpus of text, where Ai,j,k represents the number of times in the corpus that
the ith, jth, and kth words occur in sequence.

Example 1.4 (The Moment Tensor) Suppose we have some data s1, s2, . . . , sn repre-
senting independent draws from some high-dimensional distribution in Rd. That is, each
si ∈ Rd. The mean of this data is simply a vector of length d. The covariance matrix
of this data is represented by a d × d matrix, whose i, jth entry is the empirical estimate
of E[(Xi − E[Xi])(Xj − E[Xj])], where Xi denotes the ith coordinate of a sample from
the distribution. We can also consider higher moments: the d × d × d 3-tensor repre-
senting the third order moments, has entries Ai,j,k representing the empirical estimate of
E [(Xi − E[Xi])(Xj − E[Xj])[(Xk − E[Xk])]. This is simply given by the following expression
in terms of the data s1, . . .: letting mi,mj,mk denote the average value of the ith, jth, and
kth components of the datapoints s1, . . . ,,

Mi,j,k =
1

n

n∑
`=1

(s`i −mi)(s`j −mj)(s`k −mk),

where s`i denotes the value in the ith dimension of datapoint s`. We can define higher order
tensors analogously, corresponding to higher order moments.

1.2 The Rank of a Tensor

The rank of a tensor is defined analogously to the rank of a matrix. Recall that a matrix M
has rank r if it can be written as M = UV t, where U has r columns, and V has r columns.
Letting u1, . . . , ur and v1, . . . , vr denote these columns, note that

M =
r∑

i=1

uiv
t
i .

Note that this is the outer-product of these vectors, and this expression represents M as
a sum of r rank 1 matrices, where the ith matrix Bi = uiv

t
i has entries Bj,k = ui(j)vi(k),

namely the product of the jth entry of vector ui and the kth entry of vector vi. Another
way of thinking about this, is that a matrix is rank 1 if all the rows are multiples of each
other, and that a rank k matrix is just a sum of k rank 1 matrices.

Tensor rank is defined analogously. A tensor has rank 1 if all the rows of all the matrices
in the tensor are multiples of each other, and a tensor is rank k if it can be written as a sum
of k rank 1 tensors. We first define the notation we use to represent this, via the definition
of the vector outer-product.

Definition 1.5 Given vectors u, v, w, of lengths n,m, and `, respectively, their tensor prod-
uct or outer product is the n×m× ` rank 1 3-tensor denoted A = u⊗ v⊗w A with entries
Ai,j,k = uivjwk.

The above definition extends naturally to higher dimensional tensors:

2



Definition 1.6 Given vectors v1, v2, . . . , vk, of lengths n1, n2, . . . , nk, the tensor product is
denoted v1 ⊗ v2 ⊗ . . . ⊗ vk is the n1 × n2 × . . . × nk k-tensor A with entry Ai1,i2,...,ik =
v1(i1) · v2(i2) · . . . · vk(ik).

Example 1.7 For example, given

v1 =

 1
2
3

 , v2 =

(
−1
1

)
, v3 =

(
10
20

)
, .

v1 ⊗ v2 ⊗ v3 is a 3× 2× 2 3-tensor, that can be thought of as a stack of two 3× 2 matrices

M1 =

 −10 10
−20 20
−30 30

 ,M2 =

 −20 20
−40 40
−60 60

 .

We are now ready to define the rank of a tensor, which will correspond to our definition
of the rank of a matrix in the case that we are referring to a 2-tensor:

Definition 1.8 A 3-tensor A has rank r if there exists 3 sets of r vectors, u1, . . . , ur,
v1, . . . , vr and w1, . . . , wr such that

A =
r∑

i=1

ui ⊗ vi ⊗ wi.

The definition of rank for general k-tensors is analogous.

2 Differences between Matrices and Tensors

In general, most of what you know about linear algebra for matrices does NOT apply to
k-tensors for k ≥ 3. Below is a brief list of notable differences between tensors and matrices:

1. For matrices, the best rank-k approximation can be found by iteratively finding the
best rank-1 approximation, and then subtracting it off. In other words, for a matrix
M , the best rank 1 approximation of M is the same as the best rank 1 approximation
of the matrix M2 defined as the best rank 2 approximation of M . Because of this, if
uvt is the best rank 1 approximation of M , then rank(M − uvt) = rank(M − 1).

For k-tensors with k ≥ 3, this is not always the case. If u ⊗ v ⊗ w is the best rank 1
approximation of 3-tensor A, it is possible that rank(A− u⊗ v ⊗ w) > rank(A).

2. For matrices with entries in R, there is no point in looking for a low-rank decomposition
that involves complex numbers, because rankR(M) = rankC(M). For k-tensors, with
k ≥ 3, this is not always the case, it can be that the rank over complex vectors is
smaller than the rank over real vectors, even if the entries in the tensor are real-valued.

3



3. We don’t really know how to argue about the rank of 3-tensors: for example, with
probability 1, if you pick the entries of an n×n×n 3-tensor independently at random
from the interval [0, 1], the rank will be on the order of n2, however we don’t know
how to describe any explicit construction of n × n × n tensors whose rank is greater
than n1.1, for all n.

4. Computing the rank of matrices is easy (e.g. via SVD). Computing the rank of 3-
tensors is NP-hard.

5. As we will explore in the following section, despite the above point, if the rank of a
3-tensor is sufficiently small, then its rank can be efficiently computed, its low-rank
representation is unique, and can be efficiently recovered.

3 Low-Rank Tensors

Recall that a low-rank representation of a matrix M , is not unique. For M = UV t, where
both U and V have r columns, for any r× r invertible matrix C, we have M = UCC−1V t =
(UC)(C−1V t), and hence the columns of UC, and the rows of C−1V t form a different rank
r representation of M . This lack of uniqueness of low-rank representations is frustrating if
we hope to interpret the various factors.

One of the earlier pioneers of low-rank approximation of matrices was the British phys-
cologist/statistician Charles Spearman. One of his early experiments was to give a number
of academic tests to a number of students, and form the matrix M in which entry Mi,j

represented the performance of the ith student on the jth test. He realized that M was very
close to a rank 2 matrix, and went on to conjecture that this might arise via the following
explanation: suppose the ith student has two number mi, vi representing their mathematical
ability and verbal ability. Suppose further that the jth test can basically be represented
as two number, tj, qj representing that tests’ mathematical and verbal components. If this
model were correct, then Mi,j ≈ mitj + viqj, and hence M would be close to the rank 2 ma-
trix UV t, where the two columns of U represent the students’ math/verbal abilities, and the
two columns of V represent the tests’ math/verbal components. Unfortunately, the rank-2
representation is not unique, as mentioned in the previous paragraph, and hence even if this
model of the world were true, the rank 2 representation recovered would not correspond to
this model.

Amazingly, once one goes from to 3-tensors, low-rank decompositions end up being es-
sentially unique!

Theorem 3.1 Given a 3-tensor A of rank k s.t. there exists three sets of linearly indepen-
dent vectors, (u1, . . . , uk), (v1, . . . , vk), (w1, . . . , wk), s.t.

A =
k∑

i=1

ui ⊗ vi ⊗ wi,

4



then this rank k decomposition is unique (up to scaling the vectors by a constant), and these
factors can be efficiently recovered.

To give a simple illustration of the above theorem, suppose we conducted Spearman’s
experiment, except we added an extra dimension—suppose we administered each test to
each student in 1 of three different settings (i.e. a setting in which classical music is playing,
a setting with distracting video playing, and a control setting). Let M denote the corre-
sponding 3-tensor, with Mi,j,k denoting the performance of student i on test j in setting k.
Suppose the true model of the world is as follows: as above, for every student there are two
numbers representing their math/verbal ability, and every test can be regarded as having
a math/verbal component; additionally, for each setting, there is some scaling of the math
performance resulting from that setting, and a scaling of the verbal performance resulting
from that setting. Hence Mi,j,k can be approximated by multiplying the math ability of the
student with the math component of the test and the math boost-factor of the setting, and
then adding the corresponding product from the verbal components. Theorem 3.1 asserts
that, provided the vector of student math abilities is not identical (up to a constant rescaling)
to the vector of verbal abilities, and the 2 vectors of math/verbal test components are not
identical up to rescaling, and the 2 vectors of math/verbal setting boosts are not identical
up to rescaling, then this is the unique factorization of this tensor, and we will be able to
recover these exact factors.

3.1 Quick Discussion

As mentioned in previous lectures, one can often interpret the top two or three singular
vectors of a dataset. Perhaps the main reason that 4th, 5th, etc. singular vectors cannot
be interpreted, is that—because they must be orthogonal to the first components—they end
up not representing the clean/interpretable phenomena that one might hope. The beauty of
Theorem 3.1 is that the factors do not need to be orthogonal; as long as they are linearly
independent, then they can be recovered uniquely. More broadly, tensor methods offer one
hope for enabling useful features to be extracted from data in an unsupervised setting.

3.2 The Algorithm

We now describe the algorithm alluded to in Theorem 3.1. This algorithm was originally
proposed in the 1970’s but has been reinvented several times, in several different contexts,
and is often referred to as “Jenrich’s Algorithm”. Do not worry too much about the details—
the main step that might be unfamiliar is the computation of an eigen-decomposition of a
matrix M = QSQ−1 where S is the diagonal matrix of eigenvalues, and the columns of Q are
eigenvectors. Note that in Lecture 7 and 8, we only looked at eigenvectors of a symmetric
matrix XX t, in which case Qt = Q−1.

5



Algorithm 1
Tensor Decomposition

Given an n × n × n tensor A =
∑k

i=1 ui ⊗ vi ⊗ wi, with (u1, . . . , uk), and
(v1, . . . , vk), and (w1, . . . , wk) linearly independent, the following algorithm will
output the lists of u’s,v’s, and w’s.

• Choose random unit vectors x, y ∈ Rn.

• Define the n×n matrices Ax, Ay, where Ax is defined as follows: consider
A as consisting of a stack of n n × n matrices. Let Ax be the weighted
sum of these n matrices, where the weight given to the ith matrix is
xi–namely the ith element of vector x. Define Ay analogously to be the
weighted sum of the matrices, with the ith matrix being scaled by yi.

• Compute the eigen-decompositions of AxA
−1
y = QSQ−1, and A−1x Ay =

Y −1TY t.

• We will show that with probability 1, the entries of diagonal matrix S
will be unique, and will be inverses of the entries of diagonal matrix T .
The vectors u1, . . . , uk are the columns of Q corresponding to nonzero
eigenvalues, and the vectors v1, . . . , vk will be the columns of Y , where vi
corresponds to the reciprocal of the eigenvalue to which ui corresponds.

• Given the ui’s and vi’s, we can now solve a linear system to find the wi’s,
or imagine rotating the whole tensor A and repeating the algorithm to
recover the w’s.

Before analyzing the above algorithm, we note that if the original tensor A is n×m× p,
rather than n × n × n, then the above algorithm continues to work, provided we compute
the eigen-decomposition of the matrices AxA

+
y and A+

xAy, where M+ denotes the “pseudo-
inverse” of M , which is the analog of inverses for non-square matrices.

To analyze the above algorithm, we first argue that Ax =
∑k

i=1〈wi, x〉uivti , and, similarly,

Ay =
∑k

i=1〈wi, y〉uivti .

Lemma 3.2 For Ax and Ay as defined in the algorithm,

Ax =
k∑

i=1

〈wi, x〉uivti , and Ay =
k∑

i=1

〈wi, y〉uivti ..

Proof: First consider the case where k = 1. Hence A = u1⊗v1⊗w1, and the ith matrix in the
stack corresponding to A is w1(i) · u1vt1. Hence the contribution of this matrix to the matrix
Ax is defined to be xi · w1(i) · u1vt1, and hence the matrix Ax is simply u1v

t
1

∑
i xi · w(i) =

〈w1, x〉u1vt1. Since A is simply a sum of these rank 1 factors, Ax and Ay are simply the sum
of the corresponding rank 1 components, weighted appropriately. �

6



Given the above lemma, Ax = UDV t where the columns of U are the vectors ui, and the
columns of V are the vectors vi, and D is a diagonal matrix with ith entry 〈wi, x〉. Similarly,
Ay = UEV t, where the ith diagonal entry of E is 〈wi, y〉. Given this,

AxA
−1
y = UDV t(V t)−1E−1U−1 = U(DE−1)U−1,

and similarly
A−1x Ay = (V t)−1D−1U−1UEV t = (V t)−1D−1EV t.

The correctness of the algorithm now follows from the uniqueness of the eigen-decomposition
in the case that the eigenvalues are distinct. Without belaboring the details, for a random
choice of vectors x, y, provided the u’s, v’s and w’s are linearly independent, with probability
1 the eigenvalues of the above matrices will be distinct. Hence we can recover the list of u′s
and the list of v′s.

How do we match up the right u with the corresponding v? That is, we want to ensure
that we know that u1 belongs to the same factor as v1, rather than, say, grouping u1 with v3.
This is easy, as the eigenvalues of AxA

−1
y are given by the diagonal matrix DE−1 and hence

are reciprocals of the eigenvalues of A−1x Ay, so if u1 is the eigenvector of AxA
−1
y with largest

eigenvalue λ1, then v1 will be the eigenvector of A−1x Ay with smallest eigenvalue which will
be equal to 1/λ1.

7


	Introduction to tensors
	Examples of Tensors
	The Rank of a Tensor

	Differences between Matrices and Tensors
	Low-Rank Tensors
	Quick Discussion
	The Algorithm


